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Abstract

We study the problem of automatically learning event
AND-OR grammar from videos of a certain environment,
e.g. an office where students conduct daily activities. We
propose to learn the event grammar under the informa-
tion projection and minimum description length principles
in a coherent probabilistic framework, without manual su-
pervision about what events happen and when they hap-
pen. Firstly a predefined set of unary and binary rela-
tions are detected for each video frame: e.g. agent’s po-
sition, pose and interaction with environment. Then their
co-occurrences are clustered into a dictionary of simple
and transient atomic actions. Recursively these actions are
grouped into longer and complexer events, resulting in a
stochastic event grammar. By modeling time constraints of
successive events, the learned grammar becomes context-
sensitive. We introduce a new dataset of surveillance-
style video in office, and present a prototype system for
video analysis integrating bottom-up detection, grammati-
cal learning and parsing. On this dataset, the learning al-
gorithm is able to automatically discover important events
and construct a stochastic grammar, which can be used to
accurately parse newly observed video. The learned gram-
mar can be used as a prior to improve the noisy bottom-up
detection of atomic actions. It can also be used to infer se-
mantics of the scene. In general, the event grammar is an
efficient way for common knowledge acquisition from video.

1. Introduction
We are interested in building a closed loop unsupervised

learning framework towards the following goals: 1) un-
supervised learning of the event AND-OR grammar from
video, and 2) inferring scene semantics of the environ-
ment by event analysis. Both are motivated by a general
goal of automatic knowledge acquisition from video data.
The acquired common sense knowledge provides a visually
grounded representation for goal-based cognitive reasoning,

which usually operates on abstract logical formulas.
Event analysis has gone a long way from modeling tran-

sient or periodic action [10, 3], to longer events [13, 6, 8],
achieving promising recognition performance. However,
most of the above work train event models for a predefined
set of event classes. In contrast, an unsupervised learning
algorithm automatically generates richer event classes and
also reduces tedious manual labeling, thus providing more
scalability for knowledge acquisition systems.

Our work is also inspired by recent progress in unsuper-
vised learning and data mining [14, 5] as well as grammat-
ical learning and inference [2, 4, 15] on video data. [2, 4]
address the problem of event recognition using a predefined
stochastic context free grammar, but do not show how to
learn the grammar. For grammar leaning, our strategy is
most similar to Zhang et al. [15], which learns a stochastic
context free grammar automatically. However, it is mainly
applied to trajectory analysis of multiple agents. In contrast,
we adopt a richer feature representation including interac-
tions between agents and the environment. Also, we append
a Markov model of time constraints for adjacent events, re-
sulting in a stochastic context sensitive grammar, which was
first introduced into computer vision by Zhu and Mumford
in [17]. The stochastic event grammar provides an efficient
representation for knowledge extracted from video.

Table 1. A list of daily activities in office.
Working on computer Reading or writing
Making a call Fetching water
Litering Watching soccer match
Entering and leaving Walking in the passageway

In our work, we deal with surveillance type of videos
taken in offices (Fig.1) where students conduct daily activi-
ties (Table 1) repeatedly. As the environment is almost static
except for moving chairs and doors, one can perform fore-
ground segmentation and object tracking easily. This en-
ables us to focus on higher level event modeling. However,
even in such a controlled environment as an office, automat-
ically learning event grammar is not easy. Firstly, due to oc-
clusion, shadow and scale change, bottom up detection for
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Figure 1. Semantic label map of the office scene. Manually annotated as context for agent actions.

visual attributes (e.g. the pose of agent) is often ambiguous.
Secondly, there is large temporal deformation between in-
stances of similar events. For example, in a “fetching water”
event, the agent may choose to stay at the water dispenser
for five seconds or two minutes, before he/she leaves. Sim-
ple agglomerate grouping would perform poorly under such
temporal variation.

To the goal of automatic knowledge acquisition from
video, we build a prototype system for unsupervised event
learning with the following characteristics: 1) atomic ac-
tions are defined by spatial-temporal configurations of
unary (e.g. agent) and binary (e.g. agent-environment) re-
lations grounded in the video data; 2) longer events are
defined by composition of events as production rules in a
stochastic grammar; 3) scene semantics can in turn be in-
ferred through recognition of agent actions and events. For
example, small objects in a scene, such as mug and phone,
can be revealed through contextual actions such as drinking
and making a phone call. The unsupervised event learning
takes as input the video data together with a semantic la-
bel map of the actionable regions (e.g. desk, chair, floor),
and carries out three steps: i) grounded relations (e.g. agent
position and pose) are detected. ii) The transient spatial-
temporal patterns of grounded relations are clustered as an
alphabet of transient atomic actions. The video is then en-
coded as a symbol sequence by atomic actions. iii) Start-
ing from the atomic actions, shorter events are grouped into
longer ones recursively under information projection and
minimum description length principles. And as a result,
production rules of the stochastic grammar are learned.

