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Abstract

We present a part-based approach to the problem of hu-
man attribute recognition from a single image of a human
body. To recognize the attributes of human from the body
parts, it is important to reliably detect the parts. This is
a challenging task due to the geometric variation such as
articulation and view-point changes as well as the appear-
ance variation of the parts arisen from versatile clothing
types. The prior works have primarily focused on handling
geometric variation by relying on pre-trained part detectors
or pose estimators, which require manual part annotation,
but the appearance variation has been relatively neglected
in these works. This paper explores the importance of the
appearance variation, which is directly related to the main
task, attribute recognition. To this end, we propose to learn
a rich appearance part dictionary of human with signifi-
cantly less supervision by decomposing image lattice into
overlapping windows at multi-scales and iteratively refin-
ing local appearance templates. We also present quantita-
tive results in which our proposed method outperforms the
existing approaches.

1. Introduction

We present a part-based approach to the problem of hu-
man attribute recognition from a single image of a human
body. Human attributes, enriched textual descriptions of
people such as gender, hair style, clothing types, provide
fine-grained semantics. This is a practically important prob-
lem which can lead to many applications such as surveil-
lance [19] or image-to-text generation [22].

Since many attributes can be inferred from various body
parts (e.g., ‘legs’→ ‘jeans’), it is important to reliably de-
tect the parts for accurate attribute recognition. This, de-
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Figure 1. Part learning methods in Poselet-based approach [3] and
our method. (left) Each poselet is learned from the examples of
similar geometric configurations of keypoints (red marks). (right)
We learn our parts based on appearance to preserve attribute-
specific information.

tection itself, is a challenging task, as noted in [2], due
to the geometric variation such as articulation and view-
point changes as well as the appearance variation of the
parts arisen from versatile clothing types. The existing ap-
proaches [2, 5] have mainly focused on resolving the first
issue - geometric variation of parts - by adopting pre-trained
part detector or pose estimator.

However, there are a few limitations in these approaches.
First, appearance variation of parts (hat vs. non-hat) is not
taken into account in part learning or detection. The visual
part dictionary or part appearance model of pose estima-
tion is usually obtained by geometric constraints and not in-
formative for attribute classification. In other words, these
are generic part templates that do not have to distinguish
different types of appearance in their learning objectives.
Apparently, this is not the case for the problem of attribute
recognition because it is the appearance type of body parts
that one has to answer. Although prior works also attempt
to recognize the appearance type after detecting the parts,
such approaches might suffer from noisy detections since



pose estimation is a still unsolved problem. In addition, it
is required to collect keypoint annotation on body parts to
train the pose estimators.

This paper explores the other dimension of variation of
human parts: the appearance variation. The major source
to appearance variation of human parts is a variety of cloth-
ings and these different types of clothes or accessories often
yield more significant changes in the actual images than ar-
ticulation or viewpoint changes (see the examples of ‘skirt’
in Fig. 1). Therefore, it is important to address such vari-
ation properly for reliable part detection by learning a rich
appearance part dictionary. A rich appearance dictionary
means that the dictionary is fluent enough to account for
many different appearance part types. To explain appear-
ance type also means to answer given questions in our ul-
timate task, attribute recognition. We empirically demon-
strate the importance of such dictionary for the task of at-
tribute recognition on two publicly available datasets [2, 15]
where our method, without using numerous keypoint anno-
tation, outperforms the prior works.

2. Related Works
Human Attribute Recognition from Body Cues. Due

to its practical importance, fine-grained human attribute
recognition has been studied intensively in the literature.
Earlier works used the facial images for classification of
gender [9], age group [13], ethnicity [10], and so on, since
the face is the most informative part for these attributes. Ku-
mar et al., [12] recently proposed a framework for face veri-
fication aggregating a much broader set of general facial at-
tributes. Since frontal face is visually distinct from the other
human parts or other objects (i.e., background), detection is
relatively reliable. On the other hand, the other body parts
such as arms, legs can be also informative for certain types
of attributes. Cao et al. [4] has shown that the evidences
to determine gender can be collected from the whole body
and a more general set of attributes (gender, hair style, and
clothing types) has been also considered in recent works
[2, 5, 15].

