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Abstract

This paper presents a method for learning 3D object tem-
plates from view labeled object images. The 3D template is
defined in a joint appearance and geometry space, and is
composed of deformable planar part templates, which are
placed at different positions and orientations. Appearance
of each part template is represented by Gabor filters, which
are hierarchically grouped into line segments and geomet-
ric shapes. AND-OR trees are used to quantize the possible
geometry and appearance of part templates, so that learn-
ing can be done on a sub-sampled discrete space. Using
information gain as a criterion, the best 3D template can
be searched through the AND-OR tree using one bottom-up
pass and one top-down pass. Experiments on a new car
dataset with diverse views show that the proposed method
can learn meaningful 3D car templates, and give satisfac-
tory detection and view estimation performance. Experi-
ments are also performed on a public dataset, which show
comparable performance with recent methods.

1. Introduction

This paper presents a method for learning 3D object tem-
plates, more specifically, 3D car templates from view la-
beled images. The 3D templates are defined in a large con-
tinuous and compositional space, which are factorized into
geometry and appearance spaces. We propose to use AND-
OR trees to further quantize and represent the two spaces
separately. In this way, the learning problem is posed as an
optimization problem in a discrete, structured space, which
can be solved efficiently by dynamic programming.

We use an information theoretic measure, namely the in-
formation gain, to evaluate candidates of the 3D template
and its parts. The information gain for each candidate part
is pooled over images of different views. Because meaning-
ful part templates must be aligned across different views,
learning them require fewer images than learning a set of
view specific templates.
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Figure 1. Overall view of the proposed object representation. (a)
A learned 3D car template, which is composed of planar part tem-
plates. (b) At each specific view, the learned 3D template is pro-
jected to derive a 2D template. (c) 2D templates are then deformed
to match observations, which are images shown in (d).

Fig.1 shows a learned 3D car template and its deformed
projections on object images. The 3D template is composed
of planar part templates. Geometry of a part template refers
to its size, position and orientation. Appearance of a part
template is represented by deformable Gabor filters in im-
ages, which are hierarchically grouped into line segments
and geometric shapes in 3D space.

We collected a new car image dataset, where view points
are more diverse and evenly distributed (see Fig.6). Exper-
iments on this dataset show that the proposed approach can
learn meaningful 3D car templates, draw boundaries of ob-
ject instances on different views, and give satisfactory per-
formance in detecting cars and their poses. Experiments are
also done on a popular dataset [14], which show comparable
performance with a recent method [9].
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Contributions of this paper are three fold: 1.) We pro-
pose a sparse compositional and deformable 3D object rep-
resentation; 2.) An AND-OR tree structure is introduced to
express part template compositions, with which an efficient
algorithm can be implemented to learn 3D object templates
directly from view labeled images; 3.) A new car dataset
with diverse and labeled views is presented, which provides
a new developing environment for 3D object category mod-
eling.

2. Related Literature
Most models in the 3D object recognition literature can

be categorized into two classes:
Object centered models. Early work proposes repre-

senting 3D objects as a composition of volumetric parts,
such as Geons [2] by Biederman et al. and 3D primitives [3]
by Dickinson et al. However, it is difficult to learn and rec-
ognize those 3D volumes because of the ambiguity in gen-
erating 3D shape proposals from real images. In this paper,
we propose to resolve this ambiguity by deformable tem-
plate projection and information gain pooling, which forms
a loop between the 3D representation and corresponding
image observations across views.

Recently, many papers [19, 1, 7, 10] proposed recogniz-
ing objects using point based 3D models, with appearance
as SIFT [11] descriptors, or its quantized version [4]. The
SIFT descriptor is good at creating point correspondences.
However, by only extracting SIFT features, other salient
image information is neglected, such as object boundaries.
The proposed model is complementary to these models,
since it mainly rely on sketch information from images.

Viewer centered models. These models [17, 15, 12]
usually do not assume a global 3D model and are easier
to learn, because they do not explicitly enforce appearance
consistency across large view discrepancies. Nevertheless,
less constraints also means more data are required to learn
a robust model for each view.

In terms of model hierarchy, most of the models men-
tioned above are flat models. For models with parts or fea-
ture groups, they are either prefixed by creating a grid on
object images [9, 12], or individually clustered without op-
timizing the global objective of the model [15].

