
Reconfigurable Templates for Robust Vehicle Detection and Classification

Yang Lv1,3, Benjamin Yao2,3, Yongtian Wang1 and Song-Chun Zhu2,3

1School of Computer Science, BIT
2Department of Statistics, UCLA

3Lotus Hill Research Institute

Abstract

In this paper, we learn a reconfigurable template for de-
tecting vehicles and classifying their types. We adopt a pop-
ular design for the part based model that has one coarse
template covering entire object window and several small
high-resolution templates representing parts. The recon-
figurable template can learn part configurations that cap-
ture the spatial correlation of features for a deformable part
based model. The features of templates are Histograms of
Gradients (HoG). In order to better describe the actual di-
mensions and locations of ”parts” (i.e. features with strong
spatial correlations), we design a dictionary of rectangu-
lar primitives of various sizes, aspect-ratios and positions.
A configuration is defined as a subset of non-overlapping
primitives from this dictionary. To learn the optimal config-
uration using SVM amounts, we need to find the subset of
parts that minimize the regularized hinge loss, which leads
to a non-convex optimization problem. We solve this prob-
lem by replacing the hinge loss with a negative sigmoid loss
that can be approximately decomposed into losses (or neg-
ative sigmoid scores) of individual parts. In the experiment,
we compare our method empirically with group lasso and
a state of the art method [7] and demonstrate that models
learned with our method outperform others on two com-
puter vision applications: vehicle localization and vehicle
model recognition.

1. Introduction
Compositional hierarchy [1, 14, 9, 11] and deformable

parts [7, 2, 3, 8, 16] are widely used for modelling and de-
tecting objects in computer vision. For example, the star
model [10, 8] and the constellation model [9] can formulate
the parts and their deformations by Gaussian models, and
recently, new features such as HoG [4] have contributed to
the steady improvement of detection performance. In these
models, ”parts” are generally used to group features with
strong spatial correlations that should move together. How-
ever, most of previous methods use either fixed or hand-

Figure 1. By using various shapes of parts, our method can learn
global optimal tiling of parts that correspond to different types of
vehicles under various viewing angle, lighting condition and con-
figurations (left and right columns).

designed windows for parts, while in real world applica-

321



tions such as the vehicle type classification task illustrated
in Fig.1, we face the problem of large variations of cate-
gories, viewing angles, lighting conditions that require dif-
ferent configurations of parts.

It was noted in the literature [20] that the difficulty of
learning structured model lies in the ambiguity of its parts.
Many techniques have been developed to address this prob-
lem. For example, L. Zhu et al. proposed a bottom-up clus-
tering method by discovering suspicious coincident struc-
tures [20], and Dollar et al. proposed a multiple component
learning framework [5] that learns parts based on the ad-
aboost [12]. Similarly, the work of Huang [13] also used ad-
aboost to select a local optimal configuration of templates.
P. Felzenswalb et al. presented a line of work [7, 6] that
treated part locations as latent variables and learned the ap-
pearance and deformation parameters jointly using a latent-
SVM algorithm. While their method enjoys good popular-
ity, it has one drawback that the algorithm is sensitive to the
initialization of part. The heuristic method used to initial-
ize parts does not always find good placement and it also
relies on manual input for shape and size of parts. In con-
trast, we propose to use parts with different shapes and sizes
by learning an optimal configuration to construct part-level
templates.

In this paper, we present a novel reconfigurable template
to learn part configurations for vehicle detection and clas-
sification. We adopt a popular design, the Part Based Tem-
plates model [7] (which will be later referred to in short as
”PBT”). The difference between our method and PBT is
that our templates learn an optimal configuration of parts
to represent vehicles. Given a dictionary with rectangu-
lar primitives of various positions, sizes and aspect-ratios,
a configuration is defined as a set of primitives that tile a
detection window (as shown in Fig.1). The objective of
learning configuration is to find a non-overlapping subset
of primitives that minimize certain loss function (e.g. the
empirical classification error). The absence of previous
methods addressing this issue, however, may largely due
to the fact that, in general, this objective involves a non-
convex optimization problem. We replace the non-convex
loss function with a negative sigmoid score as our loss func-
tion, which can be approximately decomposed into nega-
tive sigmoid scores (margins) of individual parts. Then our
training algorithm is carried out in three steps: 1) Learn
appearance model for all primitives via the Latent SVM al-
gorithm [7] and compute their sigmoid scores; 2) Build the
And-Or search tree. Starting from the object window, an
And-Or search tree is built recursively by enumerating all
possible ways to bisect a rectangle window into two smaller
windows so that every leaf node on the tree corresponds to
a primitive from the dictionary. Therefore, each path on this
tree corresponds to a valid configuration; 3) Search the opti-
mal tiling configuration with Dynamic Programming (DP).