In contrast to the face, it is difficult to extract information
reliably from the whole body due to huge variation of parts
in geometry and appearance. The prior works on attribute
recognition can be categorized into two sets by their strate-
gies to handle pose variation. (i) The first class of methods
ignore latent pose and use fixed templates [4, 15]. This may
not be robust against articulation or viewpoint change which
is frequent in real-world examples. (ii) The other methods
model the pose with geometric latent variable and rely on
pre-trained pose estimator or part detectors to infer it [2, 5].
For example, Bourdev et al. [2] proposed a framework for
human attribute classification using pre-trained part detec-
tors, ‘Poselets’ [3]. Chen et al. [5] introduced a model based
on conditional random field to exploit correlation between

attributes explicitly, using the pose estimation of [21].
In the second group of approaches, part detection or pose

estimation functions as a pre-processing stage and attribute
recognition is performed subsequently. Despite the impor-
tance of part localization in the task, there are a few limi-
tations on this strategy. (i) It is a still challenging problem
in computer vision to estimate pose, thus it may be risky to
rely on potentially noisy output. (ii) The appearance varia-
tion of parts (e.g. hat vs non-hat) is not taken into account
in part learning nor detection. The learned dictionary usu-
ally contains generic parts mainly constrained in geometry
and such parts do not convey attribute-specific information.
(iii) Finally, it is expensive to collect keypoint annotation of
body parts, which is required to train pose estimators or part
detectors.

Weakly-Supervised Part Learning. In this paper, we
learn the dictionary of discriminative parts for the task of
attribute recognition directly from training images. Our
method can be viewed as a weakly-supervised method since
we do not require manual annotation of parts used in fully-
supervised methods. Fig. 1 illustrates the main difference
between our approach and Poselet [3] in part learning. We
learn each part by clustering image patches on their appear-
ance (low-level image features) while the poselet approach
[3] learns a part from the image patches of similar geo-
metric configurations of keypoints. Intuitively, our parts
are more diverse in appearance space and the Poselets are
strictly constrained in geometry space. 1

The recent researches in weakly-supervised part learning
suggest two important criteria. First, part learning can be
directly guided by overall learning objective of given task
(i.e., classification gain) [17, 7]. In particular, Sharma et
al. propose the expanded parts model [16] to automatically
mine disciriminative parts for human attribute and action
recognition, which is similar in spirit to our paper but dif-
fers in that we learn one part dictionary shared by all at-
tribute categories while [16] learns a separate dictionary for
each attribute. Second, it is important to use flexible geo-
metric partitioning to incorporate a variety of region primi-
tives [11, 20, 18, 1] rather than a pre-defined and restrictive
decomposition which may not capture all necessary parts
well. Therefore, we decompose the image lattice into many
overlapping image subregions at multi-scales and discover
useful part candidates after pruning sub-optimal parts with
respect to the attribute recognition performance.

3. Part Learning
Now we explain the details of our approach. In general,

there are two considerations to be made in part learning, a

1More precisely, the poselet approach, after the initial learning stage,
filters examples whose appearance is not consistent with the learned detec-
tor. This makes each Poselet also tight in the appearance space. However,
they are still not diverse.
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Figure 2. Two region decomposition methods based on the image
grid: (left) spatial pyramid [14] and (right) our multiscale overlap-
ping windows. The spatial pyramid subdivides the image region
into four quadrants recursively, while we use all rectangular sub-
regions on the grid, which is similar to [20, 18].

geometric and an appearance basis. We first need to spec-
ify what kinds of region primitives are allowed to decom-
pose the whole image region into subregions at the part level
(Sec. 3.1). Then, we discuss how to learn appearance mod-
els to explain the local appearance of each part (Sec. 3.2).

3.1. Geometric Configuration

Given no prior knowledge on human body ontology, our
objective is to define a geometric basis (i.e., region decom-
position) which is expressive enough to capture the parts
of arbitrary shapes, but is still of manageable complexity.
While there exist simpler methods such as spatial pyra-
mid [14] or uniform partitioning where all subregions are
squares, it is difficult to represent many body parts such as
arms and legs in squares, and moreover, we do not know
what would be sufficient. Therefore, we examine many pos-
sible subregions from which we can learn many part candi-
dates, some of which will be pruned in later stages. We
only use rectangular subregions to limit the complexity, but
allow them to be of arbitrary aspect ratios and sizes.

