
Learning Near-Optimal Cost-Sensitive Decision Policy for Object Detection

Tianfu Wu and Song-Chun Zhu
Department of Statistics, University of California, Los Angeles

{tfwu, sczhu}@stat.ucla.edu

Abstract
Many object detectors, such as AdaBoost, SVM and de-

formable part-based models (DPM), compute additive scor-
ing functions at a large number of windows scanned over
image pyramid, thus computational efficiency is an impor-
tant consideration beside accuracy performance. In this
paper, we present a framework of learning cost-sensitive
decision policy which is a sequence of two-sided thresh-
olds to execute early rejection or early acceptance based
on the accumulative scores at each step. A decision policy
is said to be optimal if it minimizes an empirical global risk
function that sums over the loss of false negatives (FN) and
false positives (FP), and the cost of computation. While the
risk function is very complex due to high-order connections
among the two-sided thresholds, we find its upper bound
can be optimized by dynamic programming (DP) efficiently
and thus say the learned policy is near-optimal. Given
the loss of FN and FP and the cost in three numbers, our
method can produce a policy on-the-fly for Adaboost, SVM
and DPM. In experiments, we show that our decision policy
outperforms state-of-the-art cascade methods significantly
in terms of speed with similar accuracy performance.

1. Introduction
Many popular object detectors, such as AdaBoost [26],

SVM [25], deformable part-based models (DPM) [8, 24],
are implemented with additive scoring functions. Dur-
ing offline training, those scoring functions are learned by
minimizing some regularized convex surrogate functions of
the 0/1 loss function; and during detection, they are eval-
uated at a vast number of sliding windows in an image
pyramid. Therefore computational efficiency is a crucial
problem in real time applications besides accuracy perfor-
mance, and has been extensively studied in vision, machine
learning, and statistics using a range of methods, includ-
ing cascade [3,20,23,26], branch-and-bound [13,14], cost-
sensitive learning [15,16], and sequential probabilistic ratio
test [23].

In this paper, we present a generic empirical global risk
minimization framework and a DP algorithm for learning
near-optimal cost-sensitive decision policy online. The pol-
icy consists of a sequence of two-sided thresholds to execute

A
c
c
u
.S

c
o
re

1
1
4
6

1
0
0
7

9
0
9

8
1
6

7
2
8

6
4
5

5
6
7

4
9
4

4
2
6

3
6
3

3
0
5

2
5
2

2
0
4

1
6
1

1
2
3

9
0

6
2

3
9

2
18#Feat.:

Stage

The decision policy (C
FP

=0.035714, C
FN

=0.500000, λ=1.00) on training data

Hstgrm of +(#Pos=11020)

Hstgrm of −(#Neg=117493)

Hstgrm of + w. decision policy used

Hstgrm of − w. decision policy used

Rjct. line of decision policy

Acpt. line of decision policy
A

c
c
u
.S

c
o
re

1
1
4
6

1
0
0
7

9
0
9

8
1
6

7
2
8

6
4
5

5
6
7

4
9
4

4
2
6

3
6
3

3
0
5

2
5
2

2
0
4

1
6
1

1
2
3

9
0

6
2

3
9

2
18#Feat.:

Stage

The decision policy (C
FP

=0.000008, C
FN

=0.000047, λ=1.00) on training data

Hstgrm of +(#Pos=11020)

Hstgrm of −(#Neg=117493)

Hstgrm of + w. decision policy used

Hstgrm of − w. decision policy used

Rjct. line of decision policy

Acpt. line of decision policy

Figure 1. Illustration of two decision policies learned for a human
face AdaBoost classifier. The horizontal axis is the 1, 146 boosted
weak classifiers divided in 20 stages, and the vertical axis is the
accumulative scores. At each stage the solid histograms show the
original positive (red) and negative (green) populations in training
dataset, and the dotted histograms show the changed populations
after early decisions by the policy.

early rejection or early acceptance based on the accumula-
tive scores at each stage. By “cost-sensitive”, it means that
the decision policy accounts for two factors explicitly:
• The loss of misclassification: the losses CFN and CFP

for a false negative and a false positive respectively.
• The cost of computation: the expected run-time for

computing the scoring function sequentially in a slid-
ing window, which is controlled by a parameter λ.

The parameters Θ = (CFN, CFP, λ) are either given ac-
cording to different vision tasks or searched to satisfy the
constraints of some given false positive/negative rates (FNR
and FPR). We will elaborate on the conversions between Θ
and FNR and FPR later.

The number of features and the scoring functions are all
learned by the offline training stage as usual. Our policy

1

does not change these settings and is learned “online” with
very flexible design of the configuration of sequential stages
(i.e., the number of stages and the basic terms in each stage).
The policy is adjustable before the online detection starts. In
other words, given a set of parameters Θ = (CFN, CFP, λ),
our algorithm can produce a family of policies on the fly.
Fig. 1 shows two examples of decision policies learned for
the human face AdaBoost classifier based on different pa-
rameter settings: the top one is more cautious, while the
bottom one is more aggressive in early rejection/acceptance.

Overview. Learning decision policy is formulated under
the risk minimization framework with two phases.

