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Abstract

This paper presents a framework for unsupervised learn-
ing of a hierarchical generative image model called AND-
OR Template (AOT) for visual objects. The AOT includes:
(1) hierarchical composition as “AND” nodes, (2) defor-
mation of parts as continuous “OR” nodes, and (3) mul-
tiple ways of composition as discrete “OR” nodes. These
AND/OR nodes form the hierarchical visual dictionary. We
show that both the structure and parameters of the AOT
model can be learned in an unsupervised way from ex-
ample images using an information projection principle.
The learning algorithm consists two steps: i) a recursive
Block-Pursuit procedure to learn the hierarchical dictio-
nary of primitives, parts and objects, which form leaf nodes,
AND nodes and structural OR nodes and ii) a Graph-
Compression operation to minimize model structure for bet-
ter generalizability, which produce additional OR nodes
across the compositional hierarchy. We investigate the con-
ditions under which the learning algorithm can identify, (i.e.
recover) an underlying AOT that generates the data, and
evaluate the performance of our learning algorithm through
both artificial and real examples.

1. Introduction
Deformable templates ([3, 5, 14, 4]) and compositional

hierarchy ([8, 9, 6, 15, 13, 11]) are widely used in visual ob-
ject modeling to account for structural variations and shared
parts among categories. Furthermore, generative image
grammar [16, 2, 7, 1] is introduced to computer vision to
facilitate robust statistical modeling of images using AND
nodes for hierarchical composition, and OR nodes for de-
formation and alternate ways of composition.

The main issues of learning the image AND-OR tem-
plate include the following: i) identifying a hierarchical
dictionary of visual parts and objects; ii) deep mixing of
AND, OR nodes; iii) Parts accuracy and shape; iv) De-
tailed coasse-to-fine detection of objects. Among them a
most important issue with learning visual dictionaries is the
pervasive ambiguity in identifying which elements should

be grouped as a visual part. For example, it is hard to de-
termine where to segregate the animal face or horse body
into constituent parts. This has been mentioned by previous
work such as [15].

The learning of hierarchical visual dictionaries has been
explored in a series of recent work, where a hierarchy of
meaningful visual parts are learned (or mined) from vari-
ous image features, such as image primitives [6], segmented
image regions [13], interest points [12, 15] and histogram
of gradients [4]. Different learning algorithms have been
used: discriminative criterion is followed in [4]; data min-
ing heuristics are adopted in [6, 13]; maximum likelihood
learning is used in [12] where a hierarchical latent Dirich-
let process is assumed to generate interest point descriptors
extracted from the image, and a Grammar-Markov model
is used in [15]. The above methods have demonstrated the
usefulness of the learned structures mainly through good
classification performance.

To analyze the merits and limitations of the above meth-
ods, we characterize them by five aspects: i) compositional
hierarchy, ii) unsupervised learning, iii) deep mixing of
AND/OR nodes, iv) fully generative, v) probabilistic model.
In [6, 13, 12, 15], a compositional hierarchy is learned by
unsupervised learning. However, the OR nodes important
for structural variations are largely omitted or oversimpli-
fied. And there is no deep mixing of AND/OR nodes, i.e.
OR nodes across all levels of compositional hierarchy. An-
other major limitation of the above methods is that they
are not fully generative to the level of image pixels. For
example, in [12] a local Bag-of-words model summarizes
local geometry and appearance as a pooled histogram, but
detailed object deformation is discarded during computa-
tion of histograms. As a result, it is difficult to visualize
the learned structures to ensure they are semantically mean-
ingful. The state-of-art for object detection is achieved by
[4], where a part-based latent SVMs model is trained using
multi-scale HoG feature. It is able to model certain amount
of object articulation, but the localization of object bound-
aries is imprecise because of the local histogram pooling in
HoG. Another drawback of the model is that it requires tens
and thousands of features and negative training examples.
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Figure 1. An AND-OR Template learned from 320 animal face images of four categories, with no manual labeling. Shaded circles denote
AND nodes, which are combinations of terminal nodes. Empty circles means discrete OR nodes. Shaded rectangles are terminal nodes
(a special case of AND nodes). Each terminal node is associated with a continuous OR node which account for its local geometric
perturbation. For clarity we removed the continuous OR nodes and OR branches with probability less than 0.05.

