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Abstract. This paper addresses a new problem, that of multiscaletgacog-
nition. Our goal is to detect and localize a wide range of/é@s, including indi-
vidual actions and group activities, which may simultarsdpeo-occur in high-
resolution video. The video resolution allows for digitalom-in (or zoom-out)
for examining fine details (or coarser scales), as neede@ognition. The key
challenge is how to avoid running a multitude of detectorallaspatiotemporal
scales, and yet arrive at a holistically consistent vidéerpretation. To this end
we use a three-layered AND-OR graph to jointly model groujviies, individ-
ual actions, and participating objects. The AND-OR grapbved a principled
formulation of efficient, cost-sensitive inference via aplere-exploit strategy.
Our inference optimally schedules the following compuatadil processes: 1) di-
rect application of activity detectors — calledprocess; 2) bottom-up inference
based on detecting activity parts — call@égrocess; and 3) top-down inference
based on detecting activity context — calle@rocess. The scheduling iteratively
maximizes the log-posteriors of the resulting parse grapbs evaluation, we
have compiled and benchmarked a new dataset of high-resolutieos of group
and individual activities co-occurring in a courtyard o tdCLA campus.

1 Introduction

This paper addresses a new problem. Our goal is to detecbaalilze all instances of
a queried human activity present in high-resolution viddee novelty of this problem

is two-fold: (i) the queries can be about a wide range of #&@&i, including actions of

individuals, their interactions with objects and other plepor collective activities of

a group of people; and (ii) all these various types of aétigimay simultaneously co-
occur in arelatively large scene captured by high-resautideo. The video resolution
allows for digital zoom-in (or zoom-out) for examining finetdils (or coarser scales),
as needed for recognition. We call this problem multiscatevity recognition.

With the recent rapid increase in the spatial resolutiorigifal cameras, and grow-
ing capabilities of capturing long video footage, the pewsblof multiscale activity
recognition becomes increasingly important for many aapions, including video
surveillance and monitoring. While recent work typicalbctises on short videos of
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a particular activity type, there is an increasing demamai&veloping principled ap-
proaches to interpreting long videos of spatially largenptex scenes with many peo-
ple engaged in various, co-occurring, individual and gracipvities. The key challenge
of this new problem is complexity of inference. It is infdalsito apply sliding windows
for detecting all activity instances at all spatiotempaiales of the video volume.

To address the above challenge, we account for the compuaithature of hu-
man activities, and model them explicitly with the AND-ORagh [1-3]. The AND-
OR graph is suitable for our purposes, because it is capalslenapactly representing
many activities, each recursively defined in terms of spij@uts of human-human or
human-object interactions. Modeling the temporal striectf activities is left for the
future work. The recursion ends with primitive body partsl abjects. Also, its hier-
archical structure allows for a principled formulation afst-sensitive inference. Our
formulation rests on two computational mechanisms. Hodipwing the work of [4],
we express inference in terms of the 3, and~ processes. The three processes are
specific to each node in the AND-OR graph, where

1. a(node): detecting the activity directly from video featsiextracted from the video
part associated with the node;

2. B(node): bottom-up binding of parts of the activity repraserby the node;

3. v(node): prediction of the activity represented by the nadenfthe context pro-
vided by a parent node.

Second, we specify an explore-explaiiy) strategy for cost-sensitive inference. The
E? strategy optimally schedules the sequential computafion 8, andy, such that the
log-posteriors of the resulting parse graphs are maximiretthis way, theE? strategy
digitally zooms-in or zooms-out at every iteration, coratied on previous moves, and
thus resolves ambiguities in all hypothesized parse graphs

To initiate research on this important problem, we haveeotdid and annotated a
new dataset of high-resolution videos of various, co-agegractivities taking place
in a courtyard of the UCLA campus [5]. Fig. 1 shows an examgiepped out frame
from our UCLA Courtyard dataset. As can be seen, the crogpegart shows a vast
space wherein students are standing in a line to buy foodkimgatogether in a cam-
pus tour led by a guide, or sitting and reading on the stagrchwsother parts of the
same video (not shown), people may be riding bicycles ortecsgbuying soda from a
vending machine, or jogging together. The video has a higblugion to allow activity
recognition at different spatial and temporal scales. kangle, it may be necessary to
exploit the high resolution for digital zoom-in, and thusatinbiguate particular objects
defining the queried activity (e.g., buying a soda or a snemk the vending machine).