(i) Off-line learning: We assume that an additive scoring
function (AdBoost, SVM or DPM) consisting of T basic
additive terms is trained on a dedicated training data set,
and remains fixed. For each training example, positive or
negative, we record the T scores of individual basic addi-
tive terms. We divide the T basic terms into N sequential
stages, and compute N histograms of accumulative scores
(with K bins) on the positive (see the red histograms in
Fig.1) and negative (blue) training datasets respectively. To
summarize the off-line knowledge, we define a K ×N ma-
trix which records the trajectories of all training examples
along stages (the trajectory is represented by the entry in-
dexes of an example along the stages). We compute four
types of statistics (Sec. 4) projected from the trajectories so
that we can count the number of FPs and FNs, and calculate
the computational cost for any decision policy recursively.

(ii) On-line learning: We derive an upper bound of the
risk to address the optimization issue caused by the high-
order connections between the two-sided thresholds. Then,
we propose a DP algorithm to minimize the upper bound
efficiently with Θ = (CFN, CFP, λ) given to produce the
near-optimal decision policy. We empirically show the
tightness of the upper bound. With the DP tables precom-
puted, the optimization is very fast (within several seconds).

The proposed method can address two situations: (i) The
expected positive and negative populations of a detector will
change online in some big vision tasks in which many ob-
ject detectors are involved (e.g., image parsing and under-
standing), and (ii) The parameters Θ will change online in
goal-guided searches or answering user queries. So, a fast
online algorithm is entailed for automatically adapting the
policy to different contexts and goals. This, together with
the proposed global risk function, its tight upper bound and
the DP solution, distinguishes our work from many others
in the literature [3–5, 10, 12, 16, 18, 20, 23].

2. Related work and our contributions
In the literature of object detection, there are three types

of methods addressing rapid object detection:
i) The cascade methods [3,4,7,20,22,26,28] utilize early

rejections but no early acceptance, except for the Wald-
Boost [23] and active classification based on value of classi-

fier [10]. In boosting cascade [26], the rejection thresholds
of each stage are learned independently, and the training
process needs time-consuming trial-and-error tuning. Re-
cently, more principled approaches are proposed on better
or optimal design of AdaBoost cascade [3, 4, 20]. [23] as-
sumes strong independence on the output of the weak learn-
ers to guarantee optimality. This assumption is often vio-
lated in practice. [10] needs to maintain the values of all
the remaining classifiers at each step, which incurs a large
computing cost and is addressed by adopting some heuris-
tics and tuning. Soft cascade [3] needs a sufficiently large
validation set to calibrate the rejection thresholds. In [7], the
cascade is learned for a off-line trained DPM. The rejection
threshold of each stage is selected so that the probability of
a misclassification occurring is bounded from above by a
predefined small positive value.

(ii) The coarse-to-fine methods [1, 2, 9, 21] require top-
down coarse-to-fine partition of the pose space of an object
class, which is often done manually and then used to orga-
nize all the tests into a hierarchy (such as a decision tree).
The tests are selected based on the ratio between statistical
power and computing cost.

(iii) The branch-and-bound method [13, 14]. Instead of
adopting the sliding window technique, algorithms based
on branch-and-bound directly search sub-windows of object
instances through bounding a scoring function from the up-
per and lower for any given sub-window, which only adapts
well for detectors trained using bag-of-word features in [14]
or is used to search the state space of a DPM after all filter
responses are computed in [13].

Our work utilizes sequential hypothesis testing [23, 27]
and is related to the work [17] on sequential image pattern
matching based on Hamming distance, but with two main
differences: (i) The scoring functions studied in this pa-
per are more general than the Hamming distance function
(which is a step-wisely increasing function of the number
of samples tested); and (ii) Instead of introducing a generic
prior distribution which is not straight forward to compute
for the scoring functions considered in this paper, the his-
tograms of accumulative scores on positive and negative
training datasets are exploited to learn a decision policy.

Our contributions. This paper makes three main con-
tributions to rapid object detection:

(i) It presents a cost-sensitive formulation to learn the
decision policy accounting for the loss of misclassification
and the computational cost explicitly, applicable to object
detectors with additive scoring functions.

(ii) It derives an upper bound of the empirical global risk
function and presents a DP algorithm to minimize it effi-
ciently. It shows the upper bound is tight empirically.

(iii) In experiments, it shows the learned policies of Ad-
aBoost, SVM and DPM outperform the state-of-the-art cas-
cade methods significantly in speed with similar accuracy.

3. Problem formulation
3.1. Definition of the decision policy

Denote by f(x) =
∑T
t=1 gt(x) the off-line trained addi-

tive scoring function where gt(x) can be a weighted weak
classifier in AdaBoost, a divided block (a weighted support
vector) in linear (non-linear) SVM, and a root/part filter in
DPM. The order of gt(·)’s is sorted based on the statisti-
cal power/computational cost ratio in off-line stage, similar
to [2, 12]. We divide the sum of T basic additive terms
gt(x)’s into N stages, denoted by Gi(x) (1 ≤ i ≤ N). For
an input sample x, the accumulative score at the i-th stage
is defined by f i(x) =

∑i
j=1Gj(x).

