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Abstract

In this paper we present a compositional and-or graph
grammar model for human pose estimation. Our model has
three distinguishing features: (i) large appearance differ-
ences between people are handled compositionally by al-
lowing parts or collections of parts to be substituted with al-
ternative variants, (ii) each variant is a sub-model that can
define its own articulated geometry and context-sensitive
compatibility with neighboring part variants, and (iii) back-
ground region segmentation is incorporated into the part
appearance models to better estimate the contrast of a
part region from its surroundings, and improve resilience
to background clutter. The resulting integrated frame-
work is trained discriminatively in a max-margin frame-
work using an efficient and exact inference algorithm. We
present experimental evaluation of our model on two popu-
lar datasets, and show performance improvements over the
state-of-art on both benchmarks.

1. Introduction

Accurate human pose estimation from static images has
many practical applications from automated surveillance to
human-computer interaction. Humans in particular can ap-
pear in a wide range of poses, body proportions, clothing,
and backgrounds. One of the key modeling challenges is
to effectively represent these variabilities, and capture the
contextual relationships on how parts vary together. Our
approach aims to address these problems by combining
four key aspects: compositional parts, articulated geometry,
context-sensitive part compatibility, and background mod-
eling.

Compositional Parts: The fundamental difference be-
tween grammar models [27] and conventional hierarchical
models [8] is the notion that an object can be composed
from its parts in multiple ways. These compositions can oc-
cur hierarchically, allowing the grammar to represent a very

large space of possible configurations using a small number
of concise rules.

Articulated Geometry and Part Compatibility: Artic-
ulation is a compatibility relation restricting the position
and orientation of a pair of parts such that they align with a
common hinge point between them, and are in a plausible
orientation relative to each other. The majority of articu-
lated models in the literature rely exclusively on this type
of relation, either between part pairs [8, 25] or higher-order
cliques [21]. There are many other types of part compat-
ibilities, however, that can be exploited. Part size, for ex-
ample, once normalized by object scale, can vary greatly
between examples due to perspective effects or body pro-
portion differences between people. In these cases, the
part variations are not independent and largely controlled
by image or object-level factors such as viewpoint or body
type. These factors can be encoded into our model by defin-
ing multiple variants for a compositional part, each spe-
cific to a viewpoint, body type, appearance, etc. Context-
sensitive compatibility relations are then applied to the rel-
ative position and orientation (articulated geometry), rela-
tive scale, and cooccurrence between part variants. Fur-
thermore, each compositional variant defines its own artic-
ulated hinge points, providing an implicit compatibility be-
tween the appearance of that variant and the locations where
neighboring parts can attach to it. For example, the frontal-
view torso has a wide appearance with hinge points for the
arms and legs near the sides, whereas the side-view torso
has a narrow appearance with hinge points near the cen-
terline. Selecting the appropriate torso will depend on the
torso appearance, alignment of the limbs to the joint loca-
tions for each torso variant, and the cooccurrence compati-
bility between the torso and limb variants.

Background modeling: Many parts of the body have
very weak local appearance structure. Forearms, for ex-
ample, have no prominent local features other than noisy
parallel edges which also tend to occur frequently in natu-
ral images. To complicate matters, edge features are often

1



llla

torso

or-node

and-node

a torso

r.shoulder

l.ankle r.ankle

l.knee r.wrist r.knee

r.elbowl.elbow l.hip r.hip

head l.shoulder

l.wrist

torso

r.ual.ua l.ul r.ul

r.la l.ll r.lll.la

head

cb dPS FMP AG AOG

head

torso

uluahead

llla

r.ua l.ul r.ull.ua

rel. pos
rel. θ
type compat.
rel. pos
rel. θ
rel. scale
rel. pos
rel. θ
rel. scale
prod. compat.

