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Abstract
For both human and machine learners, it is a challenge to make
high-level sense of observations by identifying causes, effects,
and their connections. Once these connections are learned, the
knowledge can be used to infer causes and effects where visual
data might be partially hidden or ambiguous. In this paper,
we present a Bayesian grammar model for human-perceived
causal relationships that is learnable from video. Two exper-
iments investigate high-level causal induction from low-level
visual cues. In the first experiment, we show that a computer
can apply known heuristics used for causal induction by hu-
mans to learn perceptual causal relationships. In the second
experiment, we show that our learned model can represent hu-
mans’ performance in reasoning about hidden effects in video,
even when the computer initially misdetects those effects.
Keywords: Perceptual causality; causal induction; statistical
models.

Introduction
A man approaches a closed door. He reaches out to grasp the
handle and then stands there. Is it locked? Does he not have
the key? He knocks and waits, but the door remains closed.
Is there no one on the other side to open it?

Watching these events unfold, humans can readily answer
these questions based on their causal knowledge. One way
humans can learn causal relationships is through daily ob-
servation by internally measuring co-occurrence of events
(Griffiths & Tenenbaum, 2005). Research suggests that
humans use a few heuristics to determine whether a co-
occurrence is causal, including:

• whether the temporal lag between cause and effect is short,
and the cause precedes the effect (Carey, 2009) and

• whether agent actions are responsible for causes (Saxe,
Tenenbaum, & Carey, 2005).

However, learning from daily observation is limited: many
actions and effects are hidden. Our prior knowledge about
causal relationships between actions and effects allows us to
fill in information about the events in the scene.

Some current models represent knowledge with Bayesian
networks, e.g., (Griffiths & Tenenbaum, 2005). These mod-
els, however, are disjoint from the low-level visual data that
people observe. Instead, models are built using high-level an-
notations. In reality, agents build knowledge by observing
low-level visual data, and models need to be able to deal with
uncertainty in observation.

Although Bayesian networks are commonly used to repre-
sent causality (Pearl, 2009), grammar models have the ex-
pressive power to represent a greater breadth of possibili-
ties than a single instance of a Bayesian network (Griffiths

& Tenenbaum, 2007). Grammar models allow for multiple
configurations and high-level structures, making them more
suitable for applications grounded on visual cues; Bayesian
networks lack the representative power needed for this.

Grammar models are represented graphically in the And-
Or Graph (AOG). In the AOG, Or-nodes represent the mul-
tiple alternatives, and And-nodes represent hierarchical de-
compositions. The AOG naturally lends itself to represent
causation where multiple alternative causes can lead to an ef-
fect, and each cause is composed of conditions necessary for
the effect.

In this paper, we introduce a grammar model for repre-
senting causal relationships between actions and object-status
changes, the Causal And-Or Graph (C-AOG). We describe
methods for learning the model by using co-occurrence to
identify potential causal relationships between events and ap-
plying the heuristics listed above to those potential relation-
ships. In two experiments, we investigate how the model
matches human perceptions of causality. Experiment 1 uses
input typical of computer vision detection systems to investi-
gate learning the C-AOG and human perceptions of causality.
Experiment 2 demonstrates that the C-AOG models human
judgments on imputing hidden variables from video.

A Grammar Model for Causality
In this section, we introduce the Causal And-Or Graph for
causal reasoning, which ties agent actions to fluents.

Fluents and Actions
Specifically defining those object statuses that vary over time,
the term fluents comes from the commonsense-reasoning lit-
erature (Mueller, 2006). Relevant here are two kinds of flu-
ents that intentional agents can change: object fluents (e.g., a
light can be on or off) and fluents of the mind (e.g., an agent
can be thirsty or not thirsty).

The values of these fluents change as a result of agent ac-
tions and also trigger rational agents to take action. A lack
of change-inducing action (also known as the inertial action)
causes the fluent to maintain its value; for example, a door
that is closed will remain closed until some action changes it.
In this work, fluents are modeled discriminatively.

Actions (Ai) are modeled using the Temporal And-Or
Graph (T-AOG), a grammar model for actions (Pei, Jia, &
Zhu, 2011). In the T-AOG, And-nodes group the necessary
ways for an action to be performed that allow detection of the
action (e.g., object/agent spatial relations, agent poses, scene
contexts, and temporal relationships), and Or-nodes provide
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Figure 1: A C-AOG for door status as learned in Experi-
ment 1. The value of the top-level fluent is a consequence
its children. The fluent transit action nodes indicate the kind
of change that occurs in the fluent: step functions for change,
flat lines for non-change (or inertial action). Action a0 is the
inertial action (a lack of state-changing action). Arcs connect
children of And-nodes. It should be noted that each photo
represents a further set of child And-nodes from the Tem-
poral And-Or Graph (not shown). Thickened lines indicate
selections on the Or-nodes that provide a single parse graph.

the alternative methods of performing the action. While hid-
den Markov models and dynamic Bayesian networks have
also been used for action detection from video, the grammar
is necessary as it allows representation of high-level struc-
tures and multiple configurations.

