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Abstract

Compositional Models are widely used in Computer Vision
as they exhibit strong expressive power by generating a com-
binatorial number of configurations with a small number of
components. However, the literature is still missing a theo-
retical understanding of why compositional models are bet-
ter than flat representations, despite empirical evidence as
well as strong arguments that compositional models need
fewer training examples. In this paper we try to give some
theoretical answers in this direction, focusing on AND/OR
Graph (AOG) models used in recent literature for represent-
ing objects, scenes and events, and bringing the following
contributions. First, we analyze the capacity of the space of
AND/OR graphs, obtaining PAC (Probably Approximately
Correct) bounds for the number of training examples suf-
ficient to guarantee with a given certainty that the model
learned has a given accuracy. Second, we propose an algo-
rithm for supervised learning AND/OR Graphs that has the-
oretical performance guarantees based on the dimensionality
and number of training examples. Finally, we observe that
part localization, part noise tolerance and part sharing leads
to a reduction in the number of training examples required.

Introduction

PAC learning concerns mathematical bounds for the num-
ber of training examples N (e, §) sufficient to obtain a max-
imum error ¢ > 0 in learning a concept, at a confidence
level 1 — §. Such PAC learning bounds have been previ-
ously derived for k-CNF (conjunctive normal form) or k-
DNF (disjunctive normal form) logical expressions (Valiant
1984), finite automata (Angluin 1988; Kearns and Valiant
1994) and regular expressions (De La Higuera and Oncina
2005) with rather discouraging results requiring unrealisti-
cally large numbers of training examples that don’t match
our intuition.

In the Computer Vision literature people argue for the use
of compositional models (Bienenstock, Geman, and Potter
1997; Jin and Geman 2006; Zhu and Mumford 2006), which
are hierarchical representations of complex objects through
reusable and localized parts, and observed experimentally
(Tang et al. 2010) that sharing parts between objects results
in better model accuracy and require fewer training exam-
ples. However, so far there has not been a mathematical anal-
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ysis of these findings and no theoretical reasons why hierar-
chical models should be preferred to flat ones.

In this paper we will study hierarchical AND/OR graph
(AOG) representations (Chen et al. 2007; Si and Zhu 2012;
Wu et al. 2009; Zhu and Mumford 2006), which are gen-
eral forms of compositional models. We will characterize the
space of AOG graphs by certain quantities (d, b, b,, n) such
as maximum depth d, maximum branching number b, b, at
AND/OR nodes respectively and number of primitives n.
As opposed to the regular grammars, the AOG graphs are
not recursive and usually have small depths (e.g. 5). The
AND nodes represent the composition of a part or object
from its elements while the OR nodes represent alternative
configurations. The primitives are the basic elements of the
AOG and they are quite general: they can be filter responses,
sketches or trained classifiers.

Our study leads to answers for the following claims:

1. The capacity of the space of AOGs is much smaller than
the capacity of the k-CNF or k-DNF space. We will see
that the capacity directly relates to the number of training
examples sufficient for learning a concept.

2. Part localization, part noise tolerance and part sharing be-
tween categories have a positive effect on reducing the
number of training examples for learning an object.

3. Experiments for supervised learning of parts, AOGs from
parts and AOGs directly from images and comparisons
between learning from images and learning from parts.

Even though the conclusions we derive may sound famil-
iar, it is the first quantitative work that provides a theoretical
foundation to the study of compositional models.

The AOG and Hypothesis Spaces

The AOG is a hierarchical representation, used to repre-
sent objects through intermediary concepts such as part tem-
plates. It is the basis of the generative image grammar (Zhu
and Mumford 2006).