Prior Work — Multiscale activity recognition has received scant attenin the
literature. Recent work typically studies prominentlytiead, single-actor, punctual
or repetitive actions [6]. Activities with richer spatiot@oral structure have been ad-
dressed using graphical models, including Deformableohctiemplates [7], Sum Prod-
uct Networks [8], and AND-OR graphs [2, 3]. However, this waonsiders only one
specific scale of human activities. Our work is related t@reenethods for recognizing
group and individual activities using context [9-11], addntifying objects in videos
based on activity recognition [12]. There are two majoretighces. First, that work
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Fig. 1. An example from our UCLA Courtyard dataset, showing mugtipb-occurring group ac-
tivities, primitive actions, and objects. Overlaid ovee tbriginal frame, the purple marks the
group walking together, the magenta marks the group stgndia line for food, the beige marks
the group going to class, and the light blue marks the UCLArGaud tour. Within the dashed
boxes, we show that each of these group activities condigtslividual actions of group partici-
pants, where some of them interact with objects, e.g., dackpacks.

considers only two semantic levels — namely, either corgagtactivities, or activities
and objects. We jointly consider three semantic levelseaj individual actions, and
group activities. Second, prior work typically focuses angge videos showing a sin-
gle activity (or object) in the entire video. Our high-ragtidbn videos, instead, show
a spatially large scene with multiple co-occurring aci@gtof many people interact-
ing with many objects over a relatively long time intervale\&tvance recent work on
localizing single-actor, punctual, and repetitive atigs [13] by parsing significantly
more challenging videos with co-occurring activities dtetent scales.

Our work builds upon an empirical study of the 3, and~ process for face de-
tection in still images, presented in [4]. That work consétEonly one object class
(i.e., faces), whereas we seek to recognize a multitude tofitgcand object classes.
Our extensions include: (i) a new formulation of the expécgjains of«, 3, and~y, and
specifying theE? strategy for cost-sensitive inference of the AND-OR graph.

In the sequel, Sec. 2 defines the AND-OR graph. Sec. 3 presantsference.
Sec. 4 specifies low-level detectors used in inference, lemddmputation ofy, 3, and
~. Sec. 5 formulates th&? strategy. Sec. 6 specifies our learning. Sec. 7 presents our
experimental evaluation.
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2 AND-OR Graph

This section presents the AND-OR graph following the notatand formalism pre-
sented in [4]. The AND-OR graph, illustrated in Fig. 2, orgas domain knowledge
in a hierarchical manner at three levels. Group activities A, (e.g., Standing-in-
a-line) are defined as a spatial relationship of a set of fivienactions (e.g., a group
of people Standing, in a certain Pose, Orientation, andréioeDisplacement). They
are represented by nodes at the highest level of the graphiti?e actions,r € R,
(e.g., Riding-a-bike) are defined as punctual or repetitiadions of a single person,
who may interact with an object (e.g., Bike or Phone). Theyrapresented as chil-
dren nodes of the group-activity nodes. Objeots; O, include body parts and tools
or instruments that people interact with while conductingrmitive action. Object
nodes are placed at the lowest level of the AND-OR graph, eptesent children of
the primitive-action nodes. Modeling efficiency is achig\w sharing children nodes
among multiple parents, where AND nodes encode particwlafigurations of parts,
and OR nodes account for alternative configurations.

More formally, the AND-OR graph i§ = (Vnr, Vr, €, P), whereVy is a union
set of non-terminal AND and OR nodes. An AND node is denoted,aand an OR
node is denoted ag. Let! = 1, ..., L denote a level ij, wherel — 1 is the level closer
to the root than level. Then, a parent of! is denoted ag\!~. Similarly, ith child of
Alis denoted a5\li+. We also useX .: to denote a descriptor vector of the video part
associated with node’, including the information about location, scale and diagion
relative to the video part associated with the parent ngdé. Vr = {t.. : VA; €
Vnr} is a set of terminal nodes connected to the correspondingerarinal nodes,
where eaclt,, represents a detector applied to the video part associatedw € is
a set of edges df. A parse graph, pg, is a valid instance of the graméaP is the
probability over the space of all parse graphs. The edgd sqtarse graph is a union of
switching edgegswicn(Pg), decomposition edgegied pg), and relation edgeSe(pg),
E(Ppg) = Eswitch(P9) U Edec(P9) U Erei(Pg), as explained below.

