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Abstract

Stochastic And-Or grammars compactly represent both compositionality and re-
configurability and have been used to model different types of data such as images
and events. We present a unified formalization of stochastic And-Or grammars
that is agnostic to the type of the data being modeled, and propose an unsupervised
approach to learning the structures as well as the parameters of such grammars.
Starting from a trivial initial grammar, our approach iteratively induces composi-
tions and reconfigurations in a unified manner and optimizes the posterior prob-
ability of the grammar. In our empirical evaluation, we applied our approach to
learning event grammars and image grammars and achieved comparable or better
performance than previous approaches.

1 Introduction

Stochastic grammars are traditionally used to represent natural language syntax and semantics, but
they have also been extended to model other types of data like images [1, 2, 3] and events [4, 5,
6, 7]. It has been shown that stochastic grammars are powerful models of patterns that combine
compositionality (i.e., a pattern can be decomposed into a certain configuration of sub-patterns) and
reconfigurability (i.e., a pattern may have multiple alternative configurations). Stochastic grammars
can be used to parse data samples into their compositional structures, which help solve tasks like
classification, annotation and segmentation in a unified way. We study stochastic grammars in the
form of stochastic And-Or grammars [1], which are an extension of stochastic grammars in natural
language processing [8, 9] and are closely related to sum-product networks [10]. Stochastic And-Or
grammars have been used to model spatial structures of objects and scenes [1, 3] as well as temporal
structures of actions and events [7].

Manual specification of a stochastic grammar is typically very difficult and therefore machine learn-
ing approaches are often employed to automatically induce unknown stochastic grammars from data.
In this paper we study unsupervised learning of stochastic And-Or grammars in which the training
data are unannotated (e.g., images or action sequences).

The learning of a stochastic grammar involves two parts: learning the grammar rules (i.e., the struc-
ture of the grammar) and learning the rule probabilities or energy terms (i.e., the parameters of the
grammar). One strategy in unsupervised learning of stochastic grammars is to manually specify
a fixed grammar structure (in most cases, the full set of valid grammar rules) and try to optimize
the parameters of the grammar. Many approaches of learning natural language grammars (e.g.,
[11, 12]) as well as some approaches of learning image grammars [10, 13] adopt this strategy. The
main problem of this strategy is that in some scenarios the full set of valid grammar rules is too large
for practical learning and inference, while manual specification of a compact grammar structure is
challenging. For example, in an image grammar the number of possible grammar rules to decom-
pose an image patch is exponential in the size of the patch; previous approaches restrict the valid
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ways of decomposing an image patch (e.g., allowing only horizontal and vertical segmentations),
which however reduces the expressive power of the image grammar.

In this paper, we propose an approach to learning both the structure and the parameters of a stochas-
tic And-Or grammar. Our approach extends the previous work on structure learning of natural
language grammars [14, 15, 16], while improves upon the recent work on structure learning of And-
Or grammars of images [17] and events [18]. Starting from a trivial initial grammar, our approach
iteratively inserts new fragments into the grammar to optimize its posterior probability. Most of
the previous structure learning approaches learn new compositions and reconfigurations modeled
in the grammar in a separate manner, which can be error-prone when the training data is scarce or
ambiguous; in contrast, we induce And-Or fragments of the grammar, which unifies the search for
new compositions and reconfigurations, making our approach more efficient and robust.

Our main contributions are as follows.

• We present a formalization of stochastic And-Or grammars that is agnostic to the types of
atomic patterns and their compositions. Consequently, our learning approach is capable of
learning from different types of data, e.g., text, images, events.

• Unlike some previous approaches that rely on heuristics for structure learning, we explicitly
optimize the posterior probability of both the structure and the parameters of the grammar.
The optimization procedure is made efficient by deriving and utilizing a set of sufficient
statistics from the training data.

• We learn compositions and reconfigurations modeled in the grammar in a unified manner
that is more efficient and robust to data scarcity and ambiguity than previous approaches.

• We empirically evaluated our approach in learning event grammars and image grammars
and it achieved comparable or better performance than previous approaches.