Definition 1 (The decision policy): A N -stage decision
policy of f(x) is defined by,

ΠN = (τ1, · · · , τi, · · · , τN), (1)
where τi represents two-sided thresholds, τi = (τ−i , τ

+
i),

and τ−i < τ+
i for i = 1, · · · , n − 1 and τ−i = τ+

i for
i = n, · · · , N , and n is the number of stages actually used
by a decision policy (see the two examples in Fig.1, n = 20
and n = 9 respectively). n is learned automatically.

In testing, ΠN makes three possible actions at stage i in
terms of accumulative score f i(x):
• Reject x, if f i(x) < τ−i ,
• Accept x, if f i(x) ≥ τ+

i , and
• Continue to compute Gi+1(x), otherwise.
We call (τ−1 , · · · , τ−n) the rejection line (green) and

(τ+
1 , · · · , τ+

n) the acceptance line (yellow) as in Fig. 1.
At each stage, τ−i can take the special value τ−i = −∞
meaning that no rejections should be decided, and similarly
τ+
i = +∞ indicating that no acceptances could be made.

3.2. The risk function of a decision policy
Denote byR(ΠN ; Θ) the global risk function of ΠN ,

R(ΠN ; Θ) = L(ΠN ;CFP, CFN) + λ · C(ΠN), (2)

where L(·) is the expected loss and C(·) the expected com-
putational cost. We will compute the empirical global risk
in training dataset and still useR(·), L(·) and C(·) to denote
the empirical counterparts for simplicity.

Let D = D+ ∪ D− be the training dataset (consisting
of a positive dataset D+ and a negative dataset D−) used
for training f(x) with the cardinalities S+ = |D+|, S− =
|D−| and S = |D| = S+ + S−.

The expected loss L(ΠN ;CFP, CFN) is defined by,

L(ΠN ;CFP, CFN) = EX,Y [1(y=1) · p(FN; ΠN) · CFN
+ 1(y=−1) · p(FP; ΠN) · CFP]

≈ S+

S
· p̂(FN; ΠN) · CFN +

S−

S
· p̂(FP; ΠN) · CFP, (3)

where 1(·) is the indicator function, p(FN; ΠN) and
p(FP; ΠN) are the probabilities of a FN and a FP occurring

according to ΠN respectively. p̂(·; ΠN) are the correspond-
ing empirical probabilities,

p̂(FN; ΠN) = p̂(ΠN rejects x|x ∈ D+) = #FN by ΠN/S
+,

p̂(FP; ΠN) = p̂(ΠN accepts x|x ∈ D−) = #FP by ΠN/S
−.

These two empirical probabilities are calculated by exploit-
ing the trajectories of training examples in Sec. 4.

The expected cost of computation C(ΠN). Denote by
c(Gi) the computational cost of an individual stage i (which
is fixed after f(x) is trained offline). Then, we have the
normalized accumulative computational cost of the first i
stages as Ci = 1

c(f)

∑i
j=1 c(Gj) where c(f) is the total

cost of the whole scoring function, and thus 0 < Ci < 1
(i < N) and CN = 1.

For a given sample x, let n(x) be the number of stages
tested before a decision is made by ΠN (i.e., its label is as-
signed), and its computational cost is Cn(x). So, C(ΠN) =
Ex[Cn(x)] is estimated by,

C(ΠN) ≈ 1

S

∑
x∈D

Cn(x) =

N∑
i=1

p̂(i; ΠN) ·Ci (4)

where p̂(i; ΠN) is the empirical probability of making an
early decision at stage i (to be calculated in Sec. 4),

p̂(i; ΠN) = p̂(ΠN classifies x at stage i|x ∈ D) = #Si/S,

where #Si is the number of examples in D which are clas-
sified at stage i by ΠN .

By substituting the three empirical probabilities into the
global risk function in Eqn. (2), we obtain its intuitive form,

R(ΠN ; Θ) =
1

S
[#FN · CFN + #FP · CFP + λ ·

N∑
i=1

Ci ·#Si]

=
1

S

N∑
i=1

[#FNi · CFN + #FPi · CFP + λ ·Ci ·#Si] (5)

where #FNi and #FPi are the number of FNs and FPs at
stage i made by τ−i and τ+

i in ΠN respectively.
The optimal decision policy. Given parameters Θ =

(CFP, CFN, λ), the optimal decision policy Π∗N (Θ) is
sought by minimizing the empirical global risk in Eqn. (5),

Π∗N (Θ) = arg min
ΠN

R(ΠN ; Θ) (6)

In object detection, it is more convenient to specify
reachable bounds on FPR (denoted by α) and FNR (de-
noted by β) based on the ROC curve of f(x), rather than
(CFP, CFN). We show that solving Eqn. (6) is equivalent
to minimizing C(ΠN) subject to some given reachable ac-
curacy bounds (α, β). Then, we have the constrained opti-
mization problem,

Π∗N = arg min
ΠN

C(ΠN),

subject to p̂(FP; ΠN) ≤ α and p̂(FN; ΠN) ≤ β. (7)

       

Sequential chain High-order

   

 

   

= + + +

Figure 2. Graph interpretation of minimizing the empirical risk.
The two-sided thresholds at a stage i generate the three numbers
(#FNi, #FPi, #Si). All the thresholds are fully dependent in the
sense that the positive and negative sub-populations observed at a
stage i are affected by the thresholds at all previous stages.