Dataset. We collect surveillance style video for stu-
dents’ daily activities in the office. Student actors are
asked to repeatedly perform the daily activities listed in
Table 1. In total we collect about 3 hours of video, with
2.7 × 105 frames at the resolution of 1280*720 pixels.
The data is available at http://www.stat.ucla.edu/

Figure 2. Clustering from clips.

˜zzsi/officelifevideo.html.

Table 2. The grounded unary and binary relations of event gram-
mar: relations directly detectable from video.

Name Definition Description
r1 absent(agent) not found in the frame
r2 near(agent, desk) near the desk
r3 near(agent, board) near the white board
r4 near(agent, door) near the door
r5 near(agent, water) near the water dispenser
r6 near(agent, trashcan) near the trash can
r7 near(agent, passage) at the passageway
r8 touch(agent, keyboard) typing on keyboard
r9 touch(agent, mug) grabbing a mug
r10 touch(agent, phone) grabbing the phone
r11 bend(agent) bending the body downwards

to pick up something
r12 sit(agent) sitting on something
r13 celebrate(agent) celebrating something with

two arms stretching upwards
r14 stand(agent) standing straight
r15 occlude(soccer match,

screen)
soccer match appearing on
the computer screen

2. Detecting grounded relations
For an event grammar to work, one needs a set of

grounded relations directly detectable from video. A
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grounded relation is of the form rj(A) (a unary relation)
or rj(A,B) (a binary relation), where rj is a logical-valued
relation (e.g. near, touch, appear) indexed by j, and A,B
are entities (e.g. agent, phone). Table 2 specifies the 15
unary and binary relations (in [7] a richer set of relations
are used). There are four types of relations: agent location
(r1 ∼ r7), agent-environment interaction (r8 ∼ r10), agent
pose (r11 ∼ r14) and background event (r15).

Different grounded relations are detected using different
methods. Firstly we use a standard background subtraction
algorithm to segment moving agent and fluent changes of
objects, and use a commercial surveillance system to track
the detected agent. We track the bottom point of the bound-
ing box for the agent, and cluster these two dimensional
locations using k-means. We set the number of clusters k to
be much larger than the number of semantically distinctive
regions. Then we determine which clusters are equivalent
depends on the scene label map. As a result, we obtain spa-
tial models for regions of interest (e.g. door, desk, board)
in Fig.4. For each newly detected agent location, we output
the posterior probabilities for this location to belong to the
regions of interest.

The location of the agent is computed by combining
foreground segmentation and skin color detection that lo-
cates the head and hands of the agent. The real valued loca-
tion is then quantized into a categorical variable by find-
ing its nearest region of interest (e.g. desk, door). The
agent pose is inferred by a nearest neighbor classifier us-
ing both pixels and foreground segmentation map within
the estimated bounding box for the agent. An illustra-
tion of four poses using segmented foreground mask is
shown in Fig. 3. The binary relations touch(agent,
keyboard) and touch(agent, phone) are detected
by checking whether there is enough skin color within
the designated area for the laptop and phone, which are
static objects in the office environment. The relation
touch(agent, mug) is also detected using skin color,
and the unique color and shape of the mug. The back-
ground relation occlude(soccer match, screen)
is determined by checking whether there is large amount of
green color occluding the laptop. Using the techniques de-
scribed above, we detect grounded relations for every video
frame. The detection result is organized as a spatial tempo-
ral table where each row corresponds to a time frame. Each
column corresponds to a grounded relation.

Figure 3. Standing, bending, sitting and celebrating poses.

Figure 4. The spatial models for the locational binary relations.
Darker region indicates a higher probability.