The AOG is defined on an instance space 2 = {0,1}".
The space (2 represents all possible binary responses of n
Boolean functions ¢t; : I — {0,1},i = 1,n called ter-
minal nodes on the current image I. The terminal nodes
are binary responses of some image filters. For example, a
terminal node could be the response of an Adaboost classi-
fier or a thresholded Gabor filter response (Wu et al. 2009)
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Figure 1: An example of an AND/OR graph of a dog where some parts (ears, eyes, nose, mouth) have alternative appearances.

at a certain position and orientation. The detection pro-
cess is defined as the vector of terminal node responses
t: I —-Q={0,1}".
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Figure 2: Samples from the dog AND/OR graph from Figure
1.

The AOG is a boolean function g :  — {0, 1} and it can
be used to construct an object detector go : I — {0,1}, g0 =
g o t where t is the detection process. An example of an
AOG for a dog face is shown in Figure 1. The dog face is
composed of a number of part templates that are themselves
represented as a combination of the 18 types of sketches (ter-
minal node responses) shown in Figure 3 left.

The AOG boolean function g : Q@ — {0, 1} is constructed
from AND and OR nodes. An AND node represents the
composition of its elements and has value 1 if and only if
all its elements are present (i.e. have value 1). For example
a frontal face model could consist of an AND of four parts:
two eyes, a nose and a mouth. The OR nodes represent de-
formations or alternate configurations of the elements. For
example the dog faces in Figure 1 have two types of ears,
obtaining the ear concept using the OR of the two ear types.

An AOG can be extended to a Bernoulli AOG by replac-
ing the AND/OR logical operations with noise-tolerant ver-
sions based on majority voting (e.g. a 8 child AND is re-
placed with a 6 out of 8 majority), or even to a real AOG
by replacing the AND/OR operations with real value equiv-
alents (e.g. the AND is replaced by a logistic classifier, the
OR by a soft-max). It is easy to see that the real AOG gen-
eralizes Boosting and logistic regression, thus its PAC anal-
ysis is more complex than the bounds for linear classifiers
(Schapire et al. 1998; Kakade, Sridharan, and Tewari 2008).

This is why, in this work we take a first step and restrict
our attention to Boolean and Bernoulli AOG, leaving the real
AOG for a later study.

Some parameters characterizing an AOG are: its depth d
representing the number of AND and OR layers, the maxi-

mum branching numbers b, for the AND nodes and b, for
the OR nodes and the maximum number n of values of the
terminal nodes. The AND and OR layers must alternate be-
cause two consecutive layers of the same type can be merged
into a single layer. This is why the depth d is defined as the
number of pairs of AND/OR layers.

For example, the AOG from Figure 1 has parameters d =
3,b, = 4,0, = 2,n = 19. In general, object AOGs have
small depth (at most 5) with branching numbers b, on the
order of 3 to 5 and b,, on the order of 5 to 7.

We define a concept as any subset G C (2 and for any
function g : Q@ — {0, 1}, we define Q, = {x € Q, g(z) =
1}. Learning the concept G means finding g :  — {0,1}
such that 2, = G. This boolean function g can be a logical,
Bernoulli or real AOG, depending on the type and level of
noise contained in the concept G. For an AOG g, €}, is the
language of g. Because @ = {0, 1}" is finite, the concept
Qg is a finite set. We will denote by Qé the set of all images

that generate terminal node responses from €2,. Thus Qé can
be considered the visual language of g.

Define the hypothesis space H(d, b, b,,n) C 2 of the
AOG as the space of all concepts that can be represented
by AOGs with maximum depth d, branching numbers b,, b,
for the AND/OR nodes respectively and instance space {2 =
{0, 1}". To measure how far a concept G is from a learned
AOG g : Q — {0,1}, define for any pdf u over € the error
as

eTTu(ga G)= M(GAQQ) = u(G — Qg) + N(Qg -G) ()

where AAB = (A — B) U (B — A) is the symmetric differ-
ence between sets A and B.