The proposed learning framework uses AND-OR tree
structures, which are similar to that used for general knowl-
edge representation in [13]. In computer vision, the pro-
posed AND-OR tree resembles the And-Or Graph by Zhu
and Mumford [20], yet instances in the AND-OR tree do
not necessarily represent an object interpretation or parse
graph, and embedded grammar in our tree is a context free
grammar.

The statistical model used in this paper is consistent with
the active curves model [5] and active basis model [18]. In
image space, line segments in our part template are real-

Figure 2. Volumes of interest (VoI) extracted from a 3D CAD
model.

ized by a subset of active curves [5], which are deformable
templates of straight line segments.

3. Template Space Quantification
The space of proposed part templates can be decom-

posed into geometry space and appearance space. Points
in geometry space are parameterized by part template posi-
tions, orientations and sizes. Appearance space is compo-
sitionally defined from a set of geometric shapes, such as
trapezoids, which are decomposed into line segments and
further into Gabor elements.

A 3D object template is a composition of 3D part tem-
plates, thus it corresponds to a point in the product space of
geometry and appearance spaces. We apply three measures
to decompose, quantify and organize the space into a hier-
archy of geometry and appearance AND-OR trees, so that
template learning problem can be posed as a search problem
in a discrete and structured space.

3.1. AND-OR Tree for Part Geometry

The geometry space is first decomposed or reduced by
extracting volumes of interest (VoI) as volumes where part
templates may exist. This is achieved by parsing semantic
object part annotations from a car CAD model file. Sizes
of each VoI is rounded to multiples of a unit volume size,
which is set to 6 by 6 by 6 inches. Depth direction of each
VoI is also defined, which is the VoI side direction facing
outward from object center. Extracted VoIs are shown in
Fig. 2.

Each VoI is further divided into a set of overlapping sub-
volumes, which are used as bounding volumes for the place-
ment of part templates. By placing a 3D grid into VoI,
these overlapping sub-volumes can be defined as volumes
with vertices on the grid points. For each volume, possi-
ble part templates are assumed to be either inscribed or on
its frontal surface, so that their possible sizes, positions and
orientations can be defined. Examples of the grid and sub-
volumes are shown on the nodes in Fig.3(a). As appearance
of part templates has yet to be defined, panels are used to
illustrate the geometry of part templates, relative to sub-



Perspective Projection

OR node              AND node               LEAF node                    Gabor wavelet     
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(a) AND-OR tree for Part Geometry (b) AND-OR trees for Part Appearance

Figure 3. (a): AND-OR tree for part geometry, where AND nodes represent combinations of two sub-volumes occupying larger sub-
volumes, OR nodes connect to multiple AND nodes representing possible combinations for the same sub-volume, and leaf nodes represent
panels inscribing their parent volumes. (b): Each panel represents geometry of a part template, and are connected to another AND-OR tree
for part appearance. Here AND corresponds to composition and OR corresponds to deformation. It extends the geometry AND-OR tree to
image spaces since its leaf nodes are Gabor filters.
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Figure 4. After quantizing VoI, possible panels still preserve vari-
eties in positions and orientations and sizes. Examples of quanti-
fied line segments in a box are drawn here to show the analogy.

volumes. The distance between nearest grid points is the
unit length, which is set to 6 inches. Frontal surface of a
volume can be decided by the depth direction of the VoI.
Though we only allow a restricted set of panels to exist,
they still keep large variations in positions, sizes and orien-
tations. To illustrate this situation, an example of this quan-
tization approach on line segments in a 2D box is shown in
Fig.4.

The third measure is to organize these sub-volume com-
binations using an AND-OR Tree. We assume that bound-
ing volumes of final part templates do not overlap, and fully
occupies the VoI. With this assumption, the number of pos-
sible combinations is still large, but these full combinations

may share partial-combinations. Sharing suggests possible
reuse of computations on partial combinations, which also
suggests the use of AND-OR tree for identifying and orga-
nizing these combinations.

The AND-OR tree can be generated recursively by par-
titioning volumes and representing partitions by AND-OR
node pairs, such as the one shown in Fig.3(a). The OR node
connects to all the AND nodes which slice the volume rep-
resented by this OR node into two sub-volumes. The OR
node also connects to two sets of leaf nodes, where on each
node a panel is placed by either inscribing the volume or on
the surface perpendicular to the depth direction. Each AND
node connects two OR nodes, with each representing one
of the two smaller sub-volumes occupying the current sub-
volume. This tree starts from a root OR node representing
the VoI, and keeps growing until the sub-volumes are di-
vided to a size limit. Currently, the size limit is set to 2 by
2 by 1 of unit size, where 1 is along the depth direction.