The prior probability of a parse graph is definegh§sg) = % exp(—F(pg)), where
the partition function isZ = 3 exp(—E(pg)), and the total energy is

E(pg) = — Zl Z(Vl7/\1)€55witch(Pg) 1ng(/\l|\/l) + Z(/\H/\L*)Efdec(pg) 1ng(X/\L |X/\L—)

2 (A A egpg) 108 P(X it XAé-*)} :
1)
In (1), the first term denotes the probability that OR nadeselects AND node\!,
the second term defines parent-child statistical depemegrand the third term defines
pairwise dependencies between pairs of children’of

Given an input video framd, with domain defined on latticd, the likelihood of a
parse graph is defined p&l|pg) = [];cy, (pg P(L4. [t), whered, € Ais video domain
occupied by the terminal node
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Fig. 2. The AND-OR graph of group activitied, primitive actionsk, and object®). ¢ is the ter-
minal node representing a detector of the correspondirgjtgiar object. Detector responses)
constitute thex process. The top-dowm process is aimed at predicting and localizing the cor-
responding primitive action (or object), based on conteavidled by the detected group activity
(or primitive action). The bottom-up process is aimed at inferring the corresponding primitive
action (or group activity), based on detections of parétim objects (or primitive actions).

3 Inference

Given a video, we conduct inference frame by frame. Temparatacteristics of ac-
tivities are implicitly accounted for via descriptor vergpwhich collect visual cues
from space-time windows centered around spatial domains A, occupied by ev-
ery terminal nodé. Similar to the derivation in [4], the video framé&,, contains an
unknown number, of instances of the queried activities at different spattales.
Each inferred instance is represented by a parse graph iwdhe representation,
W = (K,{pg, : k¥ = 1,2,...,K}). Under the Bayesian framework, we inf&f
by maximizing its posterior probabilit]y* = arg maxw e p(W)p(I4|W), wheref2
is the space of solutions.

The prior of W is defined ap(W) = p(K) Hszl p(pg,), wherep(K) x exp(—AoK)
is the prior of the number of parse graphs, aifdg, ) is defined by (1). To compute
the likelihoodp(74|W), we define foreground latticéyy = Uy Apg , and background
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lattice Apg = A\ Agg, and use a generic background pgf), as
I (I
q( Afg) _ C](IA) H p( Apg, |pgk) (2)

p(IA|W) :p(IAfglw)q(IAbg)q(IA ) q(La,, )
fg k=1 Pk

Wherep(IApgk Ipg,) means that domairy, is explained away by the parse graph. pg
andg(1a,,, ) explains domaintyg, as background.

In inference, we sequentially infer the parse graphs, oadiate, and augment’.
The inference of a parse graph is formulated as

P(17,4/PY)
= 1 +log —F——|,
pg" = arg e og p(pg) + log oUn)

®3)

wherep(pg) is defined by (1). The likelihood ratio in (3) can be factodzer terminal

nodest¢ € Vr(pg), representing detector responses over the corresponidieg parts.
. . P(LapgPY) (p(La 1) _

Specifically, we can writéog q(?fpg) =Y icvr(pg 108 5(1AAt) = evepg L),

wherey(t) denotes the confidence of detecta@pplied at video park,,. From (1) and

(3), we have:

pg' =arg max 3L logp(AN[V)  +ulta) + | Blta-) +logp(X | Xn-) ]
pge 2(pg) 7 —_——— ~—— —_—— — —
AND-OR graph structure al al— Al
zoom-out
N