Capacity and Bounds for Supervised Learning
AOGs

Because the instance space 2 = {0, 1}" is finite due to the
quantization of the possible terminal node responses, the hy-
pothesis space H = H(d, ba, bo,n) C {0, 1} is also finite,
so the following theorem (Blumer et al. 1987) applies
Theorem 1 (Haussler) Let H be a finite hypothesis space
and €, > 0. If the number of training examples is

N(e,8) > %(m | —l—ln%) %)
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Figure 3: Left: Atomic elements (sketches) that can be
placed at different positions to construct binary images.
Right: Training images exhibiting occlusion, clutter and ran-
dom object position.

then for any pdf p and any hypothesis h € H that is
consistent with all training examples from G we have that
P(erry(h,G) <€) >1—0.

Based on this theorem, we define the capacity of an
AOG space as C(d, by, bo,n) = In|H(d, by, by, n)|, Wwhere
H(d, by, b,,n) is the AOG hypothesis space of depth d,
breadth b,, b, for the AND/OR nodes and n terminal nodes.
Using eq. (2) we can directly relate the number of training
examples with the capacity of the hypothesis space .
Proposition 1 The capacity of the space H(d, by, b,,n) can
be bounded as

C(d,ba, by, n) < (babo)Inn 3)
Proof. We compute N (d, by, b,,n) = |H(d,ba,bo,n)| re-
cursively. Consider all AOGs of depth d + 1. Then the top
OR node has at most b, branches. Each branch is an AND
node with at most b, children of depth at most d. As each of
these children can have at most N(d, b,, b,, n) variants, the
number of variants of each branch of the top OR node is at
most N (d, by, by, n)’, hence we have

N(d+ 1,b4,b0,n) < N(d, ba, by, n)"*"

By recurrence we get that

N(d, baybo,n) < N(1, by, by, n) et
By the same argument we have that N (1, by, by, n) < nbabo
so we obtain the desired result. [J

A weaker bound can be obtained by treating the AOG as a
feed-forward neural network. It is known (Kearns and Vazi-
rani 1994) that the VC dimension of the space N4 ¢ of neural
networks with at most s nodes, each with VC dimension d,
is VC(N; q) < 2dslog(es).

Example 1. Assume that we want to learn an object such
as those in Figure 2, of size 15 x 15 x 18. This means the ob-
ject has elements on a 15 x 15 grid with 18 possible elements
at each grid position. The model is an AOG of depth d = 1,
which is the OR of a large number of AND templates each
having at most 50 elements, thus b, = 50. This is exactly
the 50-DNF with n = 4050 literals (a literal is the presence
of a sketch at any of the 225 possible positions with any of
the 18 possibilities), so it has a size of at most 24050”°
capacity of ~ 10180,

Example 2. Suppose we want to learn the same object
with an AOG of depth d = 2 with b, = b, = 5, with the

and a

same terminals, thus n = 4050. The class of such AOGs has
a capacity of C(2,5,5,4050) < 252 1n 4050 ~ 5192 which
is much smaller than the 50-DNF from Example 1.

The 50-DNF from Example 1 represents the object as the
union of all possible object images, which is impractical.
The space of AOGs from Example 2 represents a space of
pattern used to generate the object, trying to divide the object
variability into a number of hidden factors.

Capacity of the AOG with Localized Parts. The capac-
ity obtained in the previous section can be further reduced
if we take into account the part locality. Usually parts are
composed of a number of elements that are spatially located
near each other. Thus even though the terminal nodes can in
principle be any of the n elements, we can assume that the
parts are localized, thus for example the terminal nodes for
a part can be one of [ elements close to the first terminal,
which can be any of all n elements. In this case we have
Proposition 2 The capacity with localized parts can be
bounded as

C(d, ba,bo,n, 1) < b 16 In(ni" 1) 4
Proof. The same recurrence formula holds as in Prop. 1. As-
suming locality we get that N(1,b,,b,,n,1) < (nlbe—1)bo
since in an AOG of depth 1, there are b, OR nodes, each OR
node having at most n/%=~! versions. (J

Example 3. Assume that we want to learn the same tem-
plate as in Example 2 but assuming locality for the parts
with [ = 450, thus all part terminal are in a 5 X 5 win-
dow that can be anywhere. In this case the capacity is
C(2,5,5,4050,450) < 5-521n(4050 - 450*) ~ 4093 which
is smaller than 5192 from Example 2.