Table 3. Learned atomic actions.
symbolic definition frequency semantic
a1 = (r1) .0392 absent
a2 = (r4, r14) .0719 standing at door
a3 = (r4, r11) .0065 bending at door
a4 = (r7, r14) .098 walking in passageway
a5 = (r2, r12) .1765 sitting at desk
a6 = (r2, r8, r12) .0915 sitting at desk, typing
a7 = (r2, r8, r9, r12) .0065 sitting at desk, typing,

grabbing mug
a8 = (r2, r9, r12) .0327 sitting at desk, grabbing

mug
a9 = (r2, r8, r14) .0523 standing at desk, grab-

bing mug
a10 = (r7, r14) .0654 walking in passageway,

grabbing mug
a11 = (r5, r9, r14) .0523 standing at water dis-

penser, holding mug
a12 = (r5, r9, r11) .0261 bending at water dis-

penser, holding mug
a13 = (r2, r10, r12) .0131 sitting at desk, picking

up phone
a14 = (r2, r8, r12, r15) .0131 sitting at desk, typing,

soccer match on screen
a15 = (r2, r12, r15) .0327 sitting at desk, soccer

match on screen
a16 = (r2, r13, r15) .0261 celebrating at desk,

soccer match on screen
a17 = (r2, r14) .1242 standing at desk
a18 = (r2, r11) .0065 bending at desk
a19 = (r6, r14) .0131 standing at transhcan
a20 = (r6, r11) .0065 bending at trashcan
a21 = (r6, r9, r11) .0261 standing at trashcan,

holding mug
a22 = (r6, r9, r14) .0131 bending at trashcan,

holding mug
a23 = (r3, r14) .0065 standing at white board

3. Learning events and event grammar

3.1. Information projection

The unsupervised learning of stochastic event grammar
is conducted under the information projection and mini-
mum description length principle. In general, for vectored
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data {x(1)
1:J , ...,x

(N)
1:J } we can organize them into a data ma-

trix with N rows and J columns. N is the number of data
instances, and J is the length of the vectors indicating the
span in space and/or time. The goal is to find a probabilistic
model p(x) to maximally explain the data matrix. Initially,
the data matrix is explained by a reference (or background)
distribution q(x) which is a simple i.i.d. Bernoulli distri-
bution. It does not capture any spatial or temporal corre-
lation between events. The description length using q to
encode the data matrix, defined as

∑N
i=1− log q(x

(i)
1:J), is

often very large.
Starting from the reference distribution q we pursue a

series of models by information projection to approximate
the target distribution f that generates the observed data:

q = p0 → p1 → p2, ...,→ pK = p ≈ f (1)

so that the Kullback-Leibler divergence K(f, pk) between
the target distribution f and the model pk decreases mono-
tonically and the log-likelihood increases monotonically.

The model update in Eq.1 is achieved by pursuing a se-
ries of homogeneous rectangular blocks {B1, ...,BK} in the
data matrix (as illustrated in Fig.5) and representing each
block by a probabilistic model. We refer to [9] for a de-
tailed derivation of the block pursuit procedure. A rectan-
gular block in the data matrix is a set of common compo-
nents (columns) shared by a set of examples (rows). The
shared components form a template of the block members,
capturing the co-occurrence in space or time. The area of
the block indicates its significance and thus the information
gain, or reduction in description length. Similar approaches
have also been adopted in the grammar learning of textual
data [12].

The final model pK after K steps of pursuit encodes the
original sequence with a much better model capturing the
co-occurrences of simpler events. pK has a higher likeli-
hood on the observed sequence, thus reducing the descrip-
tion length for data. The information gain compared with
the reference model q is a three-fold summation:

info. gain =

N∑
i=1

log
pK(x(i);B1, · · · BK)

q(x(i))

=

K∑
k=1

∑
i∈rows(Bk)

∑
j∈columns(Bk)

log
pK(x

(i)
j |Bk)

q(x
(i)
j )

(2)

To penalize the model complexity, we apply a constant
penalty for each additional block learned. This is equiva-
lent to imposing a Laplacian prior on the number of blocks,
or the dictionary size of the learned grammar.

The above learning method can be implemented either
by clustering/bi-clustering, which produces multiple blocks
at the same time, or by stepwise pursuit, which produces

Figure 5. Pursuing homogeneous blocks from the data matrix.

one block at a time. The learning of event grammar is car-
ried out into two stages. (1) Learn a set of terminal nodes
as blocks on the data matrix of grounded relations. These
terminal nodes account for atomic actions which directly
specify spatial temporal configurations of grounded rela-
tions. This is done by clustering. (2) Learn non-terminal
nodes as blocks on the data matrix of atomic actions, to ac-
count for longer events composed of atomic actions. This is
done by step-wise pursuit.