Starting from the root node, and by keeping only one
child at OR nodes, all selected leaf nodes form a partition
of a VoI into non-overlapping sub-volumes. This set of leaf
nodes represents a combination of panels, which defines the
geometry portion of a 3D template candidate.



Template
type Appearance Parameters Deformation rangetype

Circles
C={center x,

radius r, number of 
line segments n}

Translate in
0.1w x 0.1h area.

Trapezoids
(rectangle 
is a special 

case)

T={parallel line pair 
L1, L2}

Translate in:
0.1w x 0.1h area.

±11 degree degree rotation.case)

P ll l P { ll l li iParallel 
lines

P={parallel line pair 
L1, L2}

Same as above.

L { t XLine
segments 
(on panel)

L={center X, 
orientation Ɵ, 

length U} in world 
coordinate system

No deformation, 
deformation are expressed 

in image space.

A i l {G bActive
curves

( on image)

l={Gabor at center 
b0, number of 

Gabors u}

±3 pixel translation, 
±11 degree rotation.

Active b={center x, ±2 pixel translationActive 
Gabors orientation θ, scale 

s}

±2 pixel translation. 
±11 degree rotation.

Table 1. List of entities used in our representation, their parameters
and deformation range.

3.2. AND-OR Tree for Part Appearance

Using panels as bounding boxes, appearance of part tem-
plates can be further defined. As shown in Fig.3 (b), pos-
sible appearance for each part template is also represented
by an AND-OR tree, where AND represents composition
and OR represents deformation. Layers of AND nodes de-
compose the part templates into line segments, which are
projected to active curves and are further decomposed into
Gabor filters. Layers of OR nodes represents the 3D de-
formation of part templates and 2D deformation of active
curves and Gabor wavelets.

As is introduced in Section.1, a part template is a pla-
nar template whose appearance form a geometric shape.
These geometric shapes include circles, trapezoids, parallel
line pairs and line segments, where trapezoids and parallel
line pairs each include 6 sub-types shown in column 2 of
Table.1.

Shapes in templates are parameterized and decomposed
according to these parameters. For example, parameters of
a trapezoid is those of its parallel line pair, and each line is
parameterized by its orientation, length and centering po-
sition. Parameters for the other two line segments can be
induced from the parallel line pair, with which we can de-
compose the template into four line segments. Parameters
for all part templates are shown in column 3 of Table.1.

By restricting sketch shape types, we reduce the space
of possible template appearance. We believe the current
shape set is enough to represent a variety of vehicles, such

Figure 5. An example of the 3D deformation for part templates.
We allow the template to rotate round panel center and translate
along the axis direction.

as sedan, vans and pickups. In principle, more shape types
could be added to model an even broader range of man made
objects categories.

After the height h, width w and center c of a panel is
given, part template instances are generated by quantizing
parameter spaces in following ways: 1.) Circles: center
at c, radius r = 0.45 × min(h,w). 2.) Trapezoids: fix
the longest line length to be 0.9w, and the parallel line pair
is placed at 1/6h away from corresponding side of panel.
Lengths of short line are instantiated from 0.9w to 0.5w,
decremented by 3 inch. 3) Line pairs: same as Trapezoids.
4) Line segments: center at c, length equals to 0.9w.

With instantiated parameters, line segments in part tem-
plates can be projected onto images, and associated with
active curves. In current context, an active curve is a collec-
tion of weakly overlapping Gabor wavelets, consecutively
placed along the projected line segment. By projecting all
the line segments on to a specific view, the 3D object tem-
plate can be converted to a 2D object template composed of
active curves, which should resemble object appearance in
that view.

The part templates are deformable, in order to fit geo-
metric shapes to the corresponding object image sketches.
At part level, templates can perform in-plane translation
and rotation (see Fig.5), which is called 3D deformation.
The template is allowed to rotate ±11 degrees, and trans-
late ±0.1w and ±0.1h along the corresponding direction,
so that there are totally 27 deformations at this level. Pro-
jected active curves and Gabor wavelets are also allowed
to deform in 2D. Specific 2D deformation ranges are listed
in column 4 of Table.1, and their meanings are specified in
[5]. Through 3D and 2D deformations, templates of abstract
geometric shapes can be adapted to various shapes seen on
image, where a few examples are shown in row b-d in Fig.1.