Our experiments are conducted using a pre-selected set of
actions and fluents common to office, hallway, and elevator
scenes. Such scenes (and events therein) might be of interest
for surveillance, for example.

The Causal And-Or Graph

The Causal And-Or Graph (C-AOG) is a graphical represen-
tation for the grammar of causality. The top levels of one
C-AOG learned in Experiment 1 are shown in Figure 1.

In the C-AOG, Or-nodes represent the alternative means
of causation (e.g., a monitor, through the computer, can be
turned on by someone using a mouse or a keyboard). Arrows
point from these causing actions to their fluent effects.

Each And-node is formed from the set of multiple con-
ditions for the action, including its sub-actions. The action
nodes in a C-AOG may be inertial actions (resulting in no
change); unexplained instances of the fluent are also pooled
under the inertial action.

A selection on the Or-nodes is called a parse graph, de-
noted pg (such as the paths shown by thicker lines in Fig-
ure 1). It provides a causal interpretation of each fluent’s par-
ticular value at a given time, answering “why” the fluent has
that particular value.

Probability on the C-AOG
The probability model over the parse graphs in the C-AOG
incorporates the detection probabilities of actions and fluents
in a Bayesian manner. In particular, given the video I,

P(pgC|I)︸ ︷︷ ︸
posterior

= P(A1, . . .An|I)P(∆F1, . . . ,∆Fm|I)︸ ︷︷ ︸
likelihood

∏
v∈V Or

C

P(w(v))︸ ︷︷ ︸
prior

.

(1)
The likelihood term is the detection probability for the in-
cluded actions/fluents, and considers actions and fluents in-
dependently. V Or

C is the set of included Or-nodes in the causal
explanation, and w(v) returns the selected Or-branch. The
prior term gives the switch probability on the Or-nodes for
the alternative causes and is learned by maximum likelihood
estimation.

Learning the C-AOG
To learn the C-AOG, potential causal relationships are found
by restricting the set of all possible fluent/action interactions
with the set of heuristics listed at the beginning. Actions and
fluents from all levels of their respective hierarchies are con-
sidered.

A joint model is iteratively built up from the initial prob-
ability distribution over actions and fluent changes, incorpo-
rating a new causal relationship each iteration. In an iteration,
the contingency table of each action-fluent pair (Ai,∆Fj), e.g.,
Table 1, is examined. The best causal relationship is deter-
mined by maximizing the information gain (IG), which is
the Kullback-Leibler divergence (KL) (Kullback & Leibler,
1951) between the full contingency table of Table 1 and the
expected contingency table predicted by the model in the cur-
rent iteration (similar to work on texture modeling (Zhu, Wu,
& Mumford, 1997)). In particular, in a single iteration, causal
relation cr∗ is added to the model where

cr∗ = argmax
cr

IG = argmax
cr

KL(f||h), (2)

f = ( f0, f1, f2, f3), and h is the analogous quantity from the
current iteration’s model. The causal relationships with high-
est information gains are deemed most significant and are col-
lected into the C-AOG.

Table 1: Contingency table of relative frequencies.

∆Fj Present ∆Fj Absent

Ai Present f0 f1
Ai Absent f2 f3

Our learning method integrates with existing action and
fluent detection systems, creating a unified framework for the
spatial, temporal, and causal domains. Further, our method is
more computationally feasible for large networks of causal
connections than Bayesian learning frameworks are (with
their prior distributions over graph structures). Traditional
causal induction as done by constraint satisfaction (Pearl,
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Figure 2: Information gains for causal relations in the order pursued, separated by fluent. Green circles label causes.

2009) or Bayesian formulations (Heckerman, 1995) is in-
tractable to ground on vision sensors. Models such as causal
support (Griffiths & Tenenbaum, 2005) learn a new, larger
model each iteration, and the number of possible models
grows exponentially. In contrast, the number of computations
to learn our model is constant each iteration.

Experiment 1: Learning Causality
In this experiment, we test the model’s ability to learn human-
perceived causal relationships. For testing the algorithm, the
ground truth is established by linking known causing actions
to their fluent effects.

Video Data Used
To test learning the C-AOG, videos were collected with a Mi-
crosoft Kinect, recording the color and depth images simulta-
neously. The scenes collected include multiple doorways, an
elevator, and an office. Figure 1 shows some screenshots of
the videos. The entire video collection lasts about 120 min-
utes, and contains 21 pre-specified action categories. There
are 8 to 20 (sometimes simultaneous) instances of each ac-
tion category.