+p(NY) Y [10gp(X 41 X00) + 0ty ) + D logp(X e, X0 | |
i=l N————— ~——  i#j
vt a;t Bif

i

zoom-in (4)
Equation (4) specifies the!, 3!, and~! processes at levélof the AND-OR graph.
Confidences of the activity detectors constitafeprocess. The top-dows' process
is aimed at predicting and localizing the correspondingnfiive action (or object),
based on the context of the group activity (or primitive @aa}i For example, to zoom-
out for examining the context of a primitive action, it is essary to detect the ac-
tion’s contextual group activityy' —, and to estimate the likelihood of the corresponding
parent-child configuration'~. The bottom-ugs’ process is aimed at inferring the cor-
responding group activity (or primitive action), based tnahildren primitive actions
(or objects), and their configuration. For example, to zdnfor examining individual
actions within a group activity, it is first necessary to detae primitive actionmﬁ,
i=1,..., N, then, estimate the likelihood of the corresponding paciit configura-

tion 'yZH, and finally estimate the likelihood of their configurati f.rj i,j=1,..,N.

4 Computing «, 3,

For each level of the AND-OR graph, we define a set@fdetectors aimed at detecting
corresponding activities. As theés are independent across the three levels of our AND-
OR graph, we specify three different types of detectorsdAtectors have access to the
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Deformable-Parts-Model (DPM) person detector [14], anduétiolass SVM classifier
aimed at detecting a person’s facing direction. The persteator is initially applied
to each frame using the scanning procedure recommended]nAlperson’s facing
direction is classified by an 8-class classifier, learnedib$¥M on HOGs (the 5-fold
cross-validation precision of orientation is 69%).

For detecting objects, we train the DPM on bounding boxesba instances an-
notated in training videos, and apply this detector in anifgiof every people detection.
For each object detection, we use the above SVM to identi#ytiject’s orientation.

For detecting primitive actions, we apply the motion-appaae based detector
of [15] in a vicinity of every people detection. From a giveindow enclosing a per-
son detection, we first extract motion-based STIP featd&)s fnd describe them with
HOG descriptors. Then, we extract KLT tracks of Harris coshand quantize the mo-
tion vectors along the track to obtain a descriptor called3bquence Code Map. The
descriptors of STIPs and KLT tracks are probabilisticallgdd into a relative location
probability table (RLPT), which captures the spatial amdgeral relationships between
the features. Such a hybrid descriptor is then classified tyléiclass SVM to detect
the primitive actions of interest.

For detecting group activities, we compute the STV (Spaaee™Molume) descrip-
tors of [17] in a vicinity of every people detection, calledanchor. STV counts people,
and their poses, locations, and velocities, in differemacgptime bins surrounding the
anchor. Each STV is oriented along the anchor’s facing torcSTVs calculated per
frame are concatenated to capture the temporal evolutidheo&ctivities. Since the
sequence of STVs captures a spatial variation over timereflagive motion and dis-
placement of each person in a group is also encoded. TraBHiNg across consecutive
frames is performed in 2.5D scene coordinates. This makiestiteg group activities
robust to perspective and view-point changes. The track3 ¥k are then classified by
a multiclass SVM to detect the group activities of interest.

Theg process binds pairs of children nodeé*, /\3*) of parentA!. This is evalu-
ated using the Gaussian distributWAﬁ,XA?) = N(XA? - XA§_+; pat, Xgi).

The~ process predictgh child /\i+ conditioned on the context of parext This is
evaluated using the Gaussian distributidX .+ [ X 1) = N(X i+ — Xt par, 21).

5 The E? Strategy for Cost-sensitive Inference

The E? strategy optimally schedules a sequential computatien 6f andy processes,
such that the posterior distributions & parse graphs il are iteratively maximized.
We make the assumption that every process carries the sanputational cost.