We propose to learn hierarchical structures based on the
generative model of active basis [14], where a small number
of Gabor basis elements are generated by a shape template
before they are linearly combined to generate the observed
image. Using the active basis model, one can easily per-
form model checking for learned structures, without going
through tedious classification experiments. In [14] hierar-
chical templates are not automatically learned.

In order to fulfill the full promise of the image AND-
OR grammar models, we propose an unsupervised learning
framework for learning the AND-OR Templates (AOT) of
visual objects. As an example, Figure 1 shows a learned
AOT from 320 animal face images without manual labeling.
The solid circles denote AND nodes and hollow ones denote
OR nodes. The branching probabilities are also shown on
each OR node. The rectangles denote terminal nodes that
index the entries of animal facial features (e.g. eyes, ears).
These AND/OR nodes form a hierarchical dictionary of vi-
sual parts for fully generative image representation.

The learning algorithm carries out in two steps: i) Block-
Pursuit for dictionaries of reusable parts. In a data matrix
formed by collected features of positive training examples,
a rectangular block in the data matrix is a set of common
components (columns) shared by a set of examples (rows).
The shared components form a template of the block mem-
bers. The area of the block indicates its significance and

pursuing large homogeneous blocks directly links to the in-
formation projection principle [17, 14]. The learned blocks
then form a higher level of dictionary, which is used to pro-
duce another data matrix. This carries on recursively until a
hierarchy of dictionary can be obtained.

ii) Graph-Compression on the AND-OR Template.
Graph compression takes the learned dictionary as input and
produces a more compact stochastic AND-OR Template by
reducing the model complexity. In particular the number of
free parameters (i.e. degree of freedom) is minimized. We
apply a compression operator on the AND-OR Template,
which can happen in two cases: (1) merging OR nodes with
similar branching probabilities; (2) restructuring the graph
by sharing parts (e.g. (A∩B)∪ (A∩C)⇒ A∩ (B ∪C)).

The contributions of our paper are as follows: i) We learn
AND and OR nodes, where OR nodes include continuous
OR (deformation) and discrete OR (structural variation). ii)
We adopt a principled learning framework under MLE and
information projection. iii) We study the identifiability of
parts and the factors that influence the identifiability.

2. 1D example: learning AOT from text
To study the identifiability issue, we study a 1D exmaple

where we know the underlying AOT as ground truth that
generates the training data. As shown in Fig.2, a stochas-
tic AND-OR Template is used as the true generating model



Figure 3. Left: The learned dictionary ∆(1) for three/four letter groupings (white space is included). We only show the top ones, together
with their frequencies and information gains side by side, up to a constant multiple. Middle: The learned dictionary ∆(2) for words
composed by entries in the children dictionary ∆(1). Right: The learned dictionary for sentences as combinations of ∆(2) entries.

Figure 2. A stochastic AND-OR template for generating a sen-
tence composed by three parts: subject + linking verb + adjec-
tive/present participle, such as “hamster is now jumping”. Shaded
circles denote AND nodes. Empty circles means OR nodes.
Shaded rectangles are terminal nodes. Certain configurations are
not allowed, such as spring is now jumping.

for sentences composed of three parts: subject + linking
verb + adjective/present participle (e.g. winter is now leav-
ing). The OR nodes introduce mixture components into
the model, so the AOT in general is cannot be factorized.
The three parts are correlated, so not all combinations of
the three parts are admissible. For example, the combina-
tion spring is now jumping is not allowed. Each part is in
turn composed of a prefix and a postfix. Each part, pre-
fix/postfix and letter can be occluded by random letters with
a small probability (0.01). Finally, random letters of varying
lengths are inserted between the three parts of the sentence.

2.1. The data and data matrix

Table 1 shows several example strings generated by this
underlying AOT. Our goal is to learn an AOT from the sam-
pled example strings, and compare the learned AOT with
the underlying one in Fig.2 to study the effectiveness of
the learning algorithm in identifying its parts and compos-
ite structures. What Table 1 presents can be considered
as a data matrix, where each row represents one example
and each column represents one feature or component. Al-
though different rows can be of various lengths, they can
be treated as sharing the same length by padding nuisance
symbols to shorter strings.