The contributions of this paper are as follows,

• Optimized Configuration. We propose a reconfig-
urable template and an algorithm for learning part
configurations that captures the actual spatial corre-
lations of features for robust vehicle detection and
classification. This method can be easily applied on
general deformable part-based model. By comparing
with the original PBT method [7] and group lasso, we
demonstrate empirically that models using configura-
tions learned with our method work best. Besides,
our learning results are insensitive to initialization be-
cause unlike heuristic search strategy [13] and pursuit
method [15, 16], we seeks the global optimal solution.

• High efficiency and performance. Compared with
other multi-layer hierarchical model and constellation
model, our final model is similar to the two layer PBT
model, which can be computed very efficiently by cas-
cading [6]. We apply our method on a traffic surveil-
lance system. The camera locates in the crowded en-
vironment where most of the tracking methods fail to
work. Our optimized detection algorithm can com-
pute 8 templates at a speed of 200ms/frame in a dual
core CPU (3.9GHz) for vehicle detection. The model
learned through our method can accurately count ve-
hicle flow, classify vehicles, and provide context for
locating license plate. The detection rate approximates
95% with average of 0.3 false alarm per frame in traffic
(See Fig.6 and supplementary video).

2. Representation
2.1. Reconfigurable templates

We adopt a model that is similar to the popular PBT
model [7], which has one coarse template covering entire
object window and several small high-resolution templates
representing parts. The Histogram of Gradients (HoG) fea-
ture is used for the templates [4]. There are two differences
between our model and the PBT: 1) parts in our model have
various sizes, aspect ratios, whereas in the PBT, parts are
square windows of fixed sizes; 2) During detection, we al-
low a part not only to displace horizontally and vertically,
but also rotate locally. Formally, a template consisting of a
coarse-level template TO, and m part-level templates is the
following,

T = (TO,m, {T jP }
m
j=1) (1)

where {T jP }mj=1 denotes a set of part-level templates.
Each part has a set of independent variables, which can be
specified by a 3-tuple: T jP = (hj , ωj , Sj), where

i) hj = (dj , rj) denotes the latent variables of the jth

part including its displacement dj = (dx, dx2, dy, dy2)

322



w.r.t. an anchor point and its rotation. We allow each part to
have small rotations rj = {−20◦, 0, 20◦} by circularly left
or right shifting bins of HoG histograms. Similar to PBT,
we use a 2-D quadratic function to penalize the displace-
ments dj . Rotation is not penalized.

ii) wj is the parameter vector of the jth part which in-
cludes the weights for the HoG histograms, a bias term and
negative weights for displacements dj .

iii) Sj = (sj , aj , lj) represents the size sj , aspect ration
aj , and anchor point location lj of the jth part. In this pa-
per, we use all possible rectangles composed of no less than
one 3 × 3 HoG cell (,which equivalents to 24 × 24 pixels),
while is no greater than half of the average size of the object
window (determined by annotations). The parts are placed
according to a pre-determined grid lj ∈ G2 spaced apart by
3×3 HoG cells. For example, an object window of 96×192
pixels (12 × 24 HoG cells) allows sj ∈ [9, 72](cells2),
aj ∈ [1/4, 8] and a 4× 8 grid, which accounts for a total of
267 different choices of Sj . We define the set of all possi-
ble primitives S as a dictionary, which will be discussed in
further details in the next section.

2.2. Part dictionary and configurations

Given a dictionary S with M candidate primitives, we
use a vector β ∈ {0, 1}M to indicate which primitives
appear in the final template (i.e. jt primitives is ”on” if
βj = 1, or ”off” if βj = 0). A template T with m parts im-
plies

∑
j βj = m. It is worth mentioning that since each

primitive in the dictionary has a unique S (size, aspect-
ratio and location), if β is given, {Sj}mj=1 is also known.
A configuration is defined as a subset of primitives, which
can also be represented by β. We require a valid config-
uration βc to have no overlapping ”on” primitives. Intu-
itively a configuration is a tiling of detection window with
rectangular primitives (see Fig.1). Formally, let R(j) de-
notes the window of primitive j, βc ∈ {0, 1}M , s.t. ∀j, k, if
βcj = 1 and βck = 1, R(j) ∩R(k) = ∅. By adding this non-
overlapping constraint, we are implicitly enforcing sparsity
of features i.e. m � M . For example, using the example
of M = 267 from previous section, the maximum number
of m is 32. Most of configurations in our experiments have
m around 8.