More formally, given a queryy, the E? strategy sequentially selects an optimal
move at a given state, which results in another state. Thefsghtes,S,, that can
be visited are defined by all AND nodes which form the trawsitilosure of node,,
representing; in the AND-OR graph. Thus, a statec S, represents an AND node
in the transitive closure of,. A move,m € M, at states, is defined by the edges
in the AND-OR graph that directly link to its parents and children nodesSp. For
example, a move téth child node ofA; means running the detector defined by the
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terminal node ,,, i.e., zooming-in and computing tlkeprocess of the child. Similarly,
a move tdth parent node ofi; means zooming-out and running the dete¢ior

We make the assumption that we have accessimalator, which deterministically
identifies next state’ (i.e., next AND node) after taking move at states. This simula-
tor computes the log-posterior &f parse graphs ifi/, given by (4), from alky, 3, and
~ processes available until a given iteration. Since the sitouwill always account for
available detector responses in (4), fii¢ strategy should not repeat the moves which
have already been taken. Since the moves are Markovian,epeskeecord of detectors
that have already been uskf]seq

A relatively small number of moved/l,| at each state € S, allows for a robust
estimation of expected utilities of taking the moves, dedasQ, = [Q(s,m;q)].
Qq is then used for guiding the scheduling of optimal moves ferience. One of the
strengths of Q-learning is that it is able to comp(tg without requiring a model of
the environment. We specify a rewaRd(s, m; ¢) for taking movem € M; in state
s € Sq, which results in the next staté € S,, and evaluate this reward for a given
set of training parse graphépg, : t = 1,...,T}. The reward is defined using the

, 1
SlngId fUnCtionZRt(S, m: q) _ (1+exp—(logp(pgt|Mused)—10gp(pgt|Mused)) ) , Where

log p(pg,|Mused denotes the log-posterior distributiontttfi training parse graph, given
all detector responsesiMiseq Then, the Q-learning is rufitimes over all parse graphs
{pg,}, andQ, is updated as, far=1, ..., T":

Qs,miq) — Qs,mi @)+, (Ra(s,miq) + pmax Qs m's g) = Qls, miq)) s (5)

where, is the learning rate, and is the discounting factor. We estimatge as the
inverse of the number of times statéas been visited, and set= 1.

The E? strategy is summarized in Alg. 1. The initial stat®) e S, is assumed to be
the query node in the AND-OR graph. The first mon&’ e M, is defined as running
the detector of the query. For selecting optimal moves irfélewing iterations,r =
1,2, ..., B, the E? strategy flips a biased coin, and, if the outcome is “head&gg the
best expected move "t = argmax,, Q(s("), m; ¢), otherwise takes any allowed
move in states(™). In both cases, the move is selected from the allowed setofqusly
unselected moved - \ Myseq We specify the probability of “heads” to lee= 0.75,
and thus enable a mechanism for avoiding local optima. koséhected move:("+1),
our simulator evaluates the log-posterior of the parsetg;f,a[pgz(T“) ck=1,...,K},
over all availablen, (3, and~ processes, given by (4). If thegé log-posteriors are
above a certain threshold, estimated in training, the algorithm can terminate before
the allowed number of iteratiors. We do not study here the right valuesiodind 5.

In our empirical evaluations, we have observed that ARestrategy produces a
reasonable scheduling ef 3 and~. Fig. 3a, shows our evaluation of tii¢# strategy
for the query Walking, under different time budgets, on th@Ll4 Courtyard dataset.
Fig. 3b shows our sensitivity te values averaged over 10 different types of queries
about group activities, primitive actions, and objects, tfee allowed budget of 100
iteration steps, on the UCLA Courtyard dataset.
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Algorithm 1: E? Strategy
Input: Queryq; budget3; Bernoulli “success” probability;
expected utilitie, = [Q(s, m; q)]; thresholds
Output: All instances ofg, inferred by the parse graph{sng(B) ck=1,..,K}
1 Initialize: 7 = 0; states”); movem?); Mysea= 0;
2 Compute{pgzm) :k=1,..,K}given by (4);
3 while (r < B) or (vk, log p(pd;™ [Mused < ) do
4 Toss a biased coin with(“heads’) = ¢;

5 if (“heads”) then

6 | Select the best expected maové™ ™) = arg maXmgms(T)\MusedQ(s(T)y m;q);
7 else

8 | Select randomly a move, ™" € M () \ Mused

9 end

10 Muysed = MuseqU {m(7+1)};

11 | Evaluate{pg," " : k=1, ..., K} for Museq given by (4);
12 T=7+1,;

13 end

6 Learning the Model Parameters

This section explains how to learn parameters of the pdfagng in (4).