model

relatio
ns

# and-n
odes

# or-n
odes

PS

FMP

AG

AOG

10 10

~70 14

6 6

13 8

Figure 1. Comparison of model structure: Several common models for pose estimation are shown using an and-or graph notation. And-
nodes represent distinct part appearance models, while or-nodes can be treated as a local mixtures of and-nodes. Edges represent the
contextual relations between parts, which are specified for each model using the table on the right. Pictorial structures [8] (a) has a fixed
structure with no shared parts, and uses conventional articulation relations over relative position and orientation. The flexible mixture-
of-parts model [25] (b) emulates articulation with a large number of orientation-specific parts and mixtures, using relations only between
mixture selections (types). Our baseline and-graph model (c) has similar structure and relations with PS but shares parts between left and
right sides and uses relative scale relations. Our final and-or-graph model (d) extends (c) by utilizing several part variants, and compatibility
relations between variants (productions).

locally normalized, which produces strong responses in tex-
tured regions and often leads to spurious detections in these
regions. To combat this, we augment our part appearance
models to compute a contrast between the part interior, and
the region distributions of the adjoining background. The
resulting part appearance model helps eliminate spurious
detections in clutter, and as a result improves localization
performance.

To justify our approach, we evaluate a simplified case
of our grammar omitting the use of part variants or back-
ground information (model AG in Fig.1(c)). We demon-
strate that this baseline still performs competitively among
recent techniques, and is surpassed substantially by the full
model. Evaluation results are presented for the PARSE and
Leeds datasets, where we demonstrate state-of-art perfor-
mance on both.

2. Related Work
Image grammar models have been a topic of interest

for many years [10, 27], however, there has been limited
success in getting these models to perform competitively
over their fixed-structure counterparts on realistic problems.
Previous work using grammars for human pose modeling
include template grammars to parse rich part appearances
[3, 16], super pixel based composition grammars for human
region parsing [18], and boundary contour grammars for
parsing human outlines [26]. [11] extends the popular dis-
criminative deformable part model into a grammar formal-
ism used for human detection, but not part localization. The
hierarchical mixture model of [25] differs from our model
by replacing articulation geometry with keypoint mixtures,
and does not allow reusable or reconfigurable parts. [19]
also uses hierarchical mixtures, except with coarse-to-fine
appearance templates. Mixtures of higher order geometries
are explored in [21] using a latent variable geometry model.

Fixed structure models for human pose estimation gen-

erally fall into the family of pictorial structures models
[8, 6, 1, 17], that use a kinematic tree of parts to repre-
sent the body. These models are popular due to their rel-
ative simplicity and computational efficiency. Our model
can be viewed as a generalization of these models, as each
part composition can be treated as a local pictorial structure
model nested in the grammar. Like all tree-structured mod-
els, these techniques tend to suffer from the double counting
problem where multiple parts can match to the same region
of the image due to their conditional independence. These
models also do not handle self-occlusion particularly well,
as they are forced to explain all parts in the image, even
when some are not visible. Poselets [2], are difficult to cat-
egorize as a model type, and utilizes a voting scheme of
pose-specific parts to interpolate a pose without an explicit
model of the body kinematics. The hierarchical variant [24]
does, however, incorporate stronger geometric constraints.

The use of image-specific background models to im-
prove human pose estimation is an idea that has been re-
visited many times in recent literature. An iterative learn-
ing scheme for CRF appearance models was presented in
[15], which incrementally refines a generic part model us-
ing image-specific appearance evidence. The work of [9]
utilizes a greedy search space reduction strategy by comput-
ing GrabCut segmentations from the bounding boxes pro-
duced by a generic upper body detector. Most similar to our
approach is the work of [12], which efficiently learns a lo-
cal pixel-based color segmentation model for each proposed
part location. Our model, by comparison, uses a global
image segmentation as a reference distribution to compute
part-based appearance features.



3. Articulated Grammar Model

3.1. And-Or Graph Grammar

Our articulated grammar model provides a probabilistic
framework to decompose the body into modular parts while
maintaining the articulated kinematics. The grammar takes
the form of an and-or graph, denoted as G = (S, P, s0),
where S is a set of symbols (or-nodes), P is a set of pro-
ductions (and-nodes), and s0 is the root symbol. Each pro-
duction p ∈ P takes the form (α → β, t, R). We refer to
α ∈ S as the proximal symbol, and the set β ⊂ S as the dis-
tal symbols. t is an appearance template for α. R is a set of
probabilistic relations that control the spatial geometry and
compatibility between α and β, and thus expresses contex-
tual information about neighboring parts. Fig.1 illustrates
our and-or graph models, as well as several other models
for comparison. Each and-node production is drawn as a
dot inside its corresponding proximal or-node symbol. For
clarity, child edges are only drawn for a selected subset of
and-nodes, indicated by a dotted box.