Specifically, our method starts by dividing the image lat-
tice into a number of overlapping subregions. In this paper,
we refer to each subregion as a window. We define a grid
of size W × H 2, and any rectangle on the grid containing
one or more number of cells of the grid forms a window.
Fig. 2. illustrates our region decomposition method in com-
parison with the spatial pyramid matching structure (SPM)
[14]. Both methods are based on the spatial grid on images.
The SPM recursively divides the region into four quadrants
and thus, all subregions are squares that do not overlap with
each other at the same level. In contrast, we allow more
flexibility in shape, size, and location of part window. An-
other important difference between our approach and SPM
is that we treat each window as a template by a set of de-
tectors that can be deformed locally, whereas each region in
SPM is used for spatial pooling.

2We use W = 6, H = 9 and let the unit cell be of aspect ratio of 2:3
in the experiment.
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Figure 3. Window specific part learning. For every window on the
grid, we learn a set of part detectors from clustered image patches
in training set. Each learned detector is reapplied to the images
and refined.

The advantage of flexible geometric partitioning has
been also advocated in the recent literature of scene model-
ing and object recognition [11, 20, 18, 1]. In particular, our
grid decomposition method is very similar to the initial step
of [20, 18], which then further attempt to pick up a subset of
good windows and represent each image with a small num-
ber of non-overlapping windows, which reduces to a single
best configuration through explicit parsing. However, we
empirically found that it leads to a better performance to
allow many number of overlapping windows, therefore we
only prune inferior part templates in the later stage but do
not eliminate or suppress any windows. In other words, our
method allows “all” configurations, each of which is implic-
itly defined and partially contributes to explain each image.

3.2. Part Appearance Learning

Once we define all windows, we visit each window and
learn a set of part detectors that are spatially associated with
that particular window. Our motivation is that the human
body consists of a number of parts, which are usually spa-
tially constrained, i.e. anchored at their canonical positions.
Fig. 3. shows the general procedure and examples. For
each window, wi, we first crop all the corresponding image
patches from the entire set of training images. Then each
patch is represented by the feature descriptor. We use the
Histogram of Oriented Gradient (HoG) [6] and color his-
togram as the low-level features of image patches. On the
extracted features, we perform K-means clustering and ob-
tain K = 50 clusters, {vi1, ...viK}. Each obtained cluster
represents a specific appearance type of a part. Since the ini-
tial clusters are noisy, we first train a local part detector for
each cluster by logistic regression as a initial detector and
then, iteratively refine it by applying it onto the entire set
again and updating the best location and scale. We mine the
negative patches from the regions outside given bounding
boxes. At the initial iteration, we discard the noisy part can-
didates by cross validation, and limit the maximum number
of useful parts to 30 (we will discuss the choice of this quan-
tity in the experimental section). The detection score, g, of



an image I for a part vik can be expressed as follows:

g(vik|Ii) = log
P (vik = +|Ii)
P (vik = −|Ii)

, (1)

where Ii is the image subregion occupied by the window,
wi. We transform this log posterior ratio by logistic func-
tion, as in [2]:

d(vik|Ii) = P (vik = +|Ii). (2)

These detectors are local and only activated at the spe-
cific window from which they have been trained. We only
allow relatively small range of local deformation (transla-
tion and scaling) around the window (20% of deviation from
the window). Such assumption may seem to be weak to ro-
bustly capture many articulated parts or viewpoint change.
For example, a lower-arm can be located virtually every-
where. However, we do not explicitly distinguish the geo-
metric and appearance variation. That is, if a part is articu-
lated and located far from its canonical window frequently,
we treat this as another appearance part type that is defined
at another window. If such arrangement is not frequent, we
disregard it. This treatment can be also justified by consid-
ering that a part looks differently from the same part in a
different pose. Therefore, it may be beneficial to maintain
separated part templates for those cases so that each tem-
plate can explain its own type better.

4. Attribute Classification
Now we explain our method for attribute classification.

After learning the parts at multiscale overlapping windows,
we mainly follow the strategy for attribute classification
proposed in the Poselet-based approach [2]. The key idea is
to detect the parts by learned detectors (Poselets in [2]) and
then to train a series of part-specific local attribute classi-
fiers. The final prediction is made by aggregating the scores
from these local classifiers with the weights given by part
detection scores.