2 Stochastic And-Or Grammars

Stochastic And-Or grammars are first proposed to model images [1] and later adapted to model
events [7]. Here we provide a unified definition of stochastic And-Or grammars that is agnostic to
the type of the data being modeled. We restrict ourselves to the context-free subclass of stochastic
And-Or grammars, which can be seen as an extension of stochastic context-free grammars in for-
mal language theory [8] as well as an extension of decomposable sum-product networks [10]. A
stochastic context-free And-Or grammar is defined as a 5-tuple 〈Σ, N, S,R, P 〉. Σ is a set of termi-
nal nodes representing atomic patterns that are not decomposable; N is a set of nonterminal nodes
representing decomposable patterns, which is divided into two disjoint sets: And-nodes NAND and
Or-nodes NOR; S ∈ N is a start symbol that represents a complete entity; R is a set of grammar
rules, each of which represents the generation from a nonterminal node to a set of nonterminal or
terminal nodes; P is the set of probabilities assigned to the grammar rules. The set of grammar rules
R is divided into two disjoint sets: And-rules and Or-rules.

• An And-rule represents the decomposition of a pattern into a configuration of non-
overlapping sub-patterns. It takes the form of A → a1a2 . . . an, where A ∈ NAND is a
nonterminal And-node and a1a2 . . . an is a set of terminal or nonterminal nodes represent-
ing the sub-patterns. A set of relations are specified between the sub-patterns and between
the nonterminal node A and the sub-patterns, which configure how these sub-patterns form
the composite pattern represented by A. The probability of an And-rule is specified by the
energy terms defined on the relations. Note that one can specify different types of relations
in different And-rules, which allows multiple types of compositions to be modeled in the
same grammar.

• An Or-rule represents an alternative configuration of a composite pattern. It takes the form
of O → a, where O ∈ NOR is a nonterminal Or-node, and a is either a terminal or a
nonterminal node representing a possible configuration. The set of Or-rules with the same
left-hand side can be written as O → a1|a2| . . . |an. The probability of an Or-rule specifies
how likely the alternative configuration represented by the Or-rule is selected.

A stochastic And-Or grammar defines generative processes of valid entities, i.e., starting from an
entity containing only the start symbol S and recursively applying the grammar rules inR to convert
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Table 1: Examples of stochastic And-Or grammars

Terminal node Nonterminal node Relations in And-rules
Natural language
grammar

Word Phrase Deterministic “concatenating”
relations

Event And-Or
grammar [7]

Atomic action (e.g.,
standing, drinking)

Event or sub-event Temporal relations (e.g., those
proposed in [19])

Image And-Or
grammar [1]

Visual word (e.g.,
Gabor bases)

Image patch Spatial relations (e.g., those
specifying relative positions,
rotations and scales)
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Figure 1: An illustration of the learning process. (a) The initial grammar. (b) Iteration 1: learning a
grammar fragment rooted at N1. (c) Iteration 2: learning a grammar fragment rooted at N2.

nonterminal nodes until the entity contains only terminal nodes (atomic patterns). Table 1 gives a
few examples of stochastic context-free And-Or grammars that model different types of data.

3 Unsupervised Structure Learning

3.1 Problem Definition

In unsupervised learning of stochastic And-Or grammars, we aim to learn a grammar from a set
of unannotated i.i.d. data samples (e.g., natural language sentences, quantized images, action se-
quences). The objective function is the posterior probability of the grammar given the training data:

P (G|X) ∝ P (G)P (X|G) =
1

Z
e−α‖G‖

∏
xi∈X

P (xi|G)

where G is the grammar, X = {xi} is the set of training samples, Z is the normalization factor
of the prior, α is a constant, and ‖G‖ is the size of the grammar. By adopting a sparsity prior that
penalizes the size of the grammar, we hope to learn a compact grammar with good generalizability.
In order to ease the learning process, during learning we approximate the likelihood P (xi|G) with
the Viterbi likelihood (the probability of the best parse of the data sample xi). Viterbi likelihood has
been empirically shown to lead to better grammar learning results [20, 10] and can be interpreted as
combining the standard likelihood with an unambiguity bias [21].

3.2 Algorithm Framework

We first define an initial grammar that generates the exact set of training samples. Specifically, for
each training sample xi ∈ X , there is an Or-rule S → Ai in the initial grammar where S is the start
symbol and Ai is an And-node, and the probability of the rule is 1