Unlike conventional grammars that only connect to the
data through the terminal symbols, our grammar defines an
appearance model for every production. For this reason, we
require at least one production to expand every symbol. For
a terminal symbol, a production of the form (α→ ∅, t, R) is
used to provide an appearance and geometry model for the
proximal symbol without any further decomposition. Each
symbol can be expanded by multiple productions to pro-
vide different explanations for not just the appearance of
that symbol, but also the geometry and compatibility be-
tween the symbol and its constituents.

Part sharing occurs whenever two or more productions
use the same distal symbol. The advantages of part shar-
ing are threefold: the resulting model has fewer parame-
ters to learn, shared parts inherently have more training ex-
amples, and inference computation can also be shared for
these parts. Furthermore, both terminal and nonterminal
symbols can be shared, resulting in a potentially large re-
duction in both model complexity and computational time.
For our model, we share the left and right limbs as shown
in Fig.1(c,d).

A parse tree pt is constructed from G by recursively
selecting productions to expand symbols starting from the
root symbol s0. Each node in the parse tree v ∈ V (pt), cor-
responds to a part with state variables (x, y, θ, s, ω), where
x, y is the pixel location of the part center, θ is a dis-
crete orientation, s is the part scale, and ω indicates the
production that decomposed this part symbol. Similarly,
(vi, vj) ∈ E(pt) enumerates the pairs of proximal to distal
parts for each production used in the parse. The relations
R within each production consist of five distinct types of
potential functions:

fa(v, I) appearance score
fg1(v) geometry orientation score
fg2(vi, vj) geometry articulation score
f c1(v) production bias
f c2(vi, vj) production compatibility score

We wish to learn the posterior distribution on parses,
which we write as the following Gibbs distribution

p(pt|I) ∝ p(pt)p(I|pt) =
1

Z
exp{−E(pt, I)}

E(pt, I) =
∑

v∈V (pt)

faω(v, I) + fg1ω (v) + f c1ω (v)

+
∑

(vi,vj)∈E(pt)

fg2ωi
(vi, vj) + f c2ωi

(vi, vj). (1)

Each production has a model weight vector corre-
sponding to each of the potential functions λi =
(λai , λ

g1
i , λ

g2
i , λ

c1
i , λ

c2
i ) : ∀pi ∈ P . The weight vector of

the full grammar model is expressed as a concatenation of
the production weights λ = {λi : i = 1..|P |}. Each of
these potentials and their corresponding parameters are de-
scribed in detail in the following sections.

3.2. Articulated Geometry

Each symbol in the grammar is assigned a canonical
length and width learned from the part annotations. The
geometry of each part in a parse can then be computed by
retrieving the canonical dimensions corresponding to the
proximal symbol of production ω, centering this rectangle
at location (x, y) in the image, rotating by θ, and rescaling
by s. Orientation is discretized, typically to 24 increments.
The scale corresponds to the index of an image pyramid
level, which determines the scale multiplier.

For each articulated pair (vi, vj) within each produc-
tion ω, the hinge point for which these two parts articu-
late around is estimated from the training annotations by
least-squares as in [8]. We now have two coordinate trans-
formations, denoted T pω(vi) and T dω(vj), to compute the
ideal hinge location from either the proximal or distal part
states respectively. When two part are perfectly articulated,
T pω(vi) = T dω(vj). This alignment is rarely perfect, how-
ever, and we assume the displacement from the ideal hinge
location is normally distributed.