In this experiment, we first use perfect action and fluent
detections to demonstrate learning. We compare these results
to those obtained with noisy detections (with varying levels
of accuracy), such as would be output from the action and
fluent detection system.

Results and Discussion
Multiple Fluents Figure 2 shows plots of information gains
for causal relations in the order pursued, separated by flu-
ent. Causes are added to the model before non-causes with
clear cutoffs for the door and light fluents. The cutoff be-
tween cause and non-cause is obscure for the computer mon-
itor fluent because the model only acquired partial causal in-
formation (the preconditions of power and computer status
are hidden).

Noisy Data Randomly flipping action detections leads to
the curves shown in Figure 3. As more noise enters the sys-
tem, the information gained by considering causal relations
decreases. While learning works amid noisy scenes (many
actions happening simultaneously), clean detections are im-
portant.

Figure 3: Information gains for causal relationships in the
order pursued for the light fluent.

Hierarchical Action Selection and χ2 Where compound
actions (e.g., in the doorway scene, unlocking with a key or
entering a code, followed by pushing/pulling the door) are
required for the effect, the causing actions may be located
within varying levels of the action hierarchy.

For actions hierarchically related to each other in the Tem-
poral AOG, our model incorporates their dependences, mini-
mizing the chance that related actions are selected as causes.
Figure 4 shows that Hellinger’s χ2 measure (a χ2 that is
less sensitive to low expected values in a contingency table
(Ferguson, 1996)) fails to identify the correct causes, unable
to account for dependence.

(a) Our Method (b) Hellinger’s χ2

Figure 4: Pursuit order for hierarchical causes.

Long Delay, Causal Power, and ∆P Under the power PC
theory (Cheng, 1997), perceptual causality is calculated as:

causal power =
∆P

P(effect|not cause)
(3)
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Figure 5: Sample of human judgment key frames.

where ∆P (Allan, 1980) is given by:

∆P = P(effect|cause)−P(effect|not cause). (4)

For an elevator, the only detectable causing action for the
door opening is pushing the elevator call button. In this ex-
ample, our model outperforms causal power as shown in Fig-
ure 6. ∆P performs similarly to causal power.

(a) Our Method (b) Causal Power

Figure 6: Pursuit order for the elevator scene.

The failure of causal power and ∆P originates when an ob-
served event (e.g., walking away) coincidentally always oc-
curs with the true cause (e.g., pushing the elevator call button)
and the true cause is not perfectly detected. Both measures
favor 100% correlation, despite how rarely it occurred in the
video. The learning method presented here incorporates the
frequency that the relationship is observed by examining the
full contingency table.

Further Discussion

Results match exactly with human perceptions of the causal
connections between actions and fluent changes, showing that
the C-AOG is learnable from co-occurrence and the heuristics
listed in the beginning (short temporal lag and agent actions
cause fluent changes).

Our results are limited to the action and fluent categories
that are pre-specified, despite the fact that many potentially
confounding actions were included. Those quantities must
be specified in advance so that appropriate detectors can be
trained. It is possible, however, that different people would
produce different bottom-level actions and fluents.

Experiment 2: Inference Experiment
In this experiment, our model is validated against humans in
the long-term reasoning task of inferring hidden fluent values.

The Stimuli
Approximately 20 minutes of video data was captured using
a Kinect in two scenes: a hallway and an office. Table 2 con-
tains a summary of the fluents contained in the video, as well
as the values each fluent can take. While many of these flu-
ents are ordinarily viewable, they are ambiguous in the video
(e.g., light status (ambient light may be from a window or a
light) or water stream (resolution is not high enough to see it)
in Figure 5).

Through a website, volunteer participants (N = 15) were
shown the test video which paused at preset frames, e.g.,
those shown in Figure 5. Query points surround either a
change in a fluent or a causing action. At each key frame,
the participant was asked to assign a total of 100 points to
all possible values of each fluent, according to his/her own
recognition and reasoning for the events. Assignment of the
points corresponded to the subjective probabilities of the flu-
ent values. Each participant was allowed to revise previous
judgments with information derived from subsequent frames.

Reference Estimates
We compare the human responses to predicted fluent values
by a baseline random noise model and by the C-AOG.

Baseline Estimate (Random Noise). For a baseline esti-
mate, the hidden fluents were randomly assigned uniformly,
without using any detection or causal information (e.g., 50%
for LIGHT ON and 50% for OFF). The baseline estimate
provides a discriminative reference against which we can see
how well our model approximates human judgments.