Such strategy is effective for the task of fine-grained clas-
sification such as human attribute classification. This is be-
cause many part elements that are not directly informative
about the class to predict (attributes) can still provide a guid-
ance to retrieve the discriminative cues. For example, an
upper-body detector itself does not help predict any types
of attributes. However, once we locate the upper-body by
it, we can run the additional classifier to obtain finer-grained
information constrained in the upper-body region.

4.1. Part Specific Attribute Classifiers

Specifically, for each part detector, vik, at each window,
wi, we have a set of image patches, the cluster members
used to train the detector. This cluster is a soft cluster, so

it is possible that the same image can be included in multi-
ple number of clusters as long as its part detection score is
positive (g(vik|Ii) > 0). Then for each attribute, we have
two disjoint subsets of the image patches in the cluster, the
positive and the negative. By using the same image fea-
tures used for detection, we train an attribute classifier for
an individual attribute, aj , by another logistic regression as
follows:

f(aj |vik, Ii) = log
P (aj = +|vik, Ii)
P (aj = −|vik, Ii)

. (3)

Again, we discard the learned classifier whose accuracy is
inferior by cross validation so that the number of parts in
whole model is limited to 1,000 to address all attributes.

4.2. Aggregating Attribute Scores

We have obtained all part detection scores as well as
part-specific attribute classification scores. These are local
scores obtained from local parts. Now we use another dis-
criminative classifier to aggregate these local scores to out-
put the global prediction. Again, we use the same strategy
used in the Poselet-based approach, which combines the at-
tribute classification scores with the weights given by part
detection scores.

Specifically, we form a final feature vector, φ(I) for each
image I and each attribute a as follows:

φik(I) = d(vik|Ii) · f(aj |vik, Ii). (4)

Therefore, each element is simply the product of two terms
that we defined in previous sections. Note that i and k are
used to index the window and part type at each window,
and we form a 1D vector simply by organizing each part
sequentially. We refer to this vector as the part-attribute
feature vector. Then we train the logistic regression again
with this feature and use it as the final classifier.

In contrast to the Poselet-based approach which lever-
ages an additional layer of classifiers to model contextual
information between attributes (e.g., ‘long-hair’ and ‘fe-
male’), we do not explicitly model the correlation between
attributes in this paper. This is mainly because our dictio-
nary, which preserves appearance type, can be a good basis
to implicitly capture such correlation. For example, once we
detect a face with ‘long-hair’, it can immediately inform us
that it is more likely to find ‘skirt’ as well even before pro-
ceeding to attribute inference stage. The poselet, however,
lacks appearance type inference in detection stage and thus,
has to explicitly enforce such constraints in a later stage.

5. Experimental Results
In this section, we present a various experimental results

that can support the advantage of our approach.



(a) Poselet

(b) HAT

Figure 4. (a) (top) Images from the dataset of Poselet-based ap-
proach, copied from [2]. This dataset exhibits a huge variation
of pose, viewpoint, and appearance type of people. (a) (middle)
A few selected, extremely challenging images from the same set.
Either the bounding box (to indicate the person of interest) is am-
biguous in cluttered scene, the resolution is too low, or occlusion
and truncation is too severe. (b) Randomly selected images from
HAT Database [15]. All the bounding boxes have been obtained
by person detector [8], therefore the complexity is limited.

Datasets. For evaluation of our approach, we use two
publicly available datasets of human images labeled with
attributes: the dataset of Poselet [2], and the Database of
Human Attributes (HAT) [15]. Fig. 4 shows the examples
taken from both sets. Each set has been constructed in a dif-
ferent way. We discuss the details in following subsections.

5.1. Attribute Classification on Dataset of Poselet

The dataset contains 3864 training images and 3600
testing images, each of which is labeled with 9 binary
attributes. Fig. 4 shows a few examples from Poselet’s
dataset. Each image is manually annotated by a visible
bounding box of each person. This bounding box is pro-
vided at training as well as testing time, i.e., detection is
given. Since these boxes that cover visible parts of humans
do not provide any alignment, it is very challenging to learn
or detect the parts from them. Also, the evaluation may
be problematic because the interested person indication is

sometimes ambiguous in crowded scenes (Fig. 4) and such
box is difficult to obtain in fully automated systems which
would typically deploy a person detector prior to attribute
inference; such detector would provide the alignment at the
level of full-body or upper-body.