Table 1. String examples.
1. nkfnwknspringyzxyxuwas nowjvzeawarmertgprh
2. oqsdq bovhamsteriwxwowas nowtdxtzbyccomingbjxp
3. lhtuwbcdzfzhamsteraquo is nowzgoclujumpingmmqrlu
4. jlmzzrslwintervmqdleis nownaplaleavingdouggkwh

2.2. Recursive block pursuit

By shuffling the data matrix, one can align the strings
such that regular patterns coincide in their locations inside
the string. We first identify frequent substrings of length l
(l = 3 or 4), such as “ing”, “ster”, as significant blocks in
the data matrix. These blocks are selected into the first level
dictionary ∆(1) (Fig.3).

Once ∆(1) is learned, the strings are re-encoded using
the entries in ∆(1). We then construct a new data matrix
by collecting co-occurrences of ∆(1) entries. As a result,
frequent combinations such as “spr”+“ing” are identified as
significant blocks and selected into the second level word
dictionary ∆(2). An entry in the word level dictionary cov-
ers 6 to 8 letters. The word dictionary contain many dupli-
cate or overlapping entries, such as “hamster” and “amster”.
The nuance entries like “amster” are pruned by a greedy
procedure of finding best matching and local inhibition. In
the end, only high frequency words remain in the top of
∆(2) (Fig.3). Notice that compared to ∆(1), ∆(2) contains
much less ambiguity. Finally the level 3 dictionary (sen-
tences) ∆(3) = {“spring is now coming”, · · · } is easily
obtained by identifying frequent combinations of words.

Figure 5. Compression on AOT by sharing probabilities.

2.3. Minimal structure via graph compression

To begin with, an AOT is naı̈vely constructed which has
one giant OR node that branches over all entries in ∆(3) (i.e.
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Figure 4. Left: the memorization AoT. Right: the compressed AoT. Both are obtained from the same 100 training sequences sampled
from the underlying AoT in Figure 2. The merging parameter α is 0.05. The memorization AoT has 13 free parameters. The compressed
AoT has only 9 free parameters and successfully recovers the structure of true underlying AoT in Figure 2.

Figure 6. Compression on AOT by sharing parts.

all observed combinations of ∆(2) entries). Then iteratively
we apply a compression procedure illustrated in Fig.5.

If two OR nodes share the same parent OR node and
similar branching distribution on children nodes, then they
are merged into one, and the branching probabilities are re-
estimated. In the mean time, the OR node is “pushed down”
into the adjacent level. This is a lossy compression because
the branching probabilities are modified and the number of
free parameters are reduced. The compression operator is
controlled by a parameter α ∈ [0, 1]. α = 1 corresponds
to no compression at all, which results in the most compli-
cated AOT that memorizes training data. In addition, as a
pre-processing step we also compress model structure by
sharing parts in a similar fashion to combining like terms
(Fig.6). This is a lossless compression. With α = 0.05,
the compressed AOT in Fig.4 successfully recovers the true
underlying AOT in Fig. 2.

Figure 7. Block pursuit on images.

3. Learning AND-OR Templates on images
Given input imagesX+ = {I1, ..., IN} as positive exam-

ples of multiple unlabelled categories, and another image
set X− as generic natural images, our objective is to pursue
a series of probabilistic models

q(I) = p0(I)→ p1(I)→ · · · p(I) ≈ f(I)

to approximate the underlying distribution f , starting with
q being a distribution governing X−.

We specify the image alphabet as a set of atomic feature
prototypes Σimage = {primitives}∪{textures}∪{flatness}.
The image I is broken down into small image patches {IΛs

}
where {Λs} are local regions. For each feature prototype
we measure a one-dimensional response rj(IΛs), which in-
dicates how likely the image patch belongs to the prototype.
Here j indexes both feature prototype and image patch. The
data matrix D(1) at first level is formed with the features
{rj : j = 1, · · · , D} as columns and image examples
{In : n = 1, ..., N} as rows.