The computations from Examples 1, 2 and 3 indicate that
the space of AOGs H(d, by, b,, n) is much smaller than the
space of k-DNF for practical applications, so the number of
training examples required for learning is also greatly re-
duced.

Figure 4: Real images
sponses.
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Supervised Learning of AOGs

Supervised learning of AOGs assumes that the the object and
its parts have all been manually delineated. This does not
completely specify the AOG since the same part could have
different appearances in different images, and the learning
must be able to separate them into a number of OR branches.

To formalize the learning problem, we assume we are
given a number of binary images x; € {0,1}",i=1,...,m,
where 2D or 3D images have been transformed to vectors..
To simplify the setup, we assume that in all images the ob-
jects have the same size but can be at different locations.



The ideal image will have zeros except at the object loca-
tions where it is 1. However, due to noise we assume that
each bit can switch to the other value with probability ¢
(Bernoulli noise). Examples of such noisy binary images are
shown in Figure 3, right. This setup mimics the binary im-
ages obtained by thresholding Gabor filter responses such
as those shown in Figure 4. Even though this binary setup
seems like a simplification, it keeps most of the challenges
existent in real images (occlusion, clutter) and is very sim-
ilar to the setup in the Active Basis framework (Wu et al.
2009).

Part Learning using Two-Step EM

Each image can serve as a training example for many parts.
In the AOG each node represents a concept and in the super-
vised case they can be learned recursively starting from the
bottom. Since the parts have been delineated (e.g. by bound-
ing boxes), each part can learned separately from the training
examples as the OR of a number of possible appearances,
each being the AND of a number of terminal elements.

In the rest of this section we will show how to learn one
part with performance guarantees. Based on the manual an-
notation, the part examples are cropped from the training
images and need to be clustered based on their appearances
into a number k of clusters, specified by the user.

Depending on the problem, the cropped image dimen-
sions might be naturally clustered into one or more of
groups. Working with each group separately, we can as-
sume that all part images to be clustered have the same di-
mension d. Thus we have a number of training examples
X1, .y Xm € {0,1}4,

Let D(x,y) = ||x — y||1 be the Hamming distance. We
assume that the part images are generated as a mixture of k
true part templates Py, ..., Py, corrupted by Bernoulli noise
with level ¢. Let ¢ = min;; D(P;, P;)/d be the separation
between the true part templates.

In this case learning can be done with the two-step EM

algorithm 1. The pruning step 6 picks the first template 7’ i(l)
randomly, the second one furthest from the first one, the
third template as the one at largest distance from the set con-
taining the first two templates, and so on until there are k
templates.

Assume that the following conditions hold:

164q 8q )
3+2¢ 3(1-2

+2973(1 - 29)"

C2: d(1 -2 24, — In —
( q) > max( ,CBnC)

C3: dc?(1 —2q)? > 3456q1n 8¢l
1 In2
C4: mc2(1 —2¢)? > 27648ql< + r;)
1 1
where B = (1 f2q)ln— > 0.

LaE::mm({dlﬁ)fh
27 ¢(1—2q)+2q
(Barbu, Wu, and Zhu 2013) that:
Theorem 2 Let m examples be generated from a mixture
of k binary templates under Bernoulli noise of level q and
Wi > Wi foralli. Let €,0 € (0, 1). If conditions C'1 — C4
hold and in addition the following conditions hold

Cl: ¢ > max(

). It was proved in

12 In 2
12k
In —.

Wmin 0

1. The initial number of clusters is | =

2. The number of examples is m >

8
3. Th t > —1In .
e separation is c iB cw

; Lo 3 18m? 12k
4. The dimension is d > max (qE2 In 5 ,2In 5 )
Then with probability at least 1 — 6, the estimated templates
after the round 2 of EM satisfy:
D(T"P;) < D(mean(S;), P;) + €q
where S; are the training examples coming from the mixture
component P;.
This means the the two step EM does almost as well as if we
knew the cluster assignments for all training examples.