Computer Estimate (The C-AOG). Detectable actions
and fluent changes are first extracted from the videos and used

Table 2: List of fluents considered.
Computer: ASLEEP/AWAKE
Monitor Display: ON/OFF
Monitor Power: ON/OFF
Cup: MORE/LESS/SAME
Water Stream: ON/OFF
Light: ON/OFF
Phone: ACTIVE/STANDBY
Trash Can: MORE/LESS/SAME
Agent : THIRSTY/SATIATED
Agent: HAS TRASH/NOT
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Figure 7: Sample screenshots for noisy data.

as inputs to the C-AOG model.
The action grammar is pre-specified. Actions are manu-

ally segmented, and then poses captured by the Kinect cam-
era are clustered. Temporal parsing transforms the clustered
poses into hierarchically-labeled instances from the T-AOG.
The maximum probability action detections are used as input.

Fluent changes are detected from the video with the Gen-
tleBoost algorithm (Friedman, Hastie, & Tibshirani, 2000) on
features extracted as shown in Figure 7. Non-maximum sup-
pression provides the final detections of fluent changes.

These action and fluent detections (and their probabilities)
are then processed with potential causal explanations under
the C-AOG (by maximizing the posterior probability of Equa-
tion 1). The best-performing consistent causal description
over the course of the video is then returned through the
Viterbi algorithm (Forney Jr, 1973). Hidden fluents are im-
puted from this result.

Results and Discussion
To visualize the results, human, computer, and baseline esti-
mates are reduced to two dimensions using multi-dimensional
scaling (MDS) according to the total variation distance be-
tween estimates, and plotted in Figure 8.

In the hallway dataset, both fluent and action detections
contribute to the causal inference of hidden fluents. The com-
puter performance is very similar to human performance as
shown in Figure 8(a). The baseline is far from the cluster of
computer and human estimates.

The office dataset only contains detections of actions; all
fluents are hidden. The computer’s performance is still an
improvement over the baseline towards human-level perfor-
mance, as shown in Figure 8(b).

Misinformation: Correcting Spatio-Temporal Detections
In the hallway dataset, multiple changes in the light fluent
were detected, yet no causing action was detected, present-
ing a common situation in vision—detections are usually im-
perfect. The C-AOG corrects these errors by balancing the
maintenance of detections with the consistency of causal ex-
planations. Figure 9 shows typical candidates of the results
sorted in order of probability.

The C-AOG result was consistent with human judgments.
Humans selected a single value for the light fluent for the du-
ration of the video, but some selected ON while others chose
OFF. This reinforces the need to have a probabilistic model
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Figure 8: MDS plots of fluent value estimates. Blue dots:
human estimates. Red squares: estimates using the C-AOG.
Green triangles: baseline estimates. See Further Discussion
for notes on the human variability.

capable of maintaining multiple interpretations; the C-AOG
result included both solutions.

Further Discussion

Even though the set of possible fluent values was provided
to participants (significantly narrowing their available judg-
ments), the MDS plots show wide variation in human re-
sponses. This is due to many factors. First, some participants
initialized fluent values differently (e.g., light ON versus OFF
in Figure 5), resulting in a large total variation distance. Also,
some participants were more cautious than others, recording
judgments close to 50/50 where others took an all-or-nothing
approach to assigning judgments.
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Figure 9: Given action and fluent detections that move the light fluent between ON and OFF without a causing action, the
C-AOG prefers this to be explained by incorrect detections of the light fluent. The second most probable class of explanations
is that two of the changes had causing actions that were missed by the detection.

As evidenced by the C-AOG’s weaker performance, the of-
fice dataset was particularly challenging. Action detections
were poor and no fluent detections were available to identify
conflicts, leaving the system heavily dependent on those in-
correct action detections. Despite this disadvantage, the C-
AOG still provided enough reasoning capability to outper-
form the baseline. This example underscores the importance
of good vision-detection systems.

Conclusions and Next Steps
In this paper, we have presented a probabilistic graphical
grammar model to match human perception of causal re-
lationships between actions and fluent changes, the Causal
And-Or Graph (C-AOG).

Experiment 1 showed that the C-AOG of everyday activ-
ities can be learned, matching human perceptions of causal
relationships. These causal relationships are even learnable
amid noise, such as would be present in detection systems.
Further, experiment 1 showed that our method models human
judgments better than causal power and ∆P.

Experiment 2 showed that the C-AOG can be used as a
model of human perception grounded on video to impute val-
ues for hidden fluents. This experiment captures the inherent
variability of human estimations when confronted with video,
and highlights the need for a model that can probabilistically
incorporate causality and vision.

One current limitation of the C-AOG is that, if a situation
is unexplained, all possible parse graphs are assigned a low
probability. In future work, we plan to investigate how adap-
tive learning can be used to incorporate new instances of flu-
ents into the C-AOG.
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