Originally, the entries in the data matrix are explained by
the marginal background distribution q(rj), j = 1, ..., D,
that are pooled from a large number of generic natural im-
ages. The baseline log-likelihood for the data matrix is:

L0 = log q(X+) =

N∑
n=1

D∑
j=1

log q(rj(In,Λj
))

By the information projection principle [10, 17], we have
a step-wise procedure

p∗k = arg min K(pj |pj−1)

s.t. Epj [rj(IΛj
)] = Ef [rj(IΛj

)]

where K denotes the Kullback-Leibler divergence. Intu-
itively, the updated model match more and more marginal
statistics with the observed training examples. The model p
after K iterations have the following log-linear form:

p(I) = q(I)

K∏
j=1

[
1

zj
exp{λjrj(IΛj

)}
]

(1)



where λj is the parameter for feature rj and zj is the in-
dividual normalization constant determined by λj . The re-
sulting image log-likelihood is

L = log p(X+) = L0 +

N∑
n=1

K∑
j=1

(
λjrj(In,Λj

)− log zj
)

We divide the selected features r1, ..., rK into a dictio-
nary of blocks ∆ = {B1, ...,BM} in the data matrix, which
maximally explain the image data. The overall objective
function of learning AOT can be formulated as a penalized
maximum likelihood criterion:

ψ = L− L0 − γ · Complexity(AOT)

=

M∑
m=1

∑
n ∈ rows(Bm)
j ∈ cols(Bm)

(
λm,jrj(In,Λj

)− log zm,j
)

−γ · Complexity(AOT) (2)

where rows(·) and cols(·) denote the selected rows and
columns of block Bm, {λm,j} are parameters of image like-
lihood models for different blocks, and {zm,j} are indi-
vidual normalizing constants determined by {λm,j}. The
scalar γ controls the tradeoff between the likelihood and
penalty terms.

The optimization procedure contains two steps: i) block
pursuit that focuses on the first term of Eq.(2); ii) graph
compression that focuses on the second term of Eq.(2).

3.1. Recursive block pursuit

At each step, we pursue one block (or a few blocks at the
same time) that maximally increases ψ in Eq.(2), i.e. that
has the largest information gain:

B∗m = arg max
Bm

IG(Bm)

where

IG(Bm) =
∑

n ∈ rows(Bm)
j ∈ cols(Bm)

λm,jrj(In,Λj
)− log zm,j

With the rows of each block being hidden variables, the
block pursuit is essentially an EM algorithm with variable
selection. In particular, identifying the columns of a block
Bm is equivalent to learning or updating the shared template
for the block, carried out in the M (Maximization) step. It is
a variable selection problem, which is addressed under the
information projection principle [14]. One can also inter-
pret the learned templates as words in a visual dictionary.
In the E (Expectation) step, the rows of each block are iden-
tified. The assignment of rows to blocks can be hard as-
signments with nearest neighbor, or soft assignments with

posterior probabilities. We tried two initialization methods
of the EM algorithm: starting from a block that contains a
single image patch, or random initialization. Both initial-
ization methods work reasonably well.

The block pursuit is carried out recursively from atomic
image features to parts, and from parts to objects (Fig. 7):

∆(1) → D(1) → ∆(2) → D(2) → ∆(3)

where ∆(1),∆(2),∆(3) are three levels of visual dictionar-
ies andD(1),D(2) are two levels of data matrices. The block
pursuit procedure is terminated when no more blocks with
significant information gain is found.

To account for deformation, we use continuous OR
nodes as local geometric transforms of atomic image fea-
tures in the same way as [14]. We assume the local geomet-
ric transforms are independent of each other, and they fol-
low a uniform distribution over an affine neighborhood. To
impute the hidden perturbations, we use their MAP (maxi-
mum a posteriori) estimations. Computationally, this is im-
plemented by a simple local maximization on feature maps:

rLMAX
j , max

j′∈∂j
rj′(I),

where ∂j denotes the neighborhood around feature j. We
also allow local translation and rotation of each block Bm.
And in the E step of block pursuit, we impute not only the
rows of the blocks, but also the geometric transform of Bm
on each image In.

3.2. Graph compression

The penalty term Complexity(AOT ) is defined as the
number of AND/OR nodes in AOT. Initially we form a gi-
ant AND-OR Template that has one root OR node with each
unique co-appearance configuration as one branch. We first
compress the AOT by sharing parts (a lossless compres-
sion). Then we apply the compression procedure illustrated
in Fig. 5. For each pair of OR nodes, if they share the
same parent OR node and similar branching distribution on
children nodes, then they are merged, and the branching
probabilities are re-estimated. This results in the change in
log-likelihood δL < 0 and the change in model complexity
(number of nodes) δC < 0. We decide to merge two OR
branches if

δL− γ · δC > 0 (3)

i.e. the reduction in complexity outweighs the loss of log-
likelihood.