3. Learning

Given the pair of training data as D =
{(xi, yi), · · · , (xn, yn)}, where xi is the feature ex-
tracted from the ith image, yi ∈ {−1,+1} denotes the
label of sample i, according to our model, we need to learn
a linear classifier that scores an example x with a function
of the form,

f(x) = max
h∈H

m∑
j=1

βjω
T
j φj(x, hj) + ω0φ0(x, h0) (2)

where function φj(x, hj , Sj) is a feature vector of part
j on a sample extracted at window Sj , plus hj displace-
ment/rotation (since Sj is dictated by j, we will omit it in
future references). ωj is the parameter vector.

3.1. Latent-SVM

If the part configuration β is given, the problem (2) is
reduced to the original PBT, whose parameters ω can be
learned by minimizing the the following objective function
over D using the latent-SVM algorithm [7],

min
ω

1

2
‖ω‖2 +

C

n

n∑
i=1

max(0, 1− yif(xi)) (3)

where ω = [ω0, · · · , ωm] is the joint parameter vector.
The learning algorithm has two main steps: i) imputing hid-
den variable hj ; ii) updating the value of parameter ω.

3.2. Learning optimal configuration

In addition to learn appearance parameter ω in the previ-
ous section, we also have to learn an optimal configuration
β = [β1, · · · , βm], βj ∈ {0, 1}. To learn it, we should solve
the following optimization problem:

min
ω,β

1

2
‖[ω0, β1ω1, · · · , βMωM ]‖2

+
C

n

n∑
i=1

max(0, 1− yi(f0(xi) +
M∑
j=1

βjfj(xi)))

s.t.∀j, k ∈ [1,M ], ifβj = 1&βk = 1, R(j) ∩R(k) = ∅
(4)

where fj(x) = ωTj φj(x, hj , Sj) is the prediction function
for each part with the hidden variable hj , and ω0 is the root
parameter. This is a highly non-convex problem that cannot
be easily solved with numerical methods. The enormous
number of valid configurations β also makes brutal-force
search method impractical. We will discuss two approxi-
mation steps in the following to make this problem solvable.
For future references, we rewrite the objective function of
problem (4) into lD(ω, β).

i) Learn appearance model for all primitives. One rea-
son that lD(ω, β) is not solvable is because there are two
parameters ω and β in this function that could affects each
other. However, given the fact that the appearance parame-
ters of each part is relatively independent, we can first learn
ω by turning ”on” all primitives, i.e. let βj = 1,∀j ∈
[1,M ]. Therefore, ωo = argminωlD(ω|β = 1) is a semi-
convex optimization problem that can be solved with the
latent-SVM algorithm [7].

323



(a) Sigmoid function. (b) Loss function.

Figure 2. (a) Sigmoid function is almost linear in its middle section. (b) Comparison of negative sigmoid loss and loss functions of SVM
(hinge loss) and logistic regression.

…

… … … …

…

And-Or search
Or node

And node

Terminal node

Detection 

window

(a)

(a)

(b)

(e)

(b)

(c) (d) (e)

(c)
(d)

(f)
(g)

(f) (g) (h)

(i) (j)

(h) (j)(i)

Configuration 1

Configuration 2

…

Figure 3. Composition of configurations by using dictionary of primitives. Or node represents orswitch for different bisecting methods;
And node bisects a part into two. (Better in color).

ii) Separate part scores. With ω0 learned from the pre-
vious step, we can now compute the regularized hinge loss
lD(β|ω0) for any given β. The search space is still too large
to compute. However, if we can manage to separate loss
(or equivalently negative scores) for each part, we can ap-
ply searching tricks such as dynamic programming. Let the
score of the jth part be vj =

∑n
i=1 yifj(xi), which is the

sum of margins on n samples. The hinge loss of SVM in-
volves a maximum operation of v, max(0, 1−

∑
j vj) and

therefore is not separable. Instead, we can use a negative
Sigmoid functionNSig(v) = 2

1+exp(v) that is also an upper
bound of the zero-one loss (as shown in Fig.2(b))(The sig-
moid function Sig(v) = 2 exp(v)

1+exp(v) is illustrated in Fig.2(a)).