After a part template is selected in the learning stage,
further selection at OR nodes on the appearance AND-OR
tree generates its deformed sketches on images.



4. Template Evaluation by Information Gain
In this paper, information gain is used to evaluate part

template and object template candidates. This is an infor-
mation theoretic measure that takes into account both the
significance of a template in specific views, and the fre-
quency it appears across different views. Besides, by the
probabilistic image model presented below, it can be com-
puted easily as summation of scores of templates sketches.

Denoting an image as I and its view as ω, we want to
build target image distribution p(I, ω). We start from a
reference distribution q(I, ω), which are tilted to approach
p(I, ω) by updating marginal distributions on the part of im-
age covered by our template:

p(I, ω|T) = q(I, ω)

N∏
n=1

p(IΛTn
|Tn, ω)

q(IΛTn
|Tn, ω)

, (1)

where T is a 3D template composed of N part templates
{Tn}Nn=1, ΛTn

refers to the pixel indexes covered by Tn.
In Eqn.(1), the part templates are assumed to be indepen-
dent, which is valid if the object is of a convex shape and
part template projections do not overlap. For part templates
not visible at current view ω, p(IΛTn

) is set to be equal to
q(IΛTn

). Probability ratios for visible part templates are
further decomposed.

As line segments inside a part template do not overlap
with each other, the probability ratio of pixels covered by a
part template can be further factorized into the product of
that covered by its constituent line segments.

p(IΛT
|T, ω)

q(IΛT
|T, ω)

=

K∏
k=1

p(IΛLk
|Lk, ω)

q(IΛLk
|Lk, ω)

, (2)

where Lk denotes the k-th line segment inside T . By pro-
jection, likelihood ratio of a line segment is defined equal to
that of corresponding active curve:

s = log
p(IΛL

|L, ω)

q(IΛL
|L, ω)

= log
p(IΛl

|l)
q(IΛl

|l)

=

G∑
g=1

log
p(rg)

q(r)
=

G∑
g=1

[λh(rg)− logZ] , (3)

where l is the active curve for L under view ω, rg is the re-
sponse of the g-th Gabor wavelet along l, and λ and logZ
are parameters of a corresponding exponential model. By
assuming the Gabor response distribution on reference im-
age is position and view independent, a general q(r) is used
to replace q(rg) in Eqn.(3).

Eqn.(3) is denoted as s, because in active curves model,
this is also called the score of an active curve hypothesis.
Note that as view ω varies, orientation and length of the
projected active curve also varies, so that the number of Ga-
bor wavelets G changes across views. The function h(r)

performs a sigmoid transform that saturates large Gabor re-
sponses. Theoretical underpinnings of this transformation
can be found in active basis model [18].

Combining steps above, and on a view labeled M image
training set {Im, ωm}Mm=1, the information gain of a tem-
plate S = {Si}Ni=1 between the model distribution and ref-
erence distribution can be computed by pooling active curve
scores over all images:

IG(S) =

∫∫
p(I, ω|T) log

p(I, ω|T)

q(I, ω)
dIdω

≈
M∑

m=1

log
p(Im, ωm|S)

q(Im, ωm)

=

M∑
m=1

N∑
n=1

Kn∑
k=1

smnk (4)

where smnk refers to k-th active curve score on n-th part
template of m-th image. Also note that score for invisible
part templates are zero.

5. Learning 3D Template by AND-OR Search
By connecting (coupling) each panel in leaf node of

geometry AND-OR trees with its instantiated appearance
AND-OR tree, and connecting the geometry AND-OR trees
representing each VoI using an AND parent node, a big
AND-OR tree that represents a large set of 3D templates
can be constructed. Within this set, the 3D template with
maximum information gain can be computed on the tree by
one bottom-up pass and one top-down pass. This constitutes
the AND-OR search algorithm introduced below.

5.1. AND-OR Search Algorithm

The algorithm is composed of one bottom-up pass and
one top-down pass. The bottom-up pass starts from sum and
max operations at active basis level, followed by sum and
max operations at active curves level, where scores of all
active curves are computed over each image. These scores
are saved in form of score maps, and details of these sum-
max operations can be found in [5].