The distribution over part orientations can be viewed as
a mixture model over discrete orientations. Let k be the
number of discrete orientations. The weights λg1ω are the
mixing weights for each orientation, specific to production
ω. The feature vector φg1(θ) is a unit vector of length k with
1 at index θ and zero elsewhere. The geometry orientation
score is therefore

fg1(v) = 〈λg1ω , φg1(θ)〉. (2)
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Figure 2. Part appearance template: The template utilizes fea-
tures from both foreground and background. Foreground features
use a rotation-shifted variant of HOG [4] collected along a uniform
grid, as well as the mean color within the part boundary. Back-
ground features consist of distance measures between the mean
part color and adjoining external region segments. The template
defines multiple background sample points around the perimeter
of the part, each of which retrieves the region segment that con-
tains the point and compares it with the interior mean color.

The articulation score consists of three components:
hinge displacement, relative scale, and relative orienta-
tion. We denote the squared hinge displacement as dl2ij :=

||T pωi
(vi) − T dωi

(vj)||2. Similarly, we also treat the relative
scale between parts to be normally distributed and denote
the squared scale difference as ds2

ij := (si − sj)2. The rel-
ative orientation is computed as dθ := ((θj − θi) mod k).
The feature response for relative orientation φg2(vi, vj) is
a unit vector of length k with 1 at index dθ and zero else-
where. The articulation score is then

fg2(vi, vj) = 〈λg2ωi
, [dl2ij ds2

ij φg2(vi, vj)
>]>〉. (3)

3.3. Part Compatibility

Part compatibility is the preference of selecting one pro-
duction over another to explain the same symbol in a parse.
The model employs two types of compatibility. The first is
a unary bias on each production, analogous to the produc-
tion frequencies in a stochastic context-free grammar. This
bias parameter is a scalar value for each production, and the
compatibility potential is simply

f c1(v) = λc1ω . (4)

The second is a pairwise production compatibility between
neighboring parts in the parse. The compatibility weights
are a matrix of dimension |P | × |P |. The vector λc2ω is the
matrix row corresponding to production ω, and represents
the compatibility of all distal productions with ω. The pro-
duction compatibility potential is then

f c2(vi, vj) = λc2ωi
[ωj ]. (5)

3.4. Appearance Model and Segmentation

Each production defines an appearance template that
specifies where to extract features responses from the im-
age for a given part state, as illustrated in Fig.2. To compute

part appearances responses at different scales, a fixed-sized
template is applied to different levels of the image pyramid.
Different orientations are handled by rotating the template,
then adjusting the features to compensate for the rotation if
necessary. Two types of features are used: a gradient-based
edge feature, and a color-based region feature.

The edge features are a variation of the popular HOG
feature [4]. In order to compute feature responses of ro-
tated parts, however, the HOG features must be computed
densely such that gradients histograms are pooled around
the neighborhood of every pixel instead of predetermined
cells. Histograms are collected along a uniform grid in the
reference frame of the part, illustrated by the crosses in
Fig.2. If the part is rotated, then the histogram bins must
be shifted to match the orientation of the part. The number
of HOG bins is therefore selected to match the number of
discrete part orientations.

The region features measure how distinct the foreground
part region is from the surrounding background. We rep-
resent the image background as a collection of large dis-
joint regions, where the appearance within each region is
well explained using a multivariate Gaussian in L∗u∗v∗

color space. Furthermore, we assume that the background
regions are large compared to the size of the foreground
parts and treat the background process as independent of the
foreground. This independence is chosen to avoid the in-
tractable computation of reestimating the background seg-
ments for every part state.

Let Λ denote the pixel lattice of image I , which is parti-
tioned into K disjoint regions

⋃K
i=1Ri = Λ,

⋂K
i=1Ri =

∅. The segmentation of the image is represented as
S = (K, {(Ri, µi,Σi); i = 1, 2, ...K}). Each re-
gion is assumed to be generated independently and nor-
mally distributed, thus the image likelihood is p(I|S) =∏K
i=1N (µi,Σi). A prior model p(S) encourages the num-

ber of regions to be small, region volumes to be large, and
boundaries smooth. The optimal segmentation maximizes
the posterior p(S|I) ∝ p(I|S)p(S). We adopt the same
prior model and data-driven MCMC approach of [23] to
compute this segmentation using scale = 1.0. Please re-
fer to the original work for a full explanation of the prior
model and its parameters.