‖X‖ where ‖X‖ is the number of
training samples; for each xi there is also an And-rule Ai → ai1ai2 . . . ain where aij (j = 1 . . . n)
are the terminal nodes representing the set of atomic patterns contained in sample xi, and a set of
relations are specified between these terminal nodes such that they compose sample xi. Figure 1(a)
shows an example initial grammar. This initial grammar leads to the maximal likelihood on the
training data but has a very small prior probability because of its large size.
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Starting from the initial grammar, we introduce new intermediate nonterminal nodes between the
terminal nodes and the top-level nonterminal nodes in an iterative bottom-up fashion to generalize
the grammar and increase its posterior probability. At each iteration, we add a grammar fragment
into the grammar that is rooted at a new nonterminal node and contains a set of grammar rules that
specify how the new nonterminal node generates one or more configurations of existing terminal
or nonterminal nodes; we also try to reduce each training sample using the new grammar rules and
update the top-level And-rules accordingly. Figure 1 illustrates this learning process. There are
typically multiple candidate grammar fragments that can be added at each iteration, and we employ
greedy search or beam search to explore the search space and maximize the posterior probability of
the grammar. We also restrict the types of grammar fragments that can be added in order to reduce
the number of candidate grammar fragments, which will be discussed in the next subsection. The
algorithm terminates when no more grammar fragment can be found that increases the posterior
probability of the grammar.

3.3 And-Or Fragments

In each iteration of our learning algorithm framework, we search for a new grammar fragment and
add it into the grammar. There are many different types of grammar fragments, the choice of which
greatly influences the efficiency and accuracy of the learning algorithm. Two simplest types of
grammar fragments are And-fragments and Or-fragments. An And-fragment contains a new And-
node A and an And-rule A → a1a2 . . . an specifying the generation from the And-node A to a
configuration of existing nodes a1a2 . . . an. An Or-fragment contains a new Or-node O and a set
of Or-rules O → a1|a2| . . . |an each specifying the generation from the Or-node O to an existing
node ai. While these two types of fragments are simple and intuitive, they both have important
disadvantages if they are searched for separately in the learning algorithm. For And-fragments, when
the training data is scarce, many compositions modeled by the target grammar would be missing
from the training data and hence cannot be learned by searching for And-fragments alone; besides,
if the search for And-fragments is not properly coupled with the search for Or-fragments, the learned
grammar would become large and redundant. For Or-fragments, it can be shown that in most cases
adding an Or-fragment into the grammar decreases the posterior probability of the grammar even
if the target grammar does contain the Or-fragment, so in order to learn Or-rules we need more
expensive search techniques than greedy or beam search employed in our algorithm; in addition, the
search for Or-fragments can be error-prone if different Or-rules can generate the same node in the
target grammar.

Instead of And-fragments and Or-fragments, we propose to search for And-Or fragments in the
learning algorithm. An And-Or fragment contains a new And-node A, a set of new Or-nodes
O1, O2, . . . , On, an And-rule A → O1O2 . . . On, and a set of Or-rules Oi → ai1|ai2| . . . |aimi

for each Or-node Oi (where ai1, ai2, . . . , aimi
are existing nodes of the grammar). Such an And-Or

fragment can generate
∏n
i=1mi number of configurations of existing nodes. Figure 2(a) shows an

example And-Or fragment. It can be shown that by adding only And-Or fragments, our algorithm is
still capable of constructing any context-free And-Or grammar. Using And-Or fragments can avoid
or alleviate the problems associated with And-fragments and Or-fragments: since an And-Or frag-
ment systematically covers multiple compositions, the data scarcity problem of And-fragments is
alleviated; since And-rules and Or-rules are learned in a more unified manner, the resulting gram-
mar is often more compact; reasonable And-Or fragments usually increase the posterior probability
of the grammar, therefore easing the search procedure; finally, ambiguous Or-rules can be better
distinguished since they are learned jointly with their sibling Or-nodes in the And-Or fragments.

To perform greedy search or beam search, in each iteration of our learning algorithm we need to
find the And-Or fragments that lead to the highest gain in the posterior probability of the grammar.
Computing the posterior gain by re-parsing the training samples can be very time-consuming if the
training set or the grammar is large. Fortunately, we show that by assuming grammar unambiguity
the posterior gain of adding an And-Or fragment can be formulated based on a set of sufficient statis-
tics of the training data and is efficient to compute. Since the posterior probability is proportional to
the product of the likelihood and the prior probability, the posterior gain is equal to the product of
the likelihood gain and the prior gain, which we formulate separately below.