Re-parameterization of the γ factor. Directly opti-
mizing requires fine tuning of γ parameter, and the opti-
mal value of γ ∈ [0,+∞) is very sensitive to the training
data. We provide a robust re-parameterization of γ using
another parameter α ∈ [0, 1]. Observing that Eq.3.2 is es-
sentially testing whether two distributions are the same, we



propose to use the χ2 test with significance level 1 − α
(where α ∈ [0, 1]) to approximately implement the deci-
sion in Eq.(3.2). If the branching probabilities of the two
OR nodes are : (a1, ..., aM ) and (b1, ..., bM ) with

∑
i ai =

1,
∑
i bi = 1, ai > 0, bi > 0,∀i, then the χ2 test statistic

is computed as χ2 =
∑
i(ai − bi)2/a2

i . We compare this
value to FM−1,1−α which can be looked up in the F-table,
and if χ2 < FM−1,1−α then we decide merge these two OR
nodes. In the experiments, we use α as the control parame-
ter for model complexity instead of γ.

4. Experiment
4.1. The synthesized 1D example

In this experiment, we are interested in studying the fac-
tors that influence model identifiability: i) n: training sam-
ple size; ii) s: which is used to control the average length
of random letters inserted between two words in the under-
lying AOT. When s is small, words are hard to separate,
which results in larger ambiguity. and iii) α: the parameter
of graph compression which implies the model complexity.
n and s are parameters of training data, and α is a parameter
of the learning algorithm.

Figure 8. The effect of the separation parameter s and training
sample size n on learned dictionary. Left: ROC curves for differ-
ent separation parameters. Right: AUC as a function of separation
s and sample size n.

Evaluating the learned dictionary of AOT. We compare
the underlying “true” dictionary ∆true to the learned dictio-
nary ∆. We use the ROC curve and AUC (area under ROC
curve) to evaluate the difference between manually labelled
ground-truth ∆true and the learned dictionary ∆. Fig. 8
(left) plots three ROC curves for three different values of s
for sample size n = 100. After repeating this for different
n, we obtain a series of ROC comparisons. To summarize
this, Fig. 8 (right) shows the isolines of AUC as a function
of two variables: s the separation parameter, and n the train-
ing sample size. Take the two points A, B as an example,
when the separation decreases by 1 from A to B, we need
about twice (100.3) as many training examples to achieve
the same AUC.

Evaluating on the graph topology and branching proba-
bilities of the learned AOT. Another important factor is the
parameter α which controls model complexity. We set α to
different values and compress the sentence-level dictionary

Figure 9. The effect of the model complexityα and training sample
size n on model generalizability. Left: Error of learned model
(KL divergence) as a function of model complexity α, plotted on
training and testing data respectively. Right: KL divergence as a
function of n and α.

∆(3) into a compact AND-OR Template, and compute the
distance between the learned model AOT and the underly-
ing model AOT∗ shown in Fig. 2. We use the Kullback-
Leibler divergence as the distance between AND-OR Tem-
plates, which is estimated by Monte-Carlo method.

To investigate the effect of parameter α and training sam-
ple size n on the model generalizability, we perform re-
peated cross validations. The result is shown in Fig. 9 (left).
The horizontal axis is the logarithm of α which is sampled
at seven points, and the vertical axis is the KL divergence
between the learned model AOT and the true model AOT∗

from which training data (denoted as the empirical distribu-
tion f̂ ) is sampled. Fig. 9 (right) shows at what sample size
and what α values can we successfully recover the gener-
ating grammar. In the white convex region the grammar is
recoverable (up to a tolerance of 0.1 bit).

4.2. Object detection using AOT

Detection of AOT in a cluttered image is performed by a
recursive SUM-MAX procedure[14]. We test the detection
of AOT for three object categories: egret, deer and side-
view bikes in PASCAL VOC 2007, in comparison to the
state-of-art latent SVMs [4]. For all the three categories, we
use a small training set of around 20 images and a larger
and more challenging set of testing examples (Table 2). For
the training images, the rough location and scale of object
are known. For testing images, we are not given the scales
and locations of the objects, and a lot of clutter is present.