Lemma 1. The solution Π∗N of Eqn. (6) is also the so-
lution to the constrained optimization problem in Eqn. (7)
with α = p̂(FP; Π∗N) and β = p̂(FN; Π∗N).

Proof. See the proof in the supplementary material.

The equivalence can map one specification to another.
Proposition 1. Given (α, β), the corresponding

(CFP, CFN) are sought by binary search in the range
[0, CmaxFP] and [0, CmaxFN] where,

CmaxFP =
λ · S
α · S−

and CmaxFN =
λ · S
β · S+

. (8)

Proof. See the proof in the supplementary material.

In learning, when Θ = (CFP, CFN, λ) is given, a fast DP
algorithm is utilized to find Π∗(Θ) (in Sec. 5).

3.3. High-order connections between {τi}’s in ΠN

Before presenting the method of minimizing the risk in
Eqn. (6), we show that all two-sided thresholds τi’s in ΠN

are fully dependent.
In Fig.2, we consider τi at stage i. Based on Eqn. (5), we

need to calculate the three quantities (#FNi,#FPi,#Si).
To do that, we first need to know the positive and negative
sub-populations (illustrated by the two histograms in Fig.2),
which are affected by all the previous stages j (j < i) as
early thresholds τj’s change the populations through their
decisions. Thus, τi is affected by all previous τj’s. By tran-
sition, τi affects the assignments of all the subsequent stages
τj (j > i), so all {τi}’s are fully dependent.

This underlying fully-dependent graph structure makes
the problem of minimizing the risk in Eqn. (6) very hard in
general. To address this issue, we proceed in two steps.

i) Offline learning. We first derive recursive formula for
counting (#FNi, #FPi, #Si) along the stages. By using the
derived recursions, the empirical risk in Eqn. (5) is divided
into two parts: one is the sum of risks caused by individ-
ual stages (i.e., measured independently), and the other ac-
counts for all the double-counting occurred by removing the

A
c
c
u
.S

c
o
re

1
1
4
6

1
0
0
7

9
0
9

8
1
6

7
2
8

6
4
5

5
6
7

4
9
4

4
2
6

3
6
3

3
0
5

2
5
2

2
0
4

1
6
1

1
2
3

9
0

6
2

3
9

2
18#Feat.:

Stage

The Trajectories of Training Examples in the K N Data Matrix

10 traj. of randomly selected + examples

10 traj. of randomly selected - examples

Figure 3. The K ×N matrix created for recording the trajectories
of positive (red dashed lines) and negative (blue ones) training ex-
amples (created for the human face AdaBoost classifier in Fig.1).

sub-populations that have been decided in previous stages.
The details are presented in Sec. 4.

ii) Online learning. By relaxing the fully-dependent
graph structure, i.e., removing all the high-order connec-
tions in Fig. 2 and only keeping the sequential chain connec-
tions, we derive an upper bound for the empirical risk which
is then minimized by a DP algorithm efficiently. It is an
upper bound because certain populations could be counted
more than once in the empirical risk. We also show the
tightness of the upper bound empirically (see Fig. 5).

We discuss the offline learning and the online learning in
Sec. 4 and Sec. 5 respectively.

4. Offline learning: computing the risk
We first compute two histograms of the accumulative

scores f i(x) at each stage i on D+ and D− respectively.
At stage i, the set of accumulative scores is denoted by
A(i) = {f i(x); ∀x ∈ D}. We discretize A(i) into K
bins (e.g., K = 102 used in all of our experiments) and
let bin(x, i) be the bin index of example x at stage i.
Then, we create the K × N matrix to record the trajecto-
ries of all training examples. The trajectory of a sample
x along stages (columns) in the matrix is characterized by,
{bin(x, 1), · · · , bin(x,N)}. Fig.3 shows 10 examples of
+/- sample trajectories.

Statistical observation. The trajectories of examples
over the sequence of accumulative scores remain relatively
steady, as illustrated in Fig.3. This is true for different addi-
tive scoring functions studied in this paper. In other words,
if τi−1 classified x based on f i−1(x), its scores f i(x) in the
next steps unlikely jump inside [τ−i , τ

+
i), thus the policy

will not regret its decisions.
Based on all the trajectories summarized in the K × N

matrix, we further compute four types of statistics (see
Fig.4) which lead to the recursions of counting (#FNi, #FPi,
#Si) in the empirical global risk in Eqn. 5.