Likelihood Gain. Remember that in our learning algorithm when an And-Or fragment is added
into the grammar, we try to reduce the training samples using the new grammar rules and update the
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Figure 2: (a) An example And-Or fragment. (b) The n-gram tensor of the And-Or fragment based
on the training data (here n = 3). (c) The context matrix of the And-Or fragment based on the
training data.

top-level And-rules accordingly. Denote the set of reductions being made on the training samples
by RD. Suppose in reduction rd ∈ RD, we replace a configuration e of nodes a1j1a2j2 . . . anjn
with the new And-node A, where aiji(i = 1 . . . n) is an existing terminal or nonterminal node that
can be generated by the new Or-node Oi in the And-Or fragment. With reduction rd, the Viterbi
likelihood of the training sample x where rd occurs is changed by two factors. First, since the
grammar now generates the And-node A first, which then generates a1j1a2j2 . . . anjn , the Viterbi
likelihood of sample x is reduced by a factor of P (A → a1j1a2j2 . . . anjn). Second, the reduction
may make sample x identical to some other training samples, which increases the Viterbi likelihood
of sample x by a factor equal to the ratio of the numbers of such identical samples after and before
the reduction. To facilitate the computation of this factor, we can construct a context matrix CM
where each row is a configuration of existing nodes covered by the And-Or fragment, each column
is a context which is the surrounding patterns of a configuration, and each element is the number of
times that the corresponding configuration and context co-occur in the training set. See Figure 2(c)
for the context matrix of the example And-Or fragment. Putting these two types of changes to the
likelihood together, we can formulate the likelihood gain of adding the And-Or fragment as follows
(see the supplementary material for the full derivation).

P (X|Gt+1)

P (X|Gt)
=

∏n
i=1

∏mi

j=1 ‖RDi(aij)‖‖RDi(aij)‖

‖RD‖n‖RD‖
×
∏
c(
∑
e CM [e, c])

∑
e
CM [e,c]∏

e,c CM [e, c]CM [e,c]

whereGt andGt+1 are the grammars before and after learning from the And-Or fragment,RDi(aij)
denotes the subset of reductions in RD in which the i-th node of the configuration being reduced
is aij , e in the summation or product ranges over all the configurations covered by the And-Or
fragment, and c in the product ranges over all the contexts that appear in CM .

It can be shown that the likelihood gain can be factorized as the product of two tensor/matrix co-
herence measures as defined in [22]. The first is the coherence of the n-gram tensor of the And-Or
fragment (which tabulates the number of times each configuration covered by the And-Or fragment
appears in the training samples, as illustrated in Figure 2(b)). The second is the coherence of the
context matrix. These two factors provide a surrogate measure of how much the training data support
the context-freeness within the And-Or fragment and the context-freeness of the And-Or fragment
against its context respectively. See the supplementary material for the derivation and discussion.

The formulation of likelihood gain also entails the optimal probabilities of the Or-rules in the And-
Or fragment.

∀i, j P (Oi → aij) =
‖RDi(aij)‖∑mi

j′=1 ‖RDi(aij′)‖
=
‖RDi(aij)‖
‖RD‖

Prior Gain. The prior probability of the grammar is determined by the grammar size. When the
And-Or fragment is added into the grammar, the size of the grammar is changed in two aspects:
first, the size of the grammar is increased by the size of the And-Or fragment; second, the size of the
grammar is decreased because of the reductions from configurations of multiple nodes to the new
And-node. Therefore, the prior gain of learning from the And-Or fragment is:

P (Gt+1)

P (Gt)
= e−α(‖Gt+1‖−‖Gt‖) = e−α((nsa+

∑n

i=1
miso)−‖RD‖(n−1)sa)
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Figure 3: An illustration of the procedure of finding the best And-Or fragment. r1, r2, r3 denote
different relations between patterns. (a) Collecting statistics from the training samples to construct
or update the n-gram tensors. (b) Finding one or more sub-tensors that lead to the highest posterior
gain and constructing the corresponding And-Or fragments.

Figure 4: An example video and the action annotations from the human activity dataset [23]. Each
colored bar denotes the start/end time of an occurrence of an action.

where sa and so are the number of bits needed to encode each node on the right-hand side of an
And-rule and Or-rule respectively. It can be seen that the prior gain penalizes And-Or fragments
that have a large size but only cover a small number of configurations in the training data.

In order to find the And-Or fragments with the highest posterior gain, we could construct n-gram
tensors from all the training samples for different values of n and different And-rule relations, and
within these n-gram tensors we search for sub-tensors that correspond to And-Or fragments with
the highest posterior gain. Figure 3 illustrates this procedure. In practice, we find it sufficient to
use greedy search or beam search with random restarts in identifying good And-Or fragments. See
the supplementary material for the pseudocode of the complete algorithm of grammar learning.
The algorithm runs reasonably fast: our prototype implementation can finish running within a few
minutes on a desktop with 5000 training samples each containing more than 10 atomic patterns.