Table 2. Training and testing sizes for the detection experiment.
egret deer bike

train 25 15 20
test 67 128 161

Fig. 10 and Fig. 11 are the learned object templates
for the three categories using AOT and the part-based la-
tent SVMs. In contrast to the discriminatively trained sys-
tem [4] which uses a large number of features (O(104)), the
AOT learned for each category only contains less than 100
features. It takes less than 10 minutes to learn an AOT with



(a) AOT (b) LSVM

Figure 10. Templates learned for egret.

(a) AOT (b) LSVM

Figure 11. Templates learned for VOC bike.

around 20 positive example images. While for latent SVMs,
going over a large number of negative examples in each op-
timization iteration takes heavy computation. So despite the
highly optimized implementation of the training algorithm,
it takes much more time (several hours) to train a model.

Figure 12. Evaluating object localization with key points.

To evaluate the detection accuracy, one may use the
object-level bounding boxes provided by the PASCAL VOC
benchmark. But it tells little about detailed correspondence
between the template and the image. We propose to eval-
uate the localization of not only objects, but also parts and
pixel-level key points. This is done using manually selected
key points easily identified by a human labeler. Fig. 12
shows the ground truth key point labelings (6 key points),
along with detected key points by AOT and by latent SVMs.
The key point labels are used only in evaluating the detec-
tion results, and not in training of either models. For AOT,
we associate each key point to the nearest edge element in
the template, and record the most likely location of the key
point relative to that edge element. For the latent SVMs, we
associate each key point to the nearest rectangular part and
record the most likely location of the key point relative to
that part. We then propagate this information through the
matched template to locate key points in the testing image.

To numerically measure the performance of localization,
we use an imprecision-recall curve. In this curve, the hori-
zontal axis is the tolerance for normalized displacement (or
localization error)

√
(∆x)2 + (∆y)2 by dividing the object

size. We restrict the range to be [0, 1] for convenience. The
vertical axis is the recall rate (between 0 and 1), i.e. the
percentage of correctly detected points that fall within the
specified displacement tolerance. As we tolerate more dis-
placement, the recall rate increases. We use the area under

curve (AUC) to measure the average recall rate.
Fig. 13 shows the imprecision-recall curves for 6 key

points (tip of beak, joint of head and neck, joint of neck and
body, tail, top of standing leg, and bottom of standing leg) of
egret. We also show the curves for 4 parts (head, neck, body,
and leg) and the whole object. To get the curves for parts
and object, the displacement of the part is computed by av-
eraging the displacements of key points associated with that
part; and the displacement of object is computed by averag-
ing the displacements of all key points. Our model performs
localization consistently better than the state-of-art latent
SVMs, for all the parts, key points, and all the displace-
ment tolerances. Table 3 provides a numerical comparison
for egret, deer and VOC bikes, using the area under curve
(AUC) measure. The part and key point AUCs are com-
puted by averaging over curves of all parts and key points.

Table 3. AUCs for localization of object, parts and key points.
object part keypoint

AOT LSVM AOT LSVM AOT LSVM
egret .93 .80 .88 .76 .88 .73
deer .93 .83 .91 .79 .90 .75
bike .78 .76 .70 .66 .68 .61

In Fig. 14 and 15 we show the detection results on some
testing images of egret and side-view bikes in VOC2007.
From these examples we can see that the AOT can locate
the object boundary and inner structures with a higher pre-
cision, which leads to more accurate localization overall.

4.3. Unsupervised learning of AOT

Fig. 1 shows the learned AND-OR Template from 320
animal face images of four categories: bear, cat, wolf and
cow, without any manual labeling. At the bottom we show
the top blocks ranked by their frequencies. For this exper-
iment, we also incorporated the orientation histogram and
flatness features both defined on the Gabor response map.

5. Conclusion
Under the information projection principle, the identi-

fiable parts together with deformation and structural varia-
tion, make a strong image model that can be reliably learned
from examples. The proposed AOT model improves upon
state-of-art models in both generative ability and discrimi-
native object detection tasks.
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