Notational Usages. In all the following definitions, if
the only difference is whether x ∈ D+, D− or D, we then
only write definitions for D+ explicitly for clarity. And, we
use “S” in notations denoting the size of a corresponding
set. Furthermore, we use the notation of a threshold itself

(such as τ+
i or τ−i) in the decision policy to denote its bin

index in theK×N matrix without confusion. We use Fig.4
to illustrate our notations.

i) Single-entry based statistics. Denote by ki an en-
try (row k, column i) in the K × N matrix. At each
stage/column i, the training dataset (D = D+ ∪D−) is dis-
tributed into different rows. We denote the sub-population
of positive examples falling into bin k at stage i by,

D+(ki) = {x : bin(x, i) = k, x ∈ D+}, (9)

and its cardinality by S+(ki) = |D+(ki)| (e.g., D+(51) in
Fig.4 (a)). Note that here two entries in different columns
may have the same positive example x based on the defi-
nition above. This leads to the double-counting which we
have to take into account in the following definitions.

ii) Column-based statistics. Denote by ki all the entries
below row k (exclusive) at column i, and kn all the entries
above row k (inclusive),

D+(ki) = ∪k−1
r=1D

+(ri) andD+(ki) = ∪K
r=kD

+(ri). (10)

For examples, see D+(75) and D+(65) in Fig.4 (b) and (c).
iii) Rejection line and acceptance line based statistics.

By definition, we can write ΠN = (Πi, τi+1, · · · , τN). De-
note the entries below the rejection line of Πi (front part in
ΠN) by,

Πi = (τ−1 , · · · , τ
−
i), (11)

and the entries above the acceptance line by,

Πi = (τ+
1 , · · · , τ

+
i). (12)

For examples, D+(Π3) and D+(Π3) in Fig.4 (d) and (e)
are the sub-populations of positives accepted and rejected
by Π3 respectively.

Then, we can count FNs and FPs generated by Πi.
Definition 2: False negatives created by Πi is defined

by,
D+(Πi) = {x; Πi rejects x, x ∈ D+}. (13)

Similarly, true positives (TP) by Πi is defined by
D+(Πi), and the sub-population of positives classified by
Πi is then defined by,

D+(Πi) = D+(Πi) ∪D+(Πi). (14)

Definition 3: False positives created by Πi is defined
by,

D−(Πi) = {x; Πi accepts x, x ∈ D−}. (15)
When computing the number of FNs (i.e., S+(Πi)) and

FPs (i.e., S−(Πi)) by different Πi’s, instead of counting
them in a brute-force way, we compute them efficiently in
a recursive manner. So we need to compute the sample
transition between different sub-populations, for example,
D+(Πi−1) and D+(τi), to count the double-countings.

iv) Transition based statistics. By considering sample
transition from one sub-population as is defined above to
another, we can count the double-counting of examples be-
tween them. Specifically, we define the two as follows.

1 2 3 4 5 6 7

1
2

3
4

5
6

7
8

9
10

 

 

 

 

=

=

Figure 4. Illustrating the notations of the four types of statistics
projected from trajectories of all training examples (only D+ is
used for clarity). Note that notations like 65 and 75 are used for
this specific illustration.

Definition 4: False negatives double-counted at τi
w.r.t. Πi−1 is the sub-population in D+ that has been clas-
sified by Πi−1 already, and is rejected again by τ−i ,

D+(τ−i ; Πi−1) = D+(τ−i) ∩D+(Πi−1). (16)

This set of examples will be counted more than once if we
compute the empirical risk as the sum of risks caused by
individual stages.

Definition 5: False positives double-counted at τi
w.r.t. Πi−1 is the sub-population in D− that has been clas-
sified by Πi−1 already, and is accepted again by τ+

i ,

D−(τ+
i ; Πi−1) = D−(τ+

i) ∩D−(Πi−1).

Recursions. By using Πi = (Πi−1, τi), we can re-write
D+(Πi) and D−(Πi) in a recursive manner as,
D+(Πi) = D+(Πi−1) ∪ (D+(τ−i) \D+(τ−i ; Πi−1)),

D−(Πi) = D−(Πi−1) ∪ (D−(τ+
i) \D−(τ+

i ; Πi−1)),

where ‘· \ ·’ represents the set minus operator.
So, the number of FNs by Πi is recursively defined by,
S+(Πi) = S+(Πi−1) + [S+(τ−i)− S+(τ−i ; Πi−1)]

=

i∑
j=1

[S+(τ−j)− S+(τ−j ; Πj−1)] ,
i∑

j=1

#FNj (17)

and the number of FPs by Πi is calculated by,
S−(Πi) = S−(Πi−1) + [S−(τ+

i)− S−(τ+
i ; Πi−1)]

=

i∑
j=1

[S−(τ+
j)− S−(τ+

j ; Πj−1)] ,
i∑

j=1

#FPj (18)

The number of examples in D which are classified at
stage i by Πi is defined by,

S(τi) , #Si = |D(τ−i) ∪D(τ+
i)| (19)

= [S(τ−i)− S(τ−i ; Πi−1)] + [S(τ+
i)− S(τ+

i ; Πi−1)].

All the statistics are computed once at the offline stage,
and can be used to compute the decision policy online for
any given Θ = (CFP, CFN, λ).

CFN CFP

Loss Loss UpperBound Cost Cost UpperBound

Figure 5. This figure shows the tightness of the upper bound (Eqn. (23)) for loss and computing cost empirically.