4 Experiments

4.1 Learning Event Grammars

We applied our approach to learn event grammars from human activity data. The first dataset con-
tains 61 videos of indoor activities, e.g., using a computer and making a phone call [23]. The atomic
actions and their start/end time are annotated in each video, as shown in Figure 4. Based on this
dataset, we also synthesized a more complicated second dataset by dividing each of the two most
frequent actions, sitting and standing, into three subtypes and assigning each occurrence of the two
actions randomly to one of the subtypes. This simulates the scenarios in which the actions are de-
tected in an unsupervised way and therefore actions of the same type may be regarded as different
because of the difference in the posture or viewpoint.

We employed three different methods to apply our grammar learning approach on these two datasets.
The first method is similar to that proposed in [18]. For each frame of a video in the dataset, we
construct a binary vector that indicates which of the atomic actions are observed in this frame. In this
way, each video is represented by a sequence of vectors. Consecutive vectors that are identical are
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Stand Stand Standf f f f
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Throw 
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The  followed
by” relation
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Bend 
down

Squat Stand Bend 
down

The  co‐occurring  
relation

Figure 5: An example event And-Or grammar with two
types of relations that grounds to atomic actions

Table 2: The experimental results (F-
measure) on the event datasets. For
our approach, f, c+f and cf denote
the first, second and third methods
respectively.

Data 1 Data 2
ADIOS [15] 0.810 0.204
SPYZ [18] 0.756 0.582

Ours (f) 0.831 0.702
Ours (c+f) 0.768 0.624
Ours (cf) 0.767 0.813

merged. We then map each distinct vector to a unique ID and thus convert each video into a sequence
of IDs. Our learning approach is applied on the ID sequences, where each terminal node represents
an ID and each And-node specifies the temporal “followed-by” relation between its child nodes. In
the second and third methods, instead of the ID sequences, our learning approach is directly applied
to the vector sequences. Each terminal node now represents an occurrence of an atomic action. In
addition to the “followed-by” relation, an And-node may also specify the “co-occurring” relation
between its child nodes. In this way, the resulting And-Or grammar is directly grounded to the
observed atomic actions and is therefore more flexible and expressive than the grammar learned
from IDs as in the first method. Figure 5 shows such a grammar. The difference between the second
and the third method is: in the second method we require the And-nodes with the “co-occurring”
relation to be learned before any And-node with the “followed-by” relation is learned, which is
equivalent to applying the first method based on a set of IDs that are also learned; on the other hand,
the third method does not restrict the order of learning of the two types of And-nodes.

Note that in our learning algorithm we assume that each training sample consists of a single pattern
generated from the target grammar, but here each video may contain multiple unrelated events. We
slightly modified our algorithm to accommodate this issue: right before the algorithm terminates, we
change the top-level And-nodes in the grammar to Or-nodes, which removes any temporal relation
between the learned events in each training sample and renders them independent of each other.
When parsing a new sample using the learned grammar, we employ the CYK algorithm to efficiently
identify all the subsequences that can be parsed as an event by the grammar.

We used 55 samples of each dataset as the training set and evaluated the learned grammars on the
remaining 6 samples. On each testing sample, the events identified by the learned grammars were
compared against manual annotations. We measured the purity (the percentage of the identified
event durations overlapping with the annotated event durations) and inverse purity (the percentage
of the annotated event durations overlapping with the identified event durations), and report the F-
measure (the harmonic mean of purity and inverse purity). We compared our approach with two
previous approaches [15, 18], both of which can only learn from ID sequences.

Table 2 shows the experimental results. It can be seen that our approach is competitive with the
previous approaches on the first dataset and outperforms the previous approaches on the more com-
plicated second dataset. Among the three methods of applying our approach, the second method has
the worst performance, mostly because the restriction of learning the “co-occurring” relation first
often leads to premature equating of different vectors. The third method leads to the best overall
performance, which implies the advantage of grounding the grammar to atomic actions and simulta-
neously learning different relations. Note that the third method has better performance on the more
complicated second dataset, and our analysis suggests that the division of sitting/standing into sub-
types in the second dataset actually helps the third method to avoid learning erroneous compositions
of continuous siting or standing.