Therefore, we first aligned all the training images by us-
ing two keypoints on the head and middle-hip and trained
upper-body detectors. And by applying it onto the images
(while penalizing deviation from the original boxes), we ob-
tained roughly aligned boxes. These aligned boxes are sim-
ply enlarged from the outputs of upper-body detectors and
share the same aspect ratio.

For fair comparison, we used the same set of image fea-
tures as [2], HoG and color histogram. While the Poselet-
based approach additionally uses the human skin-tone as
another feature, we do not use any extra image features in
this paper because our goal is weakly-supervised learning
which requires no supervision on skin. The total number of
parts was set to 1000 while [2] used 1200 parts.

Table 1. shows the full comparison where our full model
outperforms the Poselet based approaches in 8 out of 9 at-
tributes. Note that the “full” model indicates the approach
using multiscale overlapping windows and the rich appear-
ance part dictionary as we have discussed in this paper. In
order to verify the contribution of each factor to the final
performance, we conducted two additional tests as follows.

Rich Appearance Dictionary. We have argued that it is
important to learn a rich appearance dictionary that can ad-
dress the appearance variation of parts effectively. We val-
idate this argument by varying the number of parts learned
at each window, K, ranging from 1 to 30. However, we still
perform clustering to form many clusters and then choose
K best part candidates, judged by cross validation detec-
tion score.

Table 3. shows the performance improvement according
to K and this result can support the importance of rich vi-
sual dictionary. In particular, having many parts per window
is important for subtle attributes, such as “glasses”. Note
that, K = 1 does not mean that we only have one part tem-
plate for each true part. Since we have multiscale overlap-
ping windows, and we can still have many other templates
learned at the other windows. This can also explain why the
gender attribute, whose cues would be more distributed over
many subregions as a global attribute, has the least amount
of gain from increasing K.

Multiscale Overlapping Windows. We also tested the
effect of multiscale overlapping window structure used in
our approach. Table 1. (b) shows the performance when
we only used a set of non-overlapping windows at single
layer, which reduces to a simple grid decomposition, and
the row (c) shows the result when we use the windows at
two more additional layers as spatial pyramid scheme. Nei-
ther method performed as well as the full approach.



male long
hair

glasses hat t-
shirt

long
sleeves

shorts jeans long
pants

Mean
AP

Base Frequency .593 .300 .220 .166 .235 .490 .179 .338 .747 .363

Ours (2)
(a) Full .880 .801 .560 .754 .535 .752 .476 .693 .911 .707

(b) Uniform Grid .857 .734 .429 .631 .405 .687 .349 .560 .862 .613
(c) Spatial Pyramid .857 .725 .407 .641 .429 .707 .356 .565 .886 .620

Poselet (33)
(d) Full * .824 .725 .556 .601 .512 .742 .455 .547 .903 .652

(e) No context * .829 .700 .489 .537 .430 .743 .392 .533 .878 .615
(f) No skintone .825 .732 .561 .603 .484 .663 .330 .428 .850 .608

Table 1. The attribute classification performance on the dataset of poselet [2]. The number in parentheses is the number of keypoints used
in learning of each method. * indicates the methods to use an additional image feature (skintone).

Attributes Freq. Ours DSR
[15]

EPM
[16]

Female .488 .914 .820 .859
FrontalPose .747 .968 .913 .936
SidePose .239 .772 .610 .673
TurnedBack .105 .898 .674 .772
UpperBody .413 .963 .924 .979
Standing .768 .977 .960 .980
Run/Walk .153 .635 .676 .746
Crouching .026 .123 .207 .240
Sitting .117 .593 .546 .627
ArmsBent .765 .954 .919 .940
Elderly .070 .321 .293 .389
Mid-Aged .507 .700 .663 .689
Young .381 .656 .594 .642
TeenAged .159 .335 .291 .362
SmallKid .143 .535 .437 .497
SmallBaby .027 .163 .122 .243
TankTop .081 .370 .332 .377
Tee shirt .352 .671 .591 .616
CasualJacket .088 .426 .353 .400
Men’sSuit .068 .648 .482 .571
FemaleLongSkirt .060 .420 .399 .448
FemaleShortSkirt .058 .301 .337 .390
Shorts .070 .496 .427 .468
LowcutTop .166 .660 .556 .613
FemaleSwimsuit .023 .467 .282 .322
WeddingDress .014 .621 .621 .642
Bermuda .129 .420 .393 .437
Mean AP .230 .593 .538 .587

Table 2. The attribute classification performance (average preci-
sion) on the dataset of HAT [15]. In addition, EPM [16] achieves
.597 in the setting to leverage image context from outside of
bounding box region.