We learn the distribution of the AND-OR graph structyre)'| '), as the frequency
of occurrence of pairsA’, V') in training parse graphs. The prior over the number
of children nodeg(N') is assumed exponential. Its ML parameter is learned on the
numbers of corresponding children nodes\bfn training parse graphs.

Learning «: For learninga!, at a particular level of the AND-OR graph, we use
annotated sets of positive and negative training exam@]lé;s” T} T:L consists of
labeled bounding boxes around corresponding group desvit = 1), or primitive
actions ( = 2), or objects [ = 3). Parameters of a classifier used fdrdetector (e.g.,
DPM of [14]) is learned or{T;,T(;} in a standard way for that classifier (e.g., using
the cutting-plane algorithm for learning the structurééta SVM).

Learning ~: For learningy! of a primitive action (or object), we use training fet. T,
consists of pairs of descriptor vecto{$X .., X ,:- )}, extracted from bounding boxes
annotated around instances of the primitive action (orajjand its contextual group
activity (or primitive action) occurring in training vidsoThe descriptors capture the
relative location, orientation, and scale of the corresjioypairs of training instances.
T, is used for the ML learning of the mean and covariange;, X..:), of the Gaussian
distributionp(X .| X pi- ).

Learning : For learnings', we use two training sets’,, and T[’j’H. For a group
activity (or primitive action)Tél consists of pairs of descriptor vecto{$ X ,:, X Aﬁ) :

i =1,..., N'}, extracted from bounding boxes annotated around instaf¢be group
activity (or primitive action), and its constituent priii¢ actions (or objects) occurring
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E? strategy for answering the query about Walking
Ground Truth T Explore/Exploit trade-off

Precision and recall
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Fig. 3. Evaluation on the UCLA Courtyard dataset: (a) Precision rewdll under different time
budgets for the query Walking, averaged over all parse graphr precision and recall increase
as the number of detectors used reaches the maximum numbfr) 3&erage log-posterior of
ground-truth parse graphs of 10 different queries abounertivities, primitive actions, and
objects, for the budget of 100 iterations. The best resuétsiehieved foe € [0.6 — 0.8].

in training videos. For a particular group activity (or pifive action), 77, consists
of all pairs of descriptor vectors‘t,(XAi+,XA;+) :i,j = 1,.., N'}, extracted from
bounding boxes annotated around pairs of children of pximiactions (or objects)
comprising the group activity (or primitive action). Thesgeptors capture the relative
location, orientation, and scale of the correspondingspairtraining instancesl”,,,
andTgl+ are used for the ML learning of the means and covariar(gugﬁ, Elﬁl) and
(ufi, £7.), of the Gaussian distributiong X, 1+ | X 1) andp(X, .+, XA;_+).

7 Results

Existing benchmark datasets are not suitable for our etialuaMajor issues include:
(1) unnatural, acted activities in constrained scenesliifiljed spatial and temporal
coverage; (3) limited resolution; (4) poor diversity of igity classes (particularly for
multi-object events); (5) lack of concurrent events; arjd46k of detailed annotations.
For example, the VIRAT Ground dataset shows only singleraattivities (e.g., en-
tering a building, parking a vehicle). The resolution ofsbevideos 1280 x 720 or
1920 x 1080) is not sufficient to allow for digital zoom-in. Other suritance datasets
such as, VIRAT Aerial and CLIF, are not appropriate for oustgem, since they are
recorded from a high altitude where people are not visiblbeOdatasets (e.g, KTH,
Weizmann, Youtube, Trecvid, PETS04, Olympic, CAVIAR, IXNsAHollywood, UCF,
UT-Interaction or UIUC) are also not adequate, since theypaimarily aimed at eval-
uating video classification. To address the needs of ouuatiah, we have collected
and annotated a new dataset, as explained below.