Finally, the region feature is computed as the Maha-
lanobis distance between the foreground mean µv and a
background region (µi,Σi)

d(µv, µi,Σi) = (µv − µi)>Σ−1
i (µv − µi). (6)

This distance can be interpreted as the negative log-
probability that the average pixel in the foreground region
is generated by the background process. To account for the
possibility that multiple background region segments can
adjoin the part, the template defines multiple region fea-
tures that are equally spaced around the part periphery, as
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Figure 3. Segmentation model: Segmented regions are shown in
(b), and a resynthesized image sampled from the region models
is shown in (c) to illustrate the model fit. Score maps from the
trained model of the l.leg part in the vertical orientation are shown
using only HOG features in (d) and only region distance features
in (e). Due to local normalization, spurious foreground responses
tend to appear particularly around textured regions, whereas the
background feature is far more stable in these regions.

shown by the circles in Fig.2. The output of the segmenta-
tion model is illustrated in Fig.3, as well as visualizations
of template scores using either HOG or the region distance
features in isolation.

The full appearance response vector φa(I, t, v) can now
be computed as a concatenation of responses from each
rotation-shifted gradient histogram feature, and region dis-
tance feature in the template. The appearance score is then

fa(v, I) = 〈λaω, φa(I, tω, v)〉. (7)

4. Inference
Relations in the grammar are always between proximal

and distal parts within the same production, resulting in a
tree factorization of the full grammar model. This lends
itself naturally to a dynamic programming type algorithm
that computes optimal part configurations bottom-up. The
basic unit of computation is computing a maximal score
map for the proximal part of a production. Each of the
distal parts are conditionally independent given the proxi-
mal part, and can be maximized individually. The maximal
score map for part state vi given production ωi can be ex-
pressed recursively as

M(vi|ωi) = faωi
(vi, I) + fg1ωi

(vi) + f c1ωi
(8)

+
∑

(vi,vj)∈Rωi

max
vj

[
fg2ωi

(vi, vj) + f c2ωi
(vi, vj) +M(vj |ωj)

]
.

Although the production for part vi is fixed, we must
maximize over the full state of the distal parts vj , includ-
ing the distal production. The maximization over positions
(xj , yj) can be computed very efficiently using distance
transforms [7] that have linear complexity in the number of
positions. The maximization over scale sj , orientation θj ,
and production ωj each require quadratic time to compute.
The state space for these remaining variables is still quite
small, however, and the computation is tractable.

To infer the maximal scoring parse, we recurse through
the grammar starting from the root symbol s0. Terminal

symbols have no distal parts, and their maximal score maps
consist of only the appearance and unary potentials. Once
the maximal score maps are computed for every production,
the maximal parse score can be obtained by maxing over all
productions that have the root symbol as the proximal part

max
pj∈P s.t. αj=s0

max
vi

M(vi|pj). (9)

The parse tree can be recovered by replacing the max op-
erators with arg max and backtracking through the optimal
state maps.

5. Learning
The score of a parse can always be expressed as

the inner product of the full model weight vector and
a response vector for the entire parse fG(pt, I) =
〈λ, φ(pt, I)〉. The model weights λ parameterizes a family
of parsers that output the maximal scoring parse FGλ (I) =
arg maxpt f

G(pt, I) for a given grammar. We define the
learning task as the search for a weight vector such that the
empirical risk of the associated parser is minimized, which
is computed as the expected loss on the training dataset D.
Let p̄t be the ground truth parse. The optimal weights are

λ∗ = arg min
λ
E(p̄t,I)∼D[L(FGλ (I), p̄t)] (10)

The loss is defined on the structured output space of
parses, and must measure the quality of a predicted parse
against the ground truth parse. In a general grammar, these
parses may have different structure or a different number of
parts, making the formulation of such a loss sometimes dif-
ficult. All parses from the grammars we define here, how-
ever, have the same number of parts and the same branch-
ing structure which allows us to compute loss as the sum of
part-wise terms. Our loss is motivated by the PCP evalua-
tion metric [6], which computes a score based on the prox-
imity of the part endpoints to the ground truth endpoints. A
part is typically considered detected when the PCP score is
under 0.5. The loss function is

L(pt, p̄t) =
1

|V (pt)|
∑

v∈V (pt)

min (2 · pcp(v, v̄), 1) (11)

and is bounded between 0 and 1 taking the value 0 only
when identical to the ground truth.