4.2 Learning Image Grammars

We first tested our approach in learning image grammars from a synthetic dataset of animal face
sketches [24]. Figure 6 shows some example images from the dataset. We constructed 15 training
sets of 5 different sizes and ran our approach for three times on each training set. We set the terminal
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Figure 6: Example
images from the syn-
thetic dataset
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Figure 7: The experimental results on the synthetic image dataset
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quantized 
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Atomic patterns
(terminal nodes)

Figure 8: Example images and atomic patterns of the real dataset [17]

Table 3: The average
perplexity on the testing
sets from the real im-
age experiments (lower
is better)

Perplexity
Ours 67.5

SZ [17] 129.4

nodes to represent the atomic sketches in the images and set the relations in And-rules to represent
relative positions between image patches. The hyperparameter α of our approach is fixed to 0.5.
We evaluated the learned grammars against the true grammar. We estimated the precision and recall
of the sets of images generated from the learned grammars versus the true grammar, from which
we computed the F-measure. We also estimated the KL-divergence of the probability distributions
defined by the learned grammars from that of the true grammar. We compared our approach with
the image grammar learning approach proposed in [17]. Figure 7 shows the experimental results. It
can be seen that our approach significantly outperforms the competing approach.

We then ran our approach on a real dataset of animal faces that was used in [17]. The dataset contains
320 images of four categories of animals: bear, cat, cow and wolf. We followed the method described
in [17] to quantize the images and learn the atomic patterns, which become the terminal nodes of the
grammar. Figure 8 shows some images from the dataset, the quantization examples and the atomic
patterns learned. We again used the relative positions between image patches as the type of relations
in And-rules. Since the true grammar is unknown, we evaluated the learned grammars by measuring
their perplexity (the reciprocal of the geometric mean probability of a sample from a testing set).
We ran 10-fold cross-validation on the dataset: learning an image grammar from each training set
and then evaluating its perplexity on the testing set. Before estimating the perplexity, the probability
distribution represented by each learned grammar was smoothed to avoid zero probability on the
testing images. Table 3 shows the results of our approach and the approach from [17]. Once again
our approach significantly outperforms the competing approach.

5 Conclusion

We have presented a unified formalization of stochastic And-Or grammars that is agnostic to the type
of the data being modeled, and have proposed an unsupervised approach to learning the structures
as well as the parameters of such grammars. Our approach optimizes the posterior probability of the
grammar and induces compositions and reconfigurations in a unified manner. Our experiments in
learning event grammars and image grammars show satisfactory performance of our approach.
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Appendix A Derivation of the Likelihood Gain

In this section, we derive the likelihood gain of adding an And-Or fragment into the grammar. In
our learning algorithm when an And-Or fragment is added into the grammar, we try to reduce the
training samples using the new grammar rules and update the top-level And-rules accordingly. We
denote the set of reductions being made on the training samples by RD. Suppose in reduction
rd ∈ RD, we replace a configuration e of nodes a1j1a2j2 . . . anjn with the new And-node A, where
aiji(i = 1 . . . n) is an existing terminal or nonterminal node that can be generated by the new Or-
node Oi in the And-Or fragment. With reduction rd, the Viterbi likelihood of the training sample x
where rd occurs is changed by two factors. First, since the grammar now generates the And-node
A first, which then generates a1j1a2j2 . . . anjn , the Viterbi likelihood of sample x is reduced by a
factor of:

P (A→ a1j1a2j2 . . . anjn) =

n∏
i=1

P (Oi → aiji)fA(a1j1a2j2 . . . anjn)

where fA is the probability distribution defined on the relations in the And-rule A→ O1O2 . . . On.
In the derivation below we omit the fA term for clarity, i.e., we assume deterministic relations in
the And-rule. In the final likelihood gain formula, we can add the fA term back by multiplying
the likelihood gain with the factor of

∏
rd∈RD fA(rd) where fA(rd) is the value of the fA term in

reduction rd.

Second, the reduction may make sample x identical to some other training samples, which increases
the Viterbi likelihood of sample x by a factor equal to the ratio of the numbers of such identical
samples after and before the reduction. This factor can be computed based on the context matrix
CM , in which each row is a configuration of existing nodes covered by the And-Or fragment, each
column is a context which is the surrounding patterns of a configuration, and each element is the
number of times that the corresponding configuration and context co-occur in the training set. So
the second factor is equal to: ∑

e′ CM [e′, x− e]
CM [e, x− e]

where x− e denotes the context of configuration e in sample x, and e′ in the summation or product
range over all the configurations covered by the And-Or fragment.