UCLA Courtyard Dataset [5]: The videos show two distinct scenes from a bird-
eye viewpoint of a courtyard at the UCLA campus. The vide@ssaitable for our
evaluation, since they show human activities at differemantic levels, and have a
sufficiently high resolution to allow inference of fine détaiThe dataset consists of a
106-minute, 30 fps2560 x 1920-resolution video footage. We provide annotations in
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terms of bounding boxes around group activities, primigigdons, and objects in each
frame. A bounding box is annotated with the orientation ameEpwhere we use 4 orien-
tation classes for groups, 8 orientations for people, armsépfor people. Each frame is
also annotated with the ground plane, so as to allow findirepébf each individual or
group. The following group activities are annotated: 1. kiWaj-together, 2. Standing-
in-line, 3. Discussing-in-group, 4. Sitting-togethen/iting-in-group, and 6. Guided-
tour. The following primitive actions are annotated: 1. iRgtskateboard, 2. Riding-
bike, 3. Riding-scooter, 4. Driving-car, 5. Walking, 6. Rialg, 7. Waiting, 8. Reading,
9. Eating, and 10. Sitting. Finally, the following objects annotated: 1. Food, 2. Book,
3. Car, 4. Scooter, 5. Bike, 6. Food Bus, 7. Vending MachinEpo®d Menu, 9. Bench,
10. Stairs, 11. Table, 12. Chair, 13. Bottle, 14. Phone, J&ndthag, 16. Skateboard,
and 17. Backpack. For each group activity or primitive attiithne dataset contains 20
instances, and for each object the dataset contains 5haestaWe split the dataset
50-50% for training and testing.

We also use the Collective Activity Dataset [17] that cotss@f 75 short videos of
crossing, waiting, queuing, walking, talking, runningdastancing. This dataset tests
our performance on a collective behavior of individuals emictalistic conditions, in-
cluding background clutter, and transient occlusions.tFaning and testing, we use
the standard split o2/3 and1/3 of the videos from each class. The dataset provides
labels of every 10th frame, in terms of bounding boxes arqewple performing the
activity, their pose, and activity class.

The Collective Activity Dataset mostly shows a single gragpivity per video.
We increase its complexity by synthesizing a compositesgatd he composite videos
represent a concatenation of multiple original videos cemnlg placed on & x 2 grid,
as shown in Fig. 4. The composite videos show four co-oaogigroup activities. We
formed 20 such composite sequences of multiple co-ocaugmoup activities, and
used 50% for training and 50% for testing.

We evaluate our performance for varying time budg#ts= {1,15,00}. B = 1
means that we are allowed to run only the detector directyr@priate for the query
(e.g., the detector of Riding-bike). This is our baselifie= co means that we run the
E? strategy as long as all detectors and their integrationhgat 3, and~y processes
are not executed. Finally, < B < co means that th&? strategy is run foB3 iterations.

We evaluate: i) Classification accuracy and ii) Recall aretision of activity de-
tection. For detection evaluation, we compute a ratjimf the intersection and union
of detected and ground-truth time intervals of activity wcences. True positive (TP)
is declared if the activity is correctly recognized, and> 0.5, otherwise we declare
false positive (FP). Note that this also evaluates locatinaof the start and end frames
of activity occurrences.

Table 1 shows our precision, false positive rates, and ngntimes, under varying
time budgets, on the UCLA Courtyard dataset. As the budgeeases, we observe
better performance. ThB? strategy gives slightly worse results in a significantlysles
amount of time, than the full inference with unlimited butigéhus, theE? strategy
improves the accuracy-complexity trade-off.

Table 2 compares our classification accuracy and runningstiwith those of the
state of the art [9, 11, 17] on the Collective Activity Datageor this comparison, we
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Query about group activities
E? strategy | Standing-in-liné Guided-touf DiscussingSitting| Walking[ Waiting| | Time
B = 1, Precision 62.2% 63.7% 68.1% ([65.3% 69.4% | 61.2%]|| 5s
B=1,FP 7.2% 2.3% 9.8% [12.6% 8.1% | 10.4%]|| 5s
B = 15, Precisio 65.4% 66.1% 69.0% (68.7% 70.3% | 66.5%]| 75s
B=15FP 10.1% 4.7% 11.1% [11.19% 8.7% | 10.9%]| 75s
B =, Precision 68.0% 70.2% 75.1% [71.49% 78.6% | 72.6%]| 230s
B = oo, FP 13.6% 10.3% 17.1% [13.79% 10.1% | 12.2%]|| 230s
Query about primitive actions
E? strategy | Walk | Wait | Talk [Drive CalRide S-boarfiRide Scoote]Ride Bike] Read] Eat | Sit [[Time
B = 1, Precision|63.3%61.29458.4% 65.8% 63.5% 60.1% 56.8% |55.39460.99%454.3%| 10s
B=1,FP 12.19%416.29%411.4% 3.4% 10.2% 11.6% 6.2% |[8.2%| 2.2%| 5.3% || 10s
B = 15, Precision}67.69463.49462.3% 67.2% 67.1% 65.9% 59.3% [61.2%(66.3%459.2% | 150s
B =15FP [14.29%17.19415.19% 7.1% 13.8% 13.2% 9.3% [10.3% 4.3%| 7.1% || 150s
B = oo, Precision}69.19%467.79469.6% 70.2% 71.3% 68.4% 61.4% (67.3%(71.3%64.2% | 330s
B = oo, FP  [18.7%20.29417.99% 9.7% 17.1% 16.3% 12.3% [12.19%] 7.7%] 9.0% ] 330s