The reason to choose the negative Sigmoid loss is two-fold:
1) As shown in Fig.2(a), when v is close to 0, Sig(v)

approximates a linear function, therefore,

NSig(v1 + · · ·+ vM )

≈1− 1

M
[Sig(M ∗ v1) + · · ·+ Sig(M ∗ vM )]

(5)

We empirically observe that most of vj in our experiment
satisfy this condition.

2) The RHS of Eq.5 is always bounded by its LHS, which
is in turn bounded by [0, 2]. Therefore, the RHS of Eq.5
is always a reasonable approximation to the zero-one loss
function. Intuitively, choose sigmoid function is reasonable

324



because it penalize parts with extremely scores beyond nor-
mal range.

With the above approximation, we can now rewrite the
loss function lD(β|ω0) as

β∗ = argminβ

M∑
j=1

βj · [
1

2
‖ωj‖2 −

C

n
Sig(

n∑
i=1

yifj(xi))]

= argminβ

M∑
j=1

βj · rj(ωj)

s.t.∀j, k ∈ [1,M ], ifβj = 1&βk = 1, R(j) ∩R(k) = ∅
(6)

where R(j) is the window of the jth part, rj(ωj) is the
regularized empirical loss of part j. The above optimizing
problem (6) can be efficiently solved by an And-Or search
algorithm described in the next section.

iii) Adjust the weights. Given the configuration β∗ de-
rived from the previous step, we adjust the weights ω1 =
argminω lD(ω|β∗) with the latent-SVM algorithm. This
step generally converges within a few steps of gradient de-
scent, which confirms that ω0 is a fairly good approxima-
tion.

3.3. Finding an optimal configuration via And-Or
search

The And-Or search algorithm has two steps, the first step
is to enumerate all configuration in a top-down approach,
and the second step is to find an optimal configuration in a
bottom-up approach. Starting from the object window, the
And-Or search tree is built recursively by enumerating all
possible ways to bisect a rectangle window into two smaller
windows so that every leaf node on the tree corresponding
to a primitive from the dictionary. Therefore, each path on
this tree corresponds to a valid configuration. As illustrated
in Fig.3, the search procedure starts from a root node. At
each step, we expand a node using And-Or operators. The
Or operators transform a primitive into all possible bisect-
ing. The And operators bisect a primitive into two smaller
ones. By expanding the starting node recursively until all
nodes reach a terminal node, we can enumerate the solu-
tion space of configurations. The red route and the green
route in Fig.3 show two solutions generated by And-Or
search tree. The problem of learning the optimal configura-
tions is to search the minimum regularized loss

∑M
j=1 βjrj

in all solution space of β. And the optimal solution can
be solved by dynamic programming on the And-Or search.
Given learned parameter ω and enumerated configurations,
we summarize the procedures to seek optimal configuration
in the following steps.

i) Initialization. Given training data D̂ ∈ D for a type of
object, we can compute regularized empirical loss rj on D̂
(Eq.6) and assign scores to corresponding leaf nodes. For

other leaf nodes, the value is assigned zero. At the same
time, ∀βj , βj = 0.

ii) DP in bottom-up approach. After initialization, we
can compute maximum score of each node in a bottom-up
way. For each And node, score is the sum of its two child
nodes rand = r1 + r2. For each Or node, score is the max
value of its child nodes ror = max(r1, · · · , rlast). In this
way, we can compute the max score of root node.

iii) Retrieving the optimal solution. By tracing back,
we can get a solution sub-tree Tslu of the And-Or search
Tsearch. For each βj , if its part appears in the leaf node of
Tslu, βj = 1, and an optimal configuration is learned. The
learning algorithm is outlined in Algorithm 1.

Algorithm 1 The dynamic programming algorithm for
learning configuration
Require: And-Or search Tsearch, and appearance param-

eter ω;
Ensure: The solution vector β;

1: Initialize node score of Tsearch, and β.
2: for each node do
3: rand = r1 + r2.
4: ror = max(r1, · · · , rlast).
5: end for
6: Retrieve Tsearch and get solution tree Tslu.
7: for each terminal node in Tslu do
8: βj = 1.
9: end for

10: return β.