To make the learning computationally tractable, we in-
stead minimize a convex upper bound to this loss using the
so-called margin-scaled structural hinge loss from [20], re-
sulting in the following max-margin structural SVM objec-
tive function

min
λ

1

2
||w||2 +

C

|D|

|D|∑
i=1

ξi (12)

s.t. λ> [φ(p̄ti, Ii)− φ(pt, Ii)] ≥ L(pt, p̄ti)− ξi
∀pt ∈ ΩG ,∀i.
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Figure 4. Influence of region features: A selection of results
from the AOG and AOG+BG models compared with FMP [25].
Textured regions are problematic for both FMP and AOG models,
leading to frequent spurious limb detections in these regions. The
AOG+BG model includes terms to favor part regions that are dis-
tinct from their adjoining background process, and can correctly
localize many of these parts.

Due to the exponential number of constraints, it is in-
tractable to minimize this expression directly. Instead, it is
still provably efficient to solve this minimization incremen-
tally by adding only the most violated constraints at each
iteration, using the following maximization as the so-called
separation oracle

p̂ti = arg max
pt

λ>φ(pt, Ii) + L(pt, p̄ti). (13)

This maximization is commonly referred to as a loss-
adjusted inference problem. The complexity of this max-
imization depends on the formulation of the loss function.
This is the primary reason we choose an additive loss func-
tion, which can be incorporated into the existing inference
algorithm in a relatively straightforward manner without
impacting the computational complexity.

It can be more clearly seen that this objective is an
upper bound for the risk by rearranging the terms of the
most violated constraints ξi ≥ L(pt, p̄ti) + λ>φ(p̂ti, I) −
λ>φ(p̄ti, I). Because the score of the parse λ>φ(p̄ti, I)
can never be greater than the score of the maximal parse
λ>φ(p̂ti, I), the right-hand-side of the expression can never
be lower than the loss.

This minimization can be solved by a multitude of meth-
ods. A dual coordinate descent solver was implemented for
[25], and the cutting plane method of [22] is also commonly
used. For our implementation, we maximize the dual objec-
tive using a conventional QP solver.

6. Evaluation
We train and evaluate our method using three different

grammar models to illustrate the impact on performance

from the addition of reconfigurable parts as well as the
background model. For all cases, we discretize the state
space of the parts to be 25% of the image width and height,
and use 24 part orientations.

AG: And-graph grammar is our baseline model, shown
in Fig.1(c), and is the simplest possible model in our frame-
work to represent the full articulated body. Each symbol has
only one production, and all limb parts are shared between
the left and right sides. This construction is equivalent to a
pictorial structures model (Fig.1(a)) with shared parts.

AOG: And-or-graph grammar, shown in Fig.1(d), using
productions { front, side } for torso, { left, front, right }
for head, and { visible, occluded } for both l.arm and l.leg.
Separate symbols are used for left and right u.leg as well
as u.arm because side-specific features tend to be strong for
these parts. The l.leg and l.arm symbols are still shared be-
tween sides.

AOG+BG: This is the same grammar as AOG, but with
the addition of the background terms. These terms are only
included on the the productions for l.arm and l.leg. To il-
lustrate the influence of these features, Fig.4 shows several
examples where the top scoring pose erroneously matches
to a strong edge with poor region support, but is corrected
when retraining with the background feature.

6.1. Evaluation Protocol

Unfortunately there are several competing evaluation
protocols for articulated pose estimation scattered through-
out the literature that often produce significantly different
results. We adopt the PCP method described in [6], which
appears to be the most common variant. This protocol de-
fines a part as detected if the average distance between the
centerline endpoints of the proposal and ground truth is less
than 50% of the ground truth part length. Because there
may be multiple people in a test image, the protocol selects
for evaluation the highest scoring skeleton within a window
defined by the head and torso. All competing methods used
for comparison are evaluated using the same protocol to the
best of our knowledge.