3.2. Learning atomic actions
We define atomic actions to be simple and transient

events composed spatially and temporally by grounded re-
lations. To learn an alphabet of atomic actions, we use a
temporal scanning window spanning 5 frames to collect a
large number of small clips. Each 5-frame clip is described
by a binary vector of detected relations:

{(r1,1, ..., r1,D, ..., r5,1, ..., r5,D)}

whereD = 15 is the number of grounded relations detected
per frame. A k-centroids clustering is then performed on the
grounded relation vectors of these 5-frame clips, using the
simple Hamming distance as the metric. And a centroid of a
cluster is simply determined as the grounded relation vector
that has minimal distance to all the cluster members. As the
timespan is very small, we can assume that the grounded
relations (e.g. agent location, pose) stay constant during the
short period. So we constrain the centroids to be stationery,
i.e. r1,d = r2,d = ...r5,d,∀d = 1, ...D. For each cluster,
we estimate the symbol probabilities p(r1), ..., p(r15) by
counting the member sub-sequences of the cluster. And we
represent this stochastic model by its mode (the most likely
sub-sequence) denoted as r(k)1:15 for brevity. Each cluster cor-
responds to a block pursued in the data matrix in Fig. 5.

The result of clustering is a list of 23 atomic actions
shown in Table 3, together with the their relative frequen-
cies normalized by the total number of collected clips. Each
atomic action is represented by a list of grounded relations
that are activated. The semantic description for atomic ac-
tions is in Table 3. And we also show corresponding video
frames for a subset of atomic actions in Fig.6, together with
a graphical representation to highlight the interaction be-
tween the agent and environment. The atomic actions that
happen most frequently include a5 (sitting at desk), a17
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(standing at desk), a6 (sitting at desk, typing), a4 (walk-
ing in the passageway) a2 (standing at door) and a9 (sitting
at desk, grabbing a mug). a5, a6 can be considered as con-
stituent components of a longer event “working at desk”.
a17, a4 probably happen between two events and serve as
transitions. a2 indicates the student is entering or leaving.
The the learned atomic actions and their relative frequencies
are representative and truthful to the video data.

Figure 6. Illustrating a subset of the learned atomic actions.

Now the sequence of multi-dimensional relations is en-
coded by the alphabet of 23 atomic actions. For computa-
tional efficiency, to discover longer events we use hard as-
signments by computing the most likely atomic action per
every 5 frames. The resulting sequence of atomic actions is

w1:T = (w1, ..., wT ), where wt ∈ {a1, ..., a23}

and T is the total number of video frames divided by 5.

3.3. Learning longer events and event grammar

Compressing the sequence of atomic actions. There
is large variation in the duration of atomic actions. For ex-
ample, a student may repeatedly enter the office, work for
a varying time and leave the office. If we naively group
atomic actions into longer ones, we get a large number of
repetitive patterns of various lengths, providing little infor-
mation. To deal with temporal variation, we perform a sim-
ple compression operation: every repetitive sub-sequence is
summarized into one symbol (e.g. bbbb substituted by b ).
We may interpret this operation as learning a large number
of grammar rules in the form Ñ → NN...N with various
lengths of repetition. We estimate a nonparametric model

(Fig.8) for the length of repetition, or duration under maxi-
mum likelihood principle.

After compression, the original sequence of atomic ac-
tions w1:T is transformed into a much shorter one c1:M
(M << T ) where each symbol ci takes value from the
same domain as wi. We then scan the sequence c1:M to
collect subsequences of length l (l = 2 in our system) and
form a data matrix. Now the columns of this data matrix are
atomic actions instead of grounded relations. A large num-
ber of homogeneous blocks (i.e. frequent sub-sequences)
are identified from the data matrix. They are candidates for
the right hand side of production rules in the event gram-
mar. From the candidates, we select a subset of production
rules in a step wise fashion according to their corresponding
information gains.

A proposed candidate production rule takes the form
α → βγ. It re-encodes the current sequence into a new
sequence by replacing all occurrences of βγ by α. By do-
ing this, the information gain is computed as:

info. gain = ∆1 + ∆2 + ∆3 − constant penalty (3)