3.4. Learning with Group Lasso

Recent asymptotic analysis of the l1 norm optimiza-
tion proved that under certain conditions the estimated
sparse coefficient of feature enjoys a property called spar-
sistency [17], suggesting their applicability for meaningful
variable selection in high-dimensional feature space. The
mixed-norm l1/l2 regularization has been used for recovery
of joint sparsity across input dimension [18]. A latent-SVM
under l1/l2 regularization for problem (4) has the form,

min
ω
λ

M∑
j=1

√
ωTj ωj√
dfj

+

n∑
i=1

max(0, 1− yif(xi)) (7)

where tuning parameter λ controls the amount of penaliza-
tion, and dfj is the dimension of the jth group of ωj . This
shrinkage tends to encourage features in the same group to
be jointly zero. Therefore, the sparsity is now imposed on
the configuration β. Similar to latent-SVM, the learning
algorithm has two steps, i) imputing hidden variable h; ii)
updating the value of parameter ω by block coordinate gra-
dient descent [19].

325



Figure 4. Comparison of detection results using templates learned with our method, group lasso and PBT. The first row is recall against
false positive per image, and the second row is precision against recall. From left to right are comparisons of detection results using our
method, PBT and group lasso on the dataset of sedan in day time, sedan in night time, and rear truck at all time.

(a) Learned with our method (b) Learned with the PBT (c) Learned with Group lasso

Figure 5. Template/configuration learned with (a) our method, (b) the PBT and (c) the group lasso. The highlighted boxes represent the
part configurations. It is noticeable that the PBT template covers the license plate area with two parts.

4. Experiments
4.1. Dataset

As the first attempt to tackle the problem of detecting
and classifying types of vehicles at both daytime and night,
we have no existing dataset to use and compare with (The
popular Pascal dataset has only two types of vehicles at day
time, 2501 cars and near 500 buses). Instead we have com-
piled a new dataset sorted into several subtypes according
to the illumination conditions (day and night), types of ve-
hicles (truck and sedan), views (frontal and rear), and con-
figurations. Images are collected from surveillance videos
and Internet, as shown in Fig.1. The number of image in
each subtypes varies from 500 to 3000. Here we highlight
the properties of our dataset:

• Time variances. The images are captured by surveil-
lance system 24 hours consecutively,

• Views. Vehicles are captured in both frontal view and

rear view,

• Inner-class variance. The same type of vehicle in the
same view can have different configurations,

• Complexity of background. Our dataset are captured
on real surveillance environment locating in crowded
roads, which are full of pedestrians, vehicles, and trees.

We have also obtained a ground truth annotation of each
image. The annotation information provides the exact lo-
cation of each vehicle in the image. For training, we use
around 100 different positive examples for each category as
well as a shared set of 500 negative images without any ve-
hicles. For testing, we collected 500 positive examples for
each category of sedan and 300 examples for all categories
of truck (due to lack of truck data in general) and 500 neg-
ative images.

326



Table 1. Average precision of vehicle type classification. Car1 and
car2 have different configurations as illustrated in Fig.1

car1 car2 truck1 truck2
Our method 70.36 73.32 78.12 80.92

PBT 61.70 39.58 51.40 78.95

4.2. Vehicle detection by configuration learned with
our method v.s. other methods

We learn the eight classes of templates (as shown in
Fig.1) separately against the common negative training ex-
amples, and compare the vehicle detection performance of
our method, PBT [7] and group lasso on our testing dataset.
Note that the same type of model setting and feature (HoG)
are used across all experiments, the only difference between
these models are how the configurations are learned. The
PBT code is from [7] and we modify it by allowing HoG
to have small rotation, which can bring 2% improvement
in terms of both detection and classification. The training
code is run on a computer cluster with 20 cores and 48Gb
memory. We measure the detection performance in three
groups: 1) sedan detection in day time (i.e. combine the de-
tection results of two categories together), 2) sedan detec-
tion at night, and truck rear detection all day (all combined
together, due to the lack of testing data). In all experiments,
only the shared negative training samples are used. Fig.4
shows experiment results of three categories. It is clear to
see, our method is generally better than both group lasso
and the PBT model [7].

Fig.3.4 illustrates the learned type1 car template using
three different methods. It is clear that the PBT model has
two parts covering the same license plate area due to fixed
configuration. Both our method and group lasso, captures
certain important areas such as the two sides and the license
plate. The the group lasso method is not robust because it
turns on either too many parts that are overlapping or too
few parts that cannot cover the detection window.