Table 1.Average precision, and false positive rates on the UCLA Gand Dataset for primitive
actions and group activities. The larger the time budgetb#tter precision.

allow infinite budget in inference, and do not account foleaks, since this information
is not available to the competing approaches. As can be seeour performance is
superior in reasonable running times. Figures 4 and 5iiltssour qualitative results.

8 Conclusion

We have formulated and addressed a new problem, that ofstalli activity recog-
nition, where the main challenge is to make inference cessitive and scalable. Our
approach models group activities, individual actions, padicipating objects with the
AND-OR graph, and exploits its hierarchical structure tenfalate a new inference
algorithm. The inference is iterative, where the directligggion of activity detectors,
bottom-up and top-down computational processes are offireeheduled using an
explore-exploit {£2) strategy. For evaluation, we have compiled a new datasbd®f
minute, 30 fps2560 x 1920-resolution video footage. The dataset alleviates thetshor
comings of existing benchmarks, since its videos show gestdauman activities of
different semantic scales co-occurring in a vast scenehawe a sufficiently high res-
olution to allow for digital zoom-in (or zoom-out) for exaning fine details (or coarser
scales), as needed for recognition. TH& strategy improves the accuracy-complexity
trade-off of full inference of the AND-OR graph. We have atsported competitive
results on the benchmark Collective activities dataset.
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Class| Our | [11] | [18] [ [O] [ [17] il N i\

Walk [74.79%38.8% 72.2%] 68% |57.9%

Cross|77.29476.49469.9% 65% |55.4%

Queug95.4%78.7%496.8% 96% |63.3%

Wait [78.39476.7%74.1% 68% |64.6%

Talk

98.49485.79499.8% 99% |83.6%

Run [89.49 N/A [87.694 N/A | N/A

Dancg72.3% N/A [70.2% N/A | N/A

[Avg [83.6%4 70.9% 81 5% 79.1%65.9%

[Time | 1655 N/A | 555 | N/A | N/A |

Table 2. Average classification ac-
curacy, and running times on the
Collective Activity Dataset [17].
We useB = co.

Crossing Queuing . Talking Walking - Waiting

Class| Our | Our | [18] | [18]

FP-Rate FP-Rate ; . i
Walk 65390 8206 158190 12.2% Fig. 4. Oyr results on det.e.ctlng group activities of the
Cross|60.694 8.7% [61.594 15.5% Composite Collective Activity dataset, féit = co. The
Queug76.29% 5.2% [65.5% 8.7% figure shows a single frame (not 4 frames) from the
i 0, 0, 0, 0, . N .« .
Wait |68.3% 7.7% 59.2% 8.2% Composite dataset. A total of 7 co-occurring activity in-
Talk [82.1% 6.2% [67.5% 7.1% .
Run [80.4% 8.8% [72.194 10.2% stances are detected. The detections are color coded. Top
Dancd63.1% 10.2% |55.3% 12.9% left: we detect the co-occurring Walking and Waiting.
[Avg [72.19% 6.7% [62.79 10.6%| Top right: we detect the co-occurring Queuing, Talking,

and Waiting. Bottom row: we detect Crossing (left), and

Table 3. Average precision, and Talking (right).
false positive rates on the Compos-
ite Collective Activity dataset. We

useB = oco.
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