and,

∆1 = n′α ·
(

log
nα
n′

)− log
nβ
n
− log

nγ
n

)
∆2 = n′β ·

(
log

n′β
n′
− log

nβ
n

)
+n′γ ·

(
log

n′γ
n′
− log

nγ
n

)
∆3 = (n′ − n′β − n′γ − n′α) · log

n

n′

where n′α, n
′
β , n
′
γ are the frequencies of α, β, γ in the newly

encoded sequence respectively, nβ , nγ are the correspond-
ing frequencies in the current sequence. n is the length of
the current sequence. n′ = n − n′α is the length of the
new sequence. Eq.3 is a special case of Eq.2. We rank the
candidate production rules using Eq.3 and select the largest
one. This learning procedure is recursively carried out, un-
til the information gain (or reduction of description length)
is negative for any new candidate production rule. As a re-
sult, we obtain a dictionary of new production rules shown
in Table 4, where to make the grammar more compact we
merge shorter production rules into a longer ones that maxi-
mally reduce the description length. The learned production
rules capture the interesting activities including working,
entering, leaving, littering, fetching water and entertaining
(watching soccer). Finally, by combining the production
rules (e.g. AB ∪ AC → A(B ∪ C)) we get a stochastic
AND-OR grammar illustrated in Fig. 7, where for brevity
we only show the graph structure and omit the branching
probabilities of OR nodes. Here an AND node represents an
event that is decomposed into subevents or atomic actions;
an OR node represents alternative ways to realize an event.
The learned AND-OR grammar contains a large amount of
node sharing in the compositional hierarchy.
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Table 4. Learned production rules of event grammar. For simplic-
ity, we omit the starting symbol S and the branching probabilities
that S produces the following non-terminal nodes.

production rule description
length
reduction

semantic

N24 → a15a16 .12 watching soccer,
celebratingN32 → N24N24 .085

N29 → a10a11a12a11a10 .381
N30 → N29a9 .080
N31 → a9N30 .067
N44 → a8N31 .057
N27 → a5a6 .080

working at desk: on
computer or
reading/writing, then
leave

N42 → N27a5 .042
N47 → N42a17 .039
N48 → N47a4 .022
N49 → a17N47 .025
N33 → a1a2 .073

entering the office,
arrive and sit at the
desk

N34 → a2N33 .061
N38 → a4N34 .054
N39 → N38a4 .042
N40 → a17N39 .060
N41 → N40a17 .060
N46 → N41a5 .033
N35 → a10N21 .065

dumping waste at the
trashcan

N36 → N35a22 .074
N37 → N36a21 .055
N43 → a6a5 .037 full working mode
N45 → a8a5 .045 Other frequent

sub-eventsN50 → a4a17 .019

3.4. Markov random field on the duration of events

A context free grammar G learned above can synthesize
meaningful event sequences similar to observed ones. How-
ever, the durations of the synthesized events are random
and uncorrelated. To capture this information, we define
a Markov random field (MRF) on top of the durations of
nodes in the parse graph pg produced by the event gram-
mar, so that the grammar can model singleton, pairwise and
higher-order statistics for the duration of sequential events.
We use pooled histograms of duration as non-parametric po-
tential functions of the MRF. Detailed specifications of the
event parse graph and MRF are referred to [7].

3.5. Parsing with event grammar

We use an online parsing algorithm (details are referred
to [7]) similar to Earley’s parser [1, 11] to generate parse
graphs based on the input data. Earley’s algorithm reads
terminal symbols sequentially, creating a set of all pend-
ing derivations (states) that is consistent with the input up
to the current input terminal symbol. Given the next in-
put symbol, the parsing algorithm iteratively performs one
of three basic operations (prediction, scanning and comple-
tion) for each state in the current state set. To incorporate

Figure 7. Graphical representation of the learned event AND-OR
grammar.

Figure 8. Singleton duration model φ(dj) for atomic actions.

the Markov temporal model in Sec.3.4, we re-weight the
proposed parse graphs by multiplying the probability com-
puted in the Markov random field. For computational scal-
ability, we only keep the top few candidate parses for the
currently scanned sequence.

4. Evaluating the learned event grammar

4.1. Video parsing using learned event grammar

Using the learned event grammar, we parse the sequence
of atomic actions extracted from a long video in Fig.9. The
sequence is already compressed so that repeating subse-
quences are suppressed into single symbols. In the zoomed-
out parts of the parse graph in Fig.9, we also show the de-
tected bounding boxes of the agent. The semantic descrip-
tion for different non-terminal nodes is also illustrated.
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Figure 9. Video parsing result.