(See supplementary file for vehicle detection video)

4.3. Vehicle type classification.

For vehicle classification, we train four different ”1 v.s.
all” classifiers for each model with training examples of
other categories as negative examples. The experiment is
carried out in only day time data, because separation be-
tween day/night data is trivial in real-world. The average
precisions for the classification results of our model and
the PBT are shown in Table1 respectively. In this task, our
model significantly outperforms the PBT model. This result
reinforces our believe that when classifying object that are
similar but with subtle differences, it is more important to
have learned configurations.

5. Discussion
In this paper, we present a reconfigurable template and

learning algorithm of learning part configurations for ve-
hicle detection and classification that is shown to outper-
forms the other methods. The major difficulty of accurate
detection and classification types of vehicles, in our opin-
ion, is the lack of effective models that can represent the
large variations in configurations and appearance. By tiling
the templates with rectangular primitives, we limit the so-
lution space of configurations so that we can find a global
optimal solution by dynamic programming quickly. Based
on this algorithm, we also build a practical real-time traffic
surveillance systems that demonstrates high performance in
cluttered traffic scenes.

Acknowledgement
We thank Wenze Hu and Jiangen Zhang for very helpful

discussions and suggestions. The data used in this paper is
from the Lotus Hill Institute vehicle dataset. The authors
supported by NSF China grant 60827003 and 61072096.

References
[1] H. Chen, Z. Xu, Z. Liu, and S.-C. Zhu. Composite templates

for cloth modeling and sketching. In CVPR, 2006.
[2] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appear-

ance models. TPAMI, 23(6):681–685, Jan. 2001.
[3] J. Coughlan, A. Yuille, C. English, and D. Snow. Efficient

deformable template detection and localization without user
initialization. CVIU, 78(2):303–319, 2000.

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005.

[5] P. Dollar, B. Babenko, S. Belongie, P. Perona, , and Z. Tu.
Multiple component learning for object detection. In ECCV,
2008.

[6] P. Felzenszwalb, R. Girshick, and D. McAllester. Cascade
object detection with deformable part models. In CVPR,
2010.

[7] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part
based models. TPAMI, 32(9), Sept. 2010.

[8] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial struc-
tures for object recognition. IJCV, 61(1):55–79, 1 2005.

[9] R. Fergus, P. Perona, and A. Zisserman. Object class recog-
nition by unsupervised scale-invariant learning. In CVPR,
2003.

[10] R. Fergus, P. Perona, and A. Zisserman. A Sparse Object
Category Model for Efficient Learning and Complete Recog-
nition, volume 4170 of LNCS. Springer, 2006.

[11] S. Fidler and A. Leonardis. Towards scalable representations
of object categories: Learning a hierarchy of parts. In CVPR,
2007.

[12] Y. Freund and R. E. Schapire. A decision-theoretic gen-
eralization of on-line learning and an application to boost-

327



Figure 6. Detection results.

ing. Journal of Computer and System Sciences, 55:119–139,
1997.

[13] C. Huang, H. Ai, Y. Li, and S. Lao. High performance ro-
tation invariant multiview face detection. TPAMI, 29(4), 4
2007.

[14] Y. Jin and S. Geman. Context and hierarchy in a probabilistic
image model. In CVPR, Jan. 2006.

[15] S. Mallat and Z. Zhang. Matching pursuit in a time-
frequency dictionary. IEEE Transactions on Signal process-
ing, 41:3397–3415, 1993.

[16] Y. N.Wu, Z. Si, H. Gong, and S.-C. Zhu. Learning active ba-
sis model for object detection and recognition. IJCV, 2009.

[17] P.Ravikumar, M.Wainwright, and J.Lafferty. High-
dimensional ising model selection using l1-regularized lo-
gistic regression. Annals of Statistics, 2009.

[18] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grand-
valet. Simplemkl. Journal of Machine Learning Research,
(9):2491–2521, 2008.

[19] P. Tseng and S. Yun. A coordinate gradient descent method
for nonsmooth separable minimization. Math. Programmng,
117(1):387–423, 2007.

[20] L. Zhu, C. Lin, H. Huang, Y. Chen, and A. Yuille. Unsuper-
vised structure learning: Hierarchical recursive composition,
suspicious coincidence and competitive exclusion. In ECCV,
2008.

328