Putting these two types of changes to the likelihood together, we can formulate the likelihood gain
of learning from the And-Or fragment as follows.

P (X|Gt+1)

P (X|Gt)
=

∏
rd∈RD

(
n∏
i=1

P (Oi → aiji)

) ∑
e′ CM [e′, x− e]
CM [e, x− e]

=

n∏
i=1

mi∏
j=1

P (Oi → aij)
‖RDi(aij)‖ ×

∏
c(
∑
e CM [e, c])

∑
e
CM [e,c]∏

e,c CM [e, c]CM [e,c]

whereGt andGt+1 are the grammars before and after learning from the And-Or fragment,RDi(aij)
denotes the subset of reductions in RD in which the i-th node of the configuration being reduced
is aij , e′ and e in the summation or product range over all the configurations covered by the And-
Or fragment, and c in the product ranges over all the contexts that appear in CM . By applying
the Lagrange multiplier method, it can be shown that the probabilities of Or-rules in the And-Or
fragment must take the following values in order to maximize the likelihood gain:

∀i, j P (Oi → aij) =
‖RDi(aij)‖∑mi

j′=1 ‖RDi(aij′)‖
=
‖RDi(aij)‖
‖RD‖

Since the prior probability of the grammar does not involve the rule probabilities, the above optimal
values of rule probabilities also maximize the posterior gain. Putting the optimal rule probabilities
into the likelihood gain formula, we get:

P (X|Gt+1)

P (X|Gt)
=

∏n
i=1

∏mi

j=1 ‖RDi(aij)‖‖RDi(aij)‖

‖RD‖n‖RD‖
×
∏
c(
∑
e CM [e, c])

∑
e
CM [e,c]∏

e,c CM [e, c]CM [e,c]
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Appendix B Interpretation of the Likelihood Gain

Despite the complex form of the likelihood gain, it has an intuitive interpretation. We first define the
multiplicative coherence of a tensor. A tensor is multiplicatively coherent when the numbers in the
tensor are proportional. More specifically, given a tensor T of order n in which the i-th index ranges
from 1 to mi, T is multiplicatively coherent iff. there exists a constant µ and a set of constants
βij (i = 1, . . . , n; j = 1, . . . ,mi) such that

T [a1, a2, . . . , an] = µ

n∏
i=1

βiai

The multiplicative coherence of a tensor T can be measured with the following formula, which is
extended from a similar measurement on matrices [22].∏n

i=1

∏mi

j=1 ‖Ti(aij)‖‖Ti(aij)‖

‖T‖(n−1)‖T‖
∏
e ‖T (e)‖‖T (e)‖

where Ti(aij) denotes the sub-tensor of T in which the i-th index takes the value of aij , e in the
product ranges over all the elements of T , and ‖ · ‖ denotes the summation of all the elements in the
enclosed tensor. It can be shown that this formula has a larger value if the elements in the tensor are
closer to being multiplicatively coherent, and the formula reaches its maximal value of 1 when the
the tensor is perfectly coherent.

Now let us rewrite the likelihood gain formula. Let RD(e) be the subset of reductions in RD in
which the configuration being reduced is e. Based on the definition of the context matrix CM , we
have ‖RD(e)‖ =

∑
c CM [e, c] and ‖RD‖ =

∑
e,c CM [e, c]. So we can rewrite the likelihood gain

as:∏n
i=1

∏mi

j=1 ‖RDi(aij)‖‖RDi(aij)‖

‖RD‖(n−1)‖RD‖
∏
e ‖RD(e)‖‖RD(e)‖×

∏
c(
∑
e CM [e, c])

∑
e
CM [e,c] ×

∏
e(
∑
c CM [e, c])

∑
c
CM [e,c]∏

e,c CM [e, c]CM [e,c] × (
∑
e,c CM [e, c])

∑
e,c

CM [e,c]