Computing information gains of part templates involves
another round of sum-max operations that connects to lay-
ers of sum-max operations for the score of active curves.
Specifically, information gain of each deformed part tem-
plate on each image is computed as sum of the scores of its
projected active curves. Maximum of these scores is then
assigned to the score of the part template on current image.
Information gain of a part template is then computed as the
summation of these maximum scores over images.

By now, all leaf nodes of Geometry AND-OR trees are
loaded with information gains, and AND-OR search can be
continued on these trees by computing information gains of



non-leaf nodes in bottom-up fashion. On each AND node,
the information gain is equal to the summation of that on
its child OR nodes. On each OR node, information gain is
computed as maximum information gain of its child nodes.

A corresponding series arg-max operations from root
node to leaf node in Geometry AND-OR tree retrieves the
part template combination leading to this maximum infor-
mation gain, which is the desired 3D object template. Fur-
ther arg-max operations retrieve the deformed part tem-
plates, deformed line segments and deformed active basis
as sketches on each training image.

As operations within each layer of the tree can be com-
puted independently, they can be done in parallel, which
makes the algorithm more efficient.

For specific VoIs, we further learn alternative part tem-
plate combinations, in order to encode large structural varia-
tions within an object category. We use K-means clustering
framework to alternatively impute image cluster labels and
learn part template combinations for image clusters itera-
tively. In the following experiments, we learn two clusters
for each of the head, tail and the four wheel VoIs.

5.2. Optimality of AND-OR Search

The sum-max procedure above is in fact a dynamic pro-
gramming algorithm, which assures the searched informa-
tion gain is global maximum over all possible part template
compositions represented by the AND-OR tree. This is be-
cause the information gain is defined recursively along the
AND-OR tree, and children AND nodes of a same OR node
are independent. With the two conditions, the optimization
problem can be recursively decomposed as optimal combi-
nation of sub optimization problems. For example, denoting
IGi as information gain at i-th node, we have:

max IGOR
i

= max
j∈ch(i)

max IGAND
j = max

j∈ch(i)
max

∑
k∈ch(j)

IGOR
k

= max
j∈ch(i)

∑
k∈ch(j)

max IGOR
k (5)

where function ch(i) returns indexes of children nodes of
node i. We can get similar recursion starting at an AND
node.

The recursion in the AND-OR search above starts from
the AND node connecting all the VoIs, and stops at leaf
nodes on the appearance AND-OR trees, which corresponds
to the convolution of images with specific Gabor filters.
Thus the AND-OR search finds optimal combination of 3D
part templates by directly pooling evidence from images
over different views.

6. Inference Scheme

6.1. Template Projection and Testing

Given a specific view, a 3D deformable template can be
projected to a 2D deformable template, with 3D in-plane
deformation of each part template realized by 27 alterna-
tive image templates. After projection, the sliding window
method is employed, using these deformable 2D templates
to perform detection in that view. In each window, dy-
namic programming is used to inference the max 2D tem-
plate score over all possible deformations. Alternative part
combinations for VoIs are also treated as deformations: we
simply project both cases to a specific view, and the one
with highest score prevails.

To perform inference on multiple views, we enumerate
discrete views in the view sphere, and use the approach
above to perform object detection in each view. To gen-
erate discrete views, we fix the internal camera parameters
by assuming a general focal length, and discretize the ex-
ternal parameter space of pan, tilt, and camera distance to
the world origin. For simplicity, we assume roll angle of
the camera is zero. After scanning all windows on enu-
merated views, object detection windows are reported using
non-maximum suppression.

6.2. Feature Weight Adjustment

The proposed learning method builds a sparse object
model, which provides good features for object recogni-
tion. However, to achieve high recognition performance
on image datasets, the reference distribution q(r) should
be re-calibrated because of the position invariant assump-
tion. This leads to adjusted weights on the scores of active
curves. To this aim, we lump the scores of line segments on
learned template into a feature vector, and use linear SVM
to re-train the weights of these features.

6.3. Hypothesis Verification by Color Histogram

In experiments, we found that templates only using
sketches tend to generate false positives on highly struc-
tured areas, such as fence or brick walls. We use color
information to further suppress these false positives, by re-
testing on high score windows using both sketch and color
information.