5.2. Attribute Classification on HAT Database

The HAT database contains 7000 training images and
2344 testing images, labeled with 27 binary attributes.
There are two main difference between this dataset and

K 1 3 5 10 20 30
Male .858 .860 .862 .870 .880 .881
LongHair .690 .731 .736 .771 .795 .801
Glasses .375 .397 .429 .458 .536 .560
Hat .634 .625 .678 .676 .744 .754
Tshirt .412 .412 .430 .430 .521 .535
LongSlv .715 .719 .726 .738 .745 .752
ShortPnts .373 .386 .407 .470 .474 .476
Jeans .612 .595 .644 .690 .695 .693
LongPnts .891 .906 .905 .910 .912 .911
mAP .618 .630 .654 .679 .693 .707

Table 3. The performance improvement according to the maxi-
mum number of appearance part types at each window (K).

Poselet’s dataset. i) The considered attributes includes a
set of action or pose categories such as “running” or “side
pose”. Table 2. shows the full list. ii) The dataset was con-
structed in a semi-supervised way by a person detector of
[8], instead of manual collection. Therefore, the complexity
in terms of articulation or occlusion is relatively lower than
that of Poselet’s dataset. However, such criterion is also
meaningful, considering the fully automated real-world sys-
tem would follow the same procedure - running the person
detector and then performing attribute classification. Since
the bounding boxes were obtained by the person detector,
the people in the images are roughly aligned. Therefore, we
did not use any keypoints for the rough alignment in this
dataset.

Table 2 shows the performance comparison among our
approach, the discriminative spatial representation (DSR)
[15], and the expanded part models (EPM) [16]. The DSR, a
variant of spatial pyramid representation, seeks for an ideal
partitioning for classification, instead of strictly constrained
structure (squares) of original spatial pyramid. However,
their partitioning, even if it is an optimal, is still fixed.
And geometric variation (local deformation) has not been
addressed, which is important for human models. On the
other hand, the EPM which also attempts to learn the dis-
criminative parts has shown a comparable result to ours in
an equivalent setting where recognition is performed solely



(a) The most discriminative Poselets for gender

(b) The most discriminative parts of our model 
for gender, glasses, hat, tshirt, and jeans

Figure 5. The most discriminative parts in Poselet-based approach
[2] and our learned model. Our rich dictionary distinguishes many
different appearance part types, which are directly informative
for attribute classification, while the selected poselets are generic
parts.

from person bounding box region. However, the advantage
of our method is to learn a common dictionary shared by all
attribute categories whereas the EPM uses a separate dictio-
nary for each category.

5.3. Discriminative Parts for Localization

Finally, we discuss the issue of the discriminative parts
by providing qualitative results. The quantitative evalua-
tion is difficult because neither dataset provides required
ground-truth annotation. The most discriminative part for
an attribute is the part whose contribution to the attribute
prediction is the biggest. We measure this from product of
the weights of the final logistic regression classifier and the
part-attribute feature of each image, φ(I). Fig. 6. shows
the examples in the testing set (from the Poselet’s dataset),
which output the most positive and negative responses for

five attribute categories. We denote the most contributed,
most discriminative part window for each image by blue
boxes. Although there are some meaningless activation (for
example, “NOT JEANS” was inferred from the head), the
most parts show reasonable localization.

Fig. 5 shows the most discriminative parts for five se-
lected attributes. We measure this by correlation between
attribute labels and the part-attribute feature. As one can
easily see, the most discriminative Poselets are unbiased de-
tectors which would respond to both female and male. In
contrast, our discriminative parts has distinct polarities.

6. Conclusion
We presented an approach to the problem of human at-

tribute recognition from human body parts. We argue that it
is critical to learn a rich appearance visual dictionary to han-
dle appearance variation of parts as well as to use a flexible
and expressive geometric basis. While the major focus has
been made on appearance learning in this paper, we plan to
expand the current model into structured models where we
can learn more meaningful geometric representation, as for
the future work.
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