The first of the two factors in the formula measures the multiplicative coherence of the n-gram
tensor of the And-Or fragment. The n-gram tensor NA of an And-Or fragment is an order n tensor
where n is the number of Or-nodes in the fragment. The i-th dimension of the n-gram tensor NA is
indexed by the set of nodes ai1, ai2, . . . , aimi that the Or-node Oi can generate. The tensor element
NA[a1, a2, . . . , an] is the number of times the configuration consisting of a1, a2, . . . , an as defined
by the And-Or fragment appears in the training samples. It can be seen that if the generation of
child nodes at each Or-node is independent of that at the other Or-nodes in the And-Or fragment,
then the resulting n-gram tensor NA is very likely to be multiplicatively coherent. Therefore, the
first factor of the formula provides a surrogate measure of how much the training data support the
context-freeness within the And-Or fragment. The second factor of the formula, on the other hand,
measures the multiplicative coherence of the context matrix CM (which is an order 2 tensor). If the
generation of configurations at the And-Or fragment is independent of its context, then the resulting
context matrix CM is very likely to be multiplicatively coherent. Therefore, the second factor of the
formula provides a surrogate measure of how much the training data support the context-freeness
of the And-Or fragment against its context. By combining these two factors, the likelihood gain
measures the support of the training data to the context-freeness of the new And-Or fragment when
it is added into the And-Or grammar.

Appendix C The Complete Algorithm

We have described the learning algorithm framework in section 3.2 and the algorithm of finding
And-Or fragments in section 3.3. Here we give the pseudocode of the complete algorithm. We
employ greedy search in the pseudocode, and it is straightforward to extend the code to perform
beam search.

In computing the posterior gain of an And-Or fragment, we need to construct its context matrix. The
complete context matrix can be very large and sparse, and we restrict the range of the context to
compress the matrix and accelerate the computation.
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Algorithm 1 Structure Learning of And-Or Grammars
Input: the training set X
Output: an And-Or grammar G

1: G⇐ the initial grammar constructed from X
2: loop
3: F ⇐ {}
4: repeat
5: f ⇐ an And-Or fragment with two Or-nodes and two leaf nodes constructed from a ran-

domly selected bigram from X
6: optimize the posterior gain of f using greedy or beam search via four operators:

adding/removing Or-nodes, adding/removing leaf nodes
7: if f increases the posterior gain and f 6∈ F then
8: add f into F
9: end if

10: until after a pre-specified number of iterations
11: if F is empty then
12: return G
13: end if
14: f∗ ⇐ the fragment in F with the highest posterior gain
15: insert f∗ into G
16: reduce X using the grammar rules in f∗ and update G accordingly
17: end loop

Note that the grammar learned with the approach described so far does not contain any recursive
grammar rule, because the new grammar rules introduced in each learning iteration only specify
how the new nonterminal node generates existing terminal or nonterminal nodes but not the reverse.
Recursive grammar rules, while not useful in some types of grammars (e.g., image grammars),
can be important in other types of grammars (e.g., natural language grammars). In order to learn
recursive grammar rules, at the end of each learning iteration we can additionally search for grammar
rules that generate the new And-node from existing nonterminal nodes based on the same posterior
probability objective.

Appendix D Experimental Results

In section 4.2 we have described our experiments of learning image grammars and shown that our
approach outperforms the competing approach. Here we illustrate a few grammars learned in the
experiments to gain more insight. Figure 9 shows the top levels of the true grammar used to produce
the synthetic dataset of animal face sketches [24]. Figure 10 shows the top levels of the grammar
produced by our learning approach when trained on 400 synthetic images. It can be seen that the
learned grammar is equivalent to the true grammar, although it unnecessarily separates the three
configurations of node H in the true grammar into two groups. Figure 11 shows the top levels of
the grammar produced by the competing approach [17] which was trained on the same set of 400
synthetic images. This grammar has a very different structure from the true grammar in that it
enumerates a large number of sub-grammars each representing a small subset of valid compositions,
which are then grouped under a few top-level Or-nodes. As a result, the size of the grammar is
about 100 times larger than the true grammar and the grammar learned by our approach. It is also
less general than the true grammar, as indicated by the low recall. We believe that the separation
of learning And-nodes and Or-nodes in [17] is to blame. In contrast, our approach learns And-
nodes and Or-nodes in a unified manner via And-Or fragments, which leads to a more compact and
accurate grammar.
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Figure 9: The top three levels of the true grammar that produces the synthetic dataset of animal face
sketches [24]. The eight Or-nodes in the second level represent different parts of the animal face,
e.g., ears, eyes, nose and mouth. The spatial relations specified at the And-nodes are not shown.
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Figure 10: The top levels of the grammar produced by our learning algorithm which was trained on
400 synthetic images.
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Figure 11: The top levels of the grammar produced by the competing algorithm [17] which was
trained on the same set of 400 synthetic images.
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