To this aim, we evenly sample patches in each part tem-
plate, and concatenate their color histograms into the fea-
ture vector for linear SVM. We allocate 8 bins on each of
the 3 color channels, so that for each part template another
24 dimensions are added to the feature vector. Note that the
color and sketch features are concatenated into one vector
and their weights are trained together.
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Figure 6. View distribution of our dataset (a) and the 3D car dataset
(b) in [14]. The angular direction represents pan angle and radius
direction represents tilt angle.

7. Experiments

7.1. Dataset

There are some widely used datasets emphasizing 3D
object recognition [8, 14], but most of them only provide
images from a few specified views or limited ranges of
views. This could potentially trivialize the problem of 3D
object recognition, as models may simply memorize object
appearance in these views, thus essentially cast the problem
into a multi-class object recognition problem.

We introduce a new dataset1 of car images, featuring
a large variety of views, which are collected uncontrolled
from Internet, such as the ones in Fig.1. For each image,
we label object view using annotation software provided in
the project page of [6]. We also labeled views for all images
of car dataset in [14], and show both of them in Fig.6.

In the following experiments, we use 160 of the 360 im-
ages dataset as training data, and the rest as testing data.

7.2. Learning Object Templates

Fig.1 shows the learned template for car images. From
the template, we can clearly interpret some part templates
as wheels, windows. Even some detailed parts such as
headlights and grills can also be recognized.This is bene-
fited by that fact that appearance of the proposed part tem-
plates is composed of large and regularized shapes. Plus,
the combination of these individual part templates forms
a car shape, which demonstrates that 3D templates repre-
sented by AND-OR Tree include meaningful ones, and it
can be searched through by the proposed algorithm. De-
formed templates also demonstrate that the proposed defor-
mation model can adapt the regularized shapes to its vari-
ants observe on images.

7.3. Object Recognition Experiments

On our newly collected dataset, we run the inference
steps in Section 6 to perform object detection experiment.

1Available at: http://www.stat.ucla.edu/˜wzhu/CVPR12

We search pan angle at 15◦ interval in [0◦, 360◦], tilt an-
gle at 5◦ interval from [5◦, 90◦], and 8 camera distances for
each pan and tilt angle combination.

We show the object detection performance by precision
recall curves as shown on the left of Fig.7, where windows
with intersection over union area ratio greater than 0.7 are
considered positive detection. Specifically, we show the
performance of our model using and without using the color
features mentioned above. From the curves, we can see
that adding color features help the object recognition per-
formance.

For correctly detected instances, we also plot the his-
togram of view estimation errors on pan angles, which are
shown on Fig.8. From the plot, we can see that majority of
the instances are detected at the correct angle. We notice
that a few of estimates totally flipped from head to tail, this
suggests we should model more details of head and tails at
higher resolutions, as the general shape of cars at flipping
views are similar.

We also tried our method on the 3D car dataset in [14].
We use the learned model from experiment above, and re-
train feature weights using training images in this dataset.
Object detection performance are evaluated as precision re-
call curves, which are shown on the right of Fig.7, together
with the rest of curves from [9]. We also show the perfor-
mance of post estimation task using confusion matrix, to-
gether with that from [9] in Fig.9. From the results, we can
see that our model achieves higher performance in terms of
object detection and comparable performance in pose es-
timation. Note that according to the evaluation criteria in
[16], only correctly detected samples in the testing set are
accounted into the confusion matrix. Our model achieved
higher detection rate, so more images are accounted into
the confusion matrix.

By comparing the confusion matrix, we also find that the
accuracy for different poses are not as uniform as that in
[9]. We believe this is because: 1.) our feature weights are
shared across views and 2.) in the re-weighting step, the
linear-SVM only optimizes class labeling errors, regardless
of the pose estimate.With our continuous view formulation,
we believe a structured-SVM that optimize both class la-
bel and view should eliminate this problem. This is worth
investigation in subsequent study.

8. Discussion

In this paper, we propose a 3D object representation us-
ing part templates of geometric shapes, and a method for
learning 3D object templates from images by quantizing
spaces. Future work includes investigating a better feature
re-weighting method and an efficient bottom-up inference
algorithm.
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Figure 8. Pose estimation error on our newly collected dataset
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Figure 9. Confusion matrix for pose estimation in dataset [14].
Left: results from [9], AP = 0.70. Right: ours, AP = 0.69.
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