Algorithm 1 Two-step EM for Learning Bernoulli Tem-
plates

Input: Examples S = {x1,...,x,,} C {0,1}¢
Output: Part Templates T;,i =1, .., k
1 Initialize TZ(.O) as [ random training examples
2 Tnitialize w'” = 1/1 andlqo < 1/2 such that
(1 —qo) = —mlJnD(T( ),T(-O)).

2d J
3 E-Step: Compute foreach: =1, ...,1

D(x;,T{” _D(x;. Ty .
filx;) = g2 Juf%WDM®>J:LW

0)
D fz(xy) ‘
(x;) = — JiXG)
T W ) "

4 M-Step: Update w( ) = Z;” 17 pE (xj)/m and

W _ Z PV (x;

Pruning: Remove all TE ) W1th wl( )
1)

Pruning: Keep only k templates T,

1
<U)T—E

far apart.

Initialize w,gl) =1/k and ¢; = qo.
E-Step: Compute
fi(xj) - qlD(X7 T )(1 - QI)d_D(X%Ti)mj = 17 e

wiV f;(x)
S wy fi (%)
9 M-Step: Update w(z) = Z 1p£ (x;)/m and

2) (2
T( (2 sz ) XJ

10 Round the elements of T(Q) 1, ..., k to the nearest
integer.

0 J O W

pl(-Q)(Xj) = j=1,...m

Noise Tolerant Parts

The part learned in the previous section consist of the mix-
ture centers {T; }77, weights {w; }17 and estimated noise §.
These components can be used to obtain the part probability
from the mixture model

Zw(jD(xT1 _ )d D(x,T;)



k

p(x) = (1-4q) Zw (G/(1 = g)Pe=m

Part detection in an 1mage is obtained by restricting to
all windows x of the same size d as the training examples,
and comparing the mixture probability p(x) with a thresh-
old. This way the part representation is one AND/OR layer
in a Bernoulli AOG. When there is a single mixture com-
ponent (k = 1), comparing the probability with a threshold
is equivalent to comparing the Hamming distance D(x, T)
with a threshold.

The output of the part detection is a binary image with 1
at the locations where the part was detected and the rest 0.
The probability threshold can be tuned to obtain detection
images satisfying the Bernoulli noise assumptions that the
probability g; of a switch from 1 (part) to O (no part) is the
same as the probability of a switch from O to 1.

A~ R
o7 J%Aw{\w 77NN
-, \|| /\|/| /\._ /\n
I "
|| PR o EUVSRN ; i |
Al £ s
-
’/\__ﬁq{\/w A
N

Figure 5: Large parts are more noise tolerant and can help
reduce the noise level for object learning. Shown are two
noisy binary images with ¢ = 0.1 (left) and the part detec-
tion results (right) using noise tolerant parts.

In fact, if the part is large (e.g. d > 5), this new Bernoulli
noise level ¢; is much lower than g, as illustrated in Figure 5.
Assuming there is only one mixture component T, the prob-
ability to detect the part using the threshold D(x, T) < kg

ko
is p11 = Z (?) q'(1— . q)*~" while the probability of a
i=0 0
false detection is pg; = Z i1 -
taking ko = Ld/2j we ‘obtain g = 1—p11 = po1 =
nggzj (Z)q {(1 — q)%, the left tail of the Binomial dis-
tribution. For example if d = 9 and ¢ = 0.1 we obtain
q1 < 1073,