5. Online learning: minimizing the risk
By substituting Eqn. (17), Eqn. (18) and Eqn. (19) into

Eqn. (5), it is divided into two parts: (i) the sum of risks
caused by the assignment of an individual τi,

R(τi; Θ) =
1

S
·[λ ·Ci · (S(τ−i) + S(τ+

i))

+ S+(τ−i) · CFN + S−(τ+
i) · CFP], (20)

and (ii) the sum of risks caused by examples which are
double-counted at stage i w.r.t Πi−1,

R(τi,Πi−1; Θ) =
1

S
[λ ·Ci · (S(τ−i ; Πi−1) + S(τ+

i ; Πi−1))

+ S+(τ−i ; Πi−1) · CFN + S−(τ+
i ; Πi−1) · CFP]. (21)

So, the empirical risk in Eqn. (5) is re-produced as,

R(ΠN ; Θ) =

N∑
i=1

[R(τi; Θ)− R(τi,Πi−1; Θ)]. (22)

The high-order connections between τi’s in Eqn. (21)
make the problem of minimizing the risk very hard in gen-
eral. Next, we derive an upper bound.

5.1. The upper bound of the risk
From Eqn. (22), we know that we can obtain an up-

per bound of the risk by deriving a lower bound for
R(τi,Πi−1; Θ) (due to the minus operator). We remove
those high-order connections (gray arrows in Fig. 2), and
only consider the sequential chain connections (black ar-
rows) to obtain the lower bound of R(τi,Πi−1; Θ).

Proposition 2 (The upper bound of risk): By substitut-
ing R(τi,Πi−1; Θ) with its lower bound R(τi, τi−1; Θ), we
obtain an upper bound ofR(ΠN ; Θ),

R̂(ΠN ; Θ) =

N∑
i=1

R(τi; Θ)−
N∑
i=2

R(τi, τi−1; Θ), (23)

where R(τi, τi−1; Θ) is the lower bound of R(τi,Πi−1; Θ),

R(τi,τi−1; Θ) =
1

S
· {λ ·Ci · [(S(τ−i ; τ−i−1) + S(τ−i ; τ+

i−1)

+ S(τ+
i ; τ−i−1) + S(τ+

i ; τ+
i−1))]

+ [S−(τ+
i ; τ−i−1) + S−(τ+

i ; τ+
i−1)] · CFP

+ [S+(τ−i ; τ−i−1) + S+(τ−i ; τ+
i−1)] · CFN }. (24)

Proof. Details of proof are given in the supplementary ma-
terial. The intuitive idea is that R(τi, τi−1; Θ) consider the
risk caused by examples double-counted at τi w.r.t. the pre-
vious stage i−1 only, while R(τi,Πi−1; Θ) is calculated by
taking into account all the first i− 1 previous stages.

In Fig.5, we show tightness of the upper bound empiri-
cally on the human face AdaBoost classifier which is con-
sistent across different settings of the loss of misclassifica-
tion (we set CFP ∈ [0.1, S/S−] and CFN ∈ [0.1, S/S+]
and equally sample 100 points for both). We observe the
similar tightness for other types of scoring functions. The
tightness is due to the statistical observation in Fig.3.

5.2. The DP algorithm
The upper bound R̂(ΠN ; Θ) can be minimized by a DP

algorithm efficiently. Let Bi[τi] be the risk of the best as-
signment to the i first stages with the i-th one is τi. Starting
from B1[τ1] = R(τ1; Θ), we have for i = 2, · · · , N ,

Bi[τi] = R(τi; Θ) + min
τi−1

(Bi−1[τi−1]− R(τi, τi−1; Θ)).

Then, the DP algorithm consists of two steps:
(i) The forward step for computing all Bi[τi]’s, and

caching the optimal solution for τi−1 as a function of τi
for later back-tracing starting at i = 2,

Ti[τi] = arg min
τi−1

(Bi−1[τi−1]− R(τi−1, τi; Θ)).

(ii) The backward step for finding the near-optimal deci-
sion policy Π∗N = (τ∗1 , · · · , τ∗N), where we first take, τ∗N =
arg minτN BN [τN] and then trace back τ∗i = Ti+1[τ∗i+1] in
the order of decreasing i = N − 1, · · · , 1.

To run the DP algorithm more efficiently for different
Θ, we create six DP tables for computing Bi[τi] quickly
(details will be given in the supplementary material).

6. Experiments
In the experiments, we learn decision policies for Ad-

aBoost, SVM and DPM, and compare with their corre-
sponding popular cascade methods [3, 7, 26].

Settings: In all the comparison experiments, we learned
the decision policies by specifying (α, β), and the corre-
sponding (CFP, CFN) are searched. From Eqn.8, we know

that only the ratios
CFP
λ and

CFN
λ matter, so we set λ = 1.0.

Furthermore, we show the normalized values of searched
CFP and CFN by S in all the figures and tables.

Classification Detection
Method #Feat #Stages CFP CFN FPR FNR CostPerEx AP CostPerWin
AdaBoost 1146 1 / / 0.0017972 0.3030 1146 0.815 1146
AdaBoost Csc [26] 2497 20 / / 0.0046214 0.3284 297.84 0.807 37.279
AdaBoost SoftCsc [3] 2135 20 / / 0.0029214 0.3369 227.84 0.805 36.109
AdaBoost Policy 1146 20 0.0357 0.5000 0.0018094 0.3078 162.72 0.809 27.459

Table 1. Comparison between the cascade and our decision policy (Π) on human face AdaBoost classifier. Our decision policy outperforms
the cascade methods in speed sigificantly on both the classification testing dataset and the CMU+MIT detection benchmark with similar
accuracy performance. The computational efficiency is measured by average #Feat tested per example for classification, and average
#Feat tested per sliding window for detection. The accuracy performance is measured by FPR and FNR for classification and Average
Precision (AP) for detection. For example, in detection, the two cascade methods and our decision policy obtain similar APs, 0.807, 0.805
and 0.809 respectively, but our decision policy saves about 10 haar feature evaluations per sliding window on average.