There are two notable inconsistencies with the evaluation
that are worth mentioning. First is the existence of zero-
length parts in the annotations, which are impossible to de-
tect according to this metric. Second is the inconsistency or
genuine ambiguity of labeling a limb as left or right. Both
datasets that we evaluate on have multiple cases where the
left/right annotations are inconsistent with the rest of the
dataset. Even perfect results on these examples will still
get the limb parts counted as wrong because the left limb
is being evaluated against the right side and vice versa. To
compensate for this, for each selected skeleton we exchange
the left and right labels for arm and leg separately, and take
the configuration that has the highest number of correctly
localized parts. We mark results evaluated in this way with



Dataset Method torso head u.leg l.leg u.arm l.arm avg

PARSE

JEa [13] (2010) 85.4 76.1 73.4 65.4 64.7 46.9 66.2
TZN [21] (2012) 97.1 92.2 85.1 76.1 71.0 45.1 74.4
FMP [25] (2011) 97.6 93.2 83.9 75.1 72.0 48.3 74.9

DR [5] (2012) - - - - - - 77.4
Ours (AG) 99.5 95.6 81.8 67.0 74.3 54.6 75.0

Ours (AOG) 100.0 96.2 87.0 75.3 73.2 53.9 77.5
Ours (AOG+BG) 99.5 97.4 88.4 78.0 74.1 56.1 79.0
Ours (AOG+BG)† 99.5 97.4 89.2 78.3 74.6 56.9 79.5

Leeds

TZN [21] (2012) 95.8 87.8 69.9 60.0 51.9 32.9 61.3
JEb [14] (2011) 88.1 74.6 74.5 66.5 53.7 37.5 62.7

Ours (AG) 98.4 92.8 81.2 69.8 61.9 38.2 69.3
Ours (AOG) 98.8 92.7 83.9 74.4 64.0 41.1 71.8

Ours (AOG+BG) 98.3 92.7 83.7 73.1 66.0 41.4 71.9
Ours (AOG+BG)† 98.3 92.7 86.8 78.2 70.2 45.1 75.2

Table 1. Benchmark evaluation results: We evaluate our baseline model (AG), grammar model (AOG), and grammar model with back-
ground features (AOG+BG) on the PARSE and Leeds datasets. The performance of our AOG+BG model outperforms all known methods
for all parts on both datasets. The † symbol indicates the use of a modified evaluation protocol, see text for details.

a † symbol, all other results are evaluated in the standard
way.

6.2. Benchmarks

PARSE: Introduced by [15], this dataset consists of 100
training and 205 testing images. For each part, we provide
an additional annotation to indicate a production label. We
observe a performance gain of 2.5% between the AOG and
baseline AG model, and a 4.0% gain between AOG+BG
and AG. Furthermore, the AOG+BG model outperforms the
state-of-art for all parts individually, as well as an average
gain of 1.6% over the current best method.

Leeds: Introduced by [13], this dataset consists of 1000
images each for training and testing. In the same manner as
PARSE, we provide an additional production label to each
part. Our AOG+BG model also outperforms the state-of-art
for all parts on this dataset, by an average gain of 9.2%. The
contribution of the background feature is minimal on this
dataset, however, which we believe may be attributed to the
narrow crop margins and general lack of large background
regions.

7. Conclusions

We present a framework for human pose estimation us-
ing an articulated grammar model, as well as a simple
approach to integrate a background model into the gram-
mar that can improve localization performance in cluttered
scenes. We also describe a training strategy for learning
the model from an empirical risk minimization perspective.
Our technique is evaluated on two challenging benchmark
datasets with superior performance to the current state-of-
art in both cases. Furthermore, we demonstrate consis-
tent per-part performance improvements of adding recon-

figurable parts over a baseline fixed-structure model using
the same part representations and learning, and additional
gains from incorporating the background model. Although
we focus specifically on the task of human pose estimation,
our model is not tailored to the class and is likely applicable
to other highly deformable object classes.
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