Parts can be obtained in other ways than using the two-
step EM, for example they can be borrowed from other ob-
jects or they can be learned in an unsupervised way as in
(Fidler and Leonardis 2007; Zhu, Chen, and Yuille 2009).
When the parts are borrowed from other objects at the same
time the OR relationships between alternate part appear-
ances can be borrowed. The parts, with or without the OR
relationships can be transformed into noise tolerant versions
using the Hamming distance and the mixture model, as de-
scribed above.

q)". In this case

Recursive Graph Learning

From the part detection we obtain a detection binary image
for each part. These part detection images can be stacked to-
gether into a 3D binary image. Learning the next AND/OR
layer of the AOG proceeds again using the two-step EM on
these 3D binary images. The noise level can be considered
as the largest noise level among the part detections. In gen-
eral, learning in from the parts is easier because of noise
level is smaller than the input level of noise ¢ of the terminal
elements.
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Figure 6: Each row shows one of the 13 noise tolerant parts
used to train the AOG in scenario 1. Each part is the OR
mixture of the AND templates shown in that row.
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Experiments

We conduct an experiment that compares learning an object
from parts vs. learning it directly from images.

Part Sharing Vs. Learning from Scratch

In this experiment we compare learning an object AOG from
parts vs. learning it from images. Our goal is to show that
part sharing across categories (transfer learning) can reduce
the number of training examples N (4).
We consider learning an AOG dog model from training
examples under two scenarios.
1. The input noisy image is parsed into parts obtained from
other objects. There are totally 13 noise tolerant parts



shown in Figure 6, among which the 8 parts that compose
the dog model (ears, eyes, nose, mouth, head), borrowed
from other animals. Part detection is run for each of these
parts obtaining 13 detection images for each input image.
Then the dog AOG is learned from the 3D binary image
obtained from stacking the 13 binary detection images.

2. The dog model is learned directly from the training im-
ages by learning the parts first using the two-step EM al-
gorithm described in the previous section.

The dog AOG from Figure 1 was learned from different
numbers of training examples using both scenarios.

In the first scenario, the AOG was learned from the parts
as a mixture with only one cluster (k = 1). The mixture
center is obtained as the average of the binary images, as in
step 4 of Algorithm 1. The mixture center was then made
binary by rounding to the nearest integer.

In the second scenario, the dog parts were learned first
using two-step EM, then the AOG was learned from the dog
parts in a similar way to scenario 1.
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correctly vs number of training examples for two noise lev-
els. Left: ¢ = 0.1, right: ¢ = 0.2

In the two images of Figure 7 are shown the percentage
of times the entire dog AOG was learned correctly (thus the
error is € = 0) vs the number of training examples for two
noise levels ¢ = 0.1 (left) and ¢ = 0.2 (right). Each data
point was obtained as the average of 100 independent runs.

For both noise levels, the AOG was learned correctly
more often when using borrowed parts than when learning
the parts directly from the training examples. Also we ob-
serve that given sufficient training examples, the dog AOG
can be learned with high probability.

Conclusion

In this paper we made the following contributions.

1. We computed the capacity of the space of AOGs of cer-
tain maximum depth, breadth and with a given number of
terminal nodes and relate the capacity with the number of
training examples that guarantee a certain success rate.

2. We showed that the capacity of an AOG is much smaller
than the capacity of the k-DNF or k-CNF expressions, so
fewer training examples are needed to train a hierarchical
representation by parts than a flat representation.

3. We observed that part localization reduces the capacity
and the number of training examples.

4. We obtained an algorithm with theoretical guarantees for
learning the AOG recursively in a supervised manner.

5. We presented empirical evidence that part noise tolerance
and part sharing between object categories (transfer learn-
ing) results in a reduction in the number of training exam-
ples.

In the future we plan to extend this work to real AOGs that
define concepts using score functions obtained by weighted
linear aggregation similar to Boosting/SVM and derive
learning bounds and algorithms in these more general set-
tings.
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