6.1. Decision Policy for AdaBoost Classifier
In this experiment, we learn the decision policy for the

AdaBoost classifier trained for human face detection. We
compare with the original “hard” cascade method [26] and
the soft cascade method [3] which are the two of the most
popular cascade methods for face detection.

The training and testing data. The training dataset
consist of 11020 positive human face images (with the size
being 20× 20 pixels) and 15366 background images which
do not contain human faces. The background images are not
cropped image patch but the whole images having different
sizes. The testing set for classification includes 7092 human
face images and 81794 negative image patches randomly
collected from the background images consisting of animal
faces, building, wall, grass and tree clutters. In addition, we
use the CMU+MIT human face detection benchmark [19]
for evaluating the detection performance, which consists of
130 testing images where 511 human faces appear.

Features, weak classifiers and the computational
costs. We use the same 4 types of Haar features used in [26],
and adopt the decision stump as the weak classifier. In the
experiments, we use the integral image to compute the Haar
features as don in [26]. So, the computational cost for each
weak classifier is the same and the computational cost for
each stage is proportional to the number of weak classifiers
included in that stage.

Training the cascade of AdaBoost classifiers. We train
the cascade consisting of 20 stages for both the “hard” and
soft cascade using the publicly available OpenCV package.
The trained “hard” cascade consists of 2497 boosted weak
classifiers in total and the soft cascade consists of 2135
boosted weak classifiers (note that the soft cascade needs
an additional validation dataset to tune the thresholds, and
we use 5000 positives and 40,000 negative examples).

The learned decision policy. We first train a single
strong AdaBoost classifier with 1146 boosted weak classi-
fiers. To learn the decision policy, we first divide the 1146
boosted weak classifier into 20 subsets (as is shown in the
bottom of Fig. 1). Note that the configuration of the deci-
sion policy is not particularly chosen, but can be very flexi-
ble for different situations (which can not be easily specified

in training the cascade).
We summarize the results in Table. 1. Overall, the deci-

sion policy outperforms the two cascade methods in speed
with similar accuracy performance.
6.2. Decision policies for SVM classifiers and DPMs

We learn decision policies for linear SVM classifier
and DPM trained on INRIA person dataset [6]. We
compare with the probably approximate admissible (PAA)
threshold [7], which is used in the cascade of DPM
and selects the rejection thresholds based on τ−i =
min{x;f(x)≥t1,x∈D+} f

i(x), where t1 is predefined to focus
on high-scoring positive examples.

SVM classifier. We train the linear SVM classifier us-
ing the modified 32-dimensional HOG features [8] with the
template size being 15 × 5 cells (each cell is of 8 × 8 pix-
els) using the publicly available code [11], and we have
15 × 5 × 32 weight parameters and 1 bias term in the
SVM classifier. Similar to [7], we also specify a simpli-
fied classifier by projecting the trained SVM classifier into
the top 5 principal components pooled from the thole train-
ing dataset, resulting in 15 × 5 × 5 weight parameters. So,
we have 150 cells in total which are reordered based on the
statistical power/computational cost ratio [2], and then orga-
nized into 20 subsets with the size of the first 19 stages be-
ing 7 cells and the last stage being 17 cells. Computational
cost setting. For simplicity, we treat the computing cost of
a cell in the simplified classifier and that of the trained one
being equal (due to the projection overhead needed in the
simplified classifier). So, the computational cost of a stage
is proportional to the number of cells.

DPM. We learned DPM on INRIA person using the pub-
licly released code in [11]. The root is of 15 × 5 cells and
the 8 parts are of the same size 6× 6 cells which are placed
at the twice resolution w.r.t the root. Unlike the order used
in [7], we order the root, the parts as well their deforma-
tions based on the the statistical power/computational cost
ratio [2]. So we have 1 + 8 × 2 = 17 steps. Together with
the simplified PCA filters as done in [7], we have 34 stages
and 726 cells in total.

The results are summarized in Table. 2. Our decision
policy outperforms the PAA method in speed in both clas-

Classification Detection
Method #Cell #Stages CFP CFN FPR FNR CostPerEx AP Avg.Cost
SVM 150 1 / / 0.0185 0.0052 150 0.80 150
SVM PAA 150 20 / / 0.0134 0.0190 100.7 0.79 75.8
SVM policy Π 150 20 0.00031 0.01852 0.0180 0.0069 29.9 0.788 31.3
DPM [8] 726 1 / / 0.0074 0.0091 726 0.887 726
DPM PAA [7] 726 34 / / 0.0096 0.0072 230.84 0.885 183.36
DPM Policy Π 726 34 0.000874 0.071429 0.0076 0.0071 105.39 0.879 95.13

Table 2. Comparison between PAA [7] and our policy Π of the SVM classifier and DPM [8] trained and tested on INRIA person dataset [6].

sification and detection with similar accuracy performance.
Our policy can speed up due to (i) we reorder the cells/filters
in terms of the ratio between the statistical power and the
computational cost, while the PAA method only take into
account the variance of the positive scores (as done in the
latest release code [11]); and (ii) our DP algorithm chooses
all the thresholds jointly to minimize the empirical global
risk with computational cost taken into account explicitly,
while the PAA selects the rejection thresholds based on the
high-scored positive sub-population.