4.2. Event grammar helps atomic action detection

Due to the ambiguity of bottom up detection, the se-
quence of detected atomic actions is noisy and prone to er-
ror. We propose to use the learned event grammar to “de-
noise” the atomic actions sequence. With the learned spatial
and temporal grammars as the prior, the detection of atomic
actions follows a Bayesian maximum-a-posteriori:

a∗ = arg max
a

p(r|a; Θ)p(a;G)

where r is the sequence of grounded relations in the video.
It is more robust than merely using bottom up proposals:

abottom up = arg max
a

p(r|a; Θ)

where G is the learned grammar, and Θ are parameters of
the bottom up detectors of atomic actions. We perform an
experiment on a collection of 12061 frames. Table 5 shows
the comparison of classification performance before and af-
ter using the learned grammar to correct bottom up detec-
tions for atomic actions {a1, ..., a23}.

Table 5. atomic actions detection

atomic action bottom
up

bottom up +
event parsing

standing at door 90.7% 100%
walking 78.9% 100%
sitting at desk 84.1% 96.4%
standing at desk holding mug 55.4% 98.6%
celebrating at desk, typing,
soccer match on screen

85.0% 100%

standing at water dispenser 63.3% 100%
sitting at desk, typing 88.1% 100%
sitting at desk (not typing) 84.1% 100%

4.3. Scene semantics from event recognition

In the previous sections, the learning and parsing of
event grammar relies on manual labeling of scene seman-
tics (i.e. the scene label map in Fig.1). Now we try to re-
lease this requirement of manual labeling, and use the event
grammar to infer scene semantics automatically, thus clos-
ing the loop of unsupervised learning. For this task, we
need to use techniques in interactive image segmentation
(e.g. [16]), where the user draws “ scribbles ” on the image
to indicate a certain pixels as foreground or background,
and a computer program automatically segment the image
into foreground and background regions.

Treating the scene semantics as missing variables, we
can use the learned event grammar to segment and recog-
nize objects and regions of interest in the scene. Now the
only bottom-up information includes the agent’s poses and
trajectories, from which we can still obtain the most likely
parse graph p̂g, or sample a set of likely parse graphs ([7])
by marginalizing out the missing variables. Given the event
parse graph p̂g, we generate probabilistic “scribbles” on the
scene image according to trajectories of agent’s hands and
feet and agent poses. For example, if the agent is in sitting
pose for a long period, then a region surrounding the agent
is labeled as desk with probability:

p(xdesk|p̂g) =
∑

t,xagent

p(xdesk|t, xagent)p(t, xagent|p̂g)

=

T∑
t=1

p(xdesk|xagentt )
p(sitting|It, p̂g)∑T
j=1 p(sitting|Ij , p̂g)

where It denotes the video frame at time t, xagentt is the
detected location of agent at time t, p(xdesk|xagentt ) is a
spatial model for the position of desk relative to the sitting
agent, and p(sitting|It, p̂g) is the probability that the event

7



sitting is present in It according to the parse graph. Here
a more principled way is to also marginalize out the parse
graph, but for computational efficiency we use the most
likely parse graph p̂g. As another example, if the agent’s
hand reaches out quickly and stops, then the region near
the inflection point is labeled as “touch-able” objects such
as mug and phone, each with normalized probability. This
probabilistic scribble map is then used as input to an inter-
active segmentation method, which minimizes a two-part
energy that can be expressed with log-likelihood:

min
L
− log p(p̂g|L)− log p(L)

The data term − log p(p̂g|L) denotes the discrepancy be-
tween the label map L and the probabilistic scribble map
produced by p̂g. The smoothness term − log p(L) denotes
discontinuities of neighboring sites in the label map L.

Figure 10. Scene segmentation by parsed trajectories. (a) The tra-
jectories of the agent’s hands and feet. (b) The segmentation of
objects by the trajectory “scribbles”. (c) The segmentation of ad-
jacent areas of 4 and 5. (d) The final segmentation result for inter-
esting objects.

Fig.10 (a) shows the trajectories of the agent’s hands and
feet. Fig.10 (b) shows the segmentation result by the trajec-
tories. The ground is successfully segmented by the trajec-
tories of the feet. The keyboard, phone, microwave are seg-
mented by concentrated trajectories of hands. The segments
4 and 5 in Fig.10 (b) are too large to be interest objects, so
we prune them. Fig.10 (d) shows the final segmentation re-
sult of interesting objects in the scene.

5. Conclusion
In summary, we propose a prototype system for event

learning, which explores all activities that happen in a cer-
tain environment, and organizes them in a meaningful way
by a hierarchical event dictionary and a stochastic event
grammar. The learned event grammar can be used to parse
newly observed videos to recognize events. We also show
a promising application where it is used to discover scene

semantics without manual labeling of the scene. We are
working towards applying to more diverse datasets and ob-
taining richer event grammar.
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