7. Conclusion
This paper presents a framework of learning cost-

sensitive decision policy for popular object detectors with
additive scoring functions (such as AdaBoost, SVM and
DPM). The decision policy explicitly accounts for the loss
of misclassification and the cost of computation. The learn-
ing is formulated under the risk minimization framework
and the upper bound of the risk function is solved by an
efficient DP algorithm. By comparing with the state-of-art
cascade methods, our decision policy outperforms them in
speed significantly with similar accuracy in experiments.
Acknowledgments: This work is supported by DARPA
MSEE grant FA 8650-11-1-7149, MURI grant ONR
N00014-10-1-0933, and NSF IIS1018751.

References
[1] Y. Amit, D. Geman, and X. D. Fan. A coarse-to-fine strategy

for multiclass shape detection. PAMI, 26(12):1606–1621,
2004.

[2] G. Blanchard and D. Geman. Hierarchical testing designs for
pattern recognition. Ann. Statist., 33(3):1155–1202, 2005.

[3] L. D. Bourdev and J. Brandt. Robust object detection via soft
cascade. In CVPR, 2005.

[4] S. C. Brubaker, J. Wu, J. Sun, M. D. Mullin, and J. M. Rehg.
On the design of cascades of boosted ensembles for face de-
tection. IJCV, 77(1-3):65–86, 2008.

[5] M. Chen, Z. E. Xu, K. Q. Weinberger, O. Chapelle, and
D. Kedem. Classifier cascade for minimizing feature eval-
uation cost. JMLR - Proceedings Track, 22:218–226, 2012.

[6] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005.

[7] P. Felzenszwalb, R. Girshick, and D. McAllester. Cascade
object detection with deformable part models. In CVPR,
2010.

[8] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part
based models. PAMI, 32(9):1627 – 1645, 2010.

[9] S. Gangaputra and D. Geman. A design principle for coarse-
to-fine classification. In CVPR, 2006.

[10] T. Gao and D. Koller. Active classification based on value of
classifier. In NIPS, 2011.

[11] R. Girshick, P. Felzenszwalb, and D. McAllester. Discrimi-
natively trained deformable part models, release 5, 2012.

[12] A. Grubb and J. A. D. Bagnell. Speedboost: Anytime pre-
diction with uniform near-optimality. In AISTATS, 2012.

[13] I. Kokkinos. Rapid deformable object detection using dual-
tree branch-and-bound. In NIPS, 2011.

[14] C. Lampert, M. Blaschko, and T. Hofmann. Efficient sub-
window search: A branch and bound framework for object
localization. PAMI, 31(12):2129–2142, 2009.

[15] H. Masnadi-Shirazi and N. Vasconcelos. Risk minimization,
probability elicitation, and cost-sensitive svms. In ICML,
2010.

[16] H. Masnadi-Shirazi and N. Vasconcelos. Cost-sensitive
boosting. PAMI, 33(2):294–309, 2011.

[17] O. Pele and M. Werman. Robust real-time pattern match-
ing using bayesian sequential hypothesis testing. PAMI,
30(8):1427–1443, 2008.

[18] B. Póczos, Y. Abbasi-Yadkori, C. Szepesvári, R. Greiner, and
N. Sturtevant. Learning when to stop thinking and do some-
thing! In ICML, 2009.

[19] H. Rowley, S. Baluja, and T. Kanade. Neural network-based
face detection. PAMI, 20(1):23–38, 1998.

[20] M. Saberian and N. Vasconcelos. Learning optimal embed-
ded cascades. PAMI, 34(10):2005–2018, 2012.

[21] H. Sahbi and D. Geman. A hierarchy of support vector ma-
chines for pattern detection. JMLR, 7:2087–2123, 2006.

[22] H. Schneiderman. Feature-centric evaluation for efficient
cascaded object detection. In CVPR, 2004.

[23] J. Sochman and J. Matas. Waldboost - learning for time con-
strained sequential detection. In CVPR, 2005.

[24] X. Song, T. Wu, Y. Jia, and S.-C. Zhu. Discriminatively
trained and-or tree models for object detection. In CVPR,
2013.

[25] V. Vapnik. Statistical learning theory. Wiley, 1998.
[26] P. Viola and M. Jones. Robust real-time face detection. IJCV,

57(2):137–154, 2004.
[27] A. Wald. Sequential Analysis. Wiley, New York, 1947.
[28] R. Xiao, H. Zhu, H. Sun, and X. Tang. Dynamic cascades

for face detection. In ICCV, 2007.

