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Abstract

In this paper, we propose a weakly supervised method for
simultaneously learning scene parts and attributes from a
collection of images associated with attributes in text, where
the precise localization of the each attribute left unknown.
Our method includes three aspects. (i) Compositional scene
configuration. We learn the spatial layouts of the scene
by Hierarchical Space Tiling (HST) representation, which
can generate an excessive number of scene configurations
through the hierarchical composition of a relatively small
number of parts. (ii) Attribute association. The scene at-
tributes contain nouns and adjectives corresponding to the
objects and their appearance descriptions respectively. We
assign the nouns to the nodes (parts) in HST using non-
maximum suppression of their correlation, then train an
appearance model for each noun+adjective attribute pair.
(iii) Joint inference and learning. For an image, we com-
pute the most probable parse tree with the attributes as an
instantiation of the HST by dynamic programming. Then
update the HST and attribute association based on the in-
ferred parse trees. We evaluate the proposed method by (i)
showing the improvement of attribute recognition accuracy;
and (ii) comparing the average precision of localizing at-
tributes to the scene parts.

1. Introduction
In the past decade, researchers have made significant

progress in scene categorization [1, 16, 18]. Most of the
popular methods first exact features, such as scene gist [1],
spatial pyramid [16] and Tangram [8], then feed to SVM
classifiers. In contrast to basic level scene categorization,
natural scenes often contain semantic details that might be
attributed to more than one category. Thus the interest in

studying the scene attributes [6, 7] has been growing. A
typical recent work is by Patterson and Hays [7] which iden-
tified 102 scene attributes through human perception exper-
iments and trained 102 independent classifiers. Such meth-
ods obtained interesting results and are potentially useful
for image retrieval, however, they have some obvious lim-
itations: the attributes are not associated with the specific
image regions (called “scene parts” in the following), and
not explicitly linked to the appearance models of the parts.

In this paper, we propose a weakly supervised method
to study the scene configuration and attribute localization.
As shown in Fig. 1, our approach begins with a collection
of images with attributes in text (Fig.1(a)). The training
images are labeled with the presence of several attributes,
with the precise localization of the attributes left unknown.
Our method includes three aspects as below.

(i) Hierarchical scene configuration and part learn-
ing. A typical scene category, e.g. countryside or city
street, contains a huge number of configurations with ob-
jects (buildings, road etc.) and regions (sky, field etc.) in
different layouts. To learn the meaningful hierarchy and
scene parts, we utilize the Hierarchical Space Tiling (HST)
[17] to represent the scenes. As shown in the top row of
Fig.1(b), the HST quantizes the huge space of scene con-
figurations by a stochastic And-Or Tree (AOT) representa-
tion where an And-node represents a way of decomposing
the node, an Or-node represents alternative decompositions,
and the terminal nodes are primitive rectangles correspond-
ing to the scene parts. Through a learning-by-parsing strat-
egy, we can learn the HST/AOT model and a scene part
dictionary, in which each scene part corresponds to a mean-
ingful region in the scenes such as sky, building, road, field.

(ii) Attribute association. Scene attributes, defined by
the text descriptions, consist of the nouns (e.g. field, sky)
and adjectives (e.g. green, cloudy), corresponding to the ob-
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Figure 1. Flowchart of our method. (a) Input images and texts. (b) Iterative learning process including the learning of scene configuration
and attribute association, and the joint inference (text in square brackets denotes the inferred attributes). (c) Output attribute localization.

jects/regions and their appearance respectively. The nouns
are assigned to the learned scene part dictionary accord-
ing to an association matrix as shown in the bottom left of
Fig.1(b). The association matrix measures the probability
of a noun and a scene parts appearing simultaneously in the
training set and it can be achieve by a non-maximum sup-
pression. Each noun has a mixture of appearance models
corresponding to the adjectives, e.g. the sky may be blue,
cloudy, dust-hazed or overcast (bottom right of Fig.1(b)).

(iii) Joint inference and learning. Given an image, we
jointly infer the optimal parse tree and localize the semantic
attributes to the scene parts by dynamic programming (right
panel in Fig.1(b)). Then based on the inferred parse trees,
we re-estimate the HST/AOT model and attribute associa-
tion matrix. Thus, we integrate the parsing and attribute
localization under an uniform framework.

We evaluate the proposed method by showing: (i) The
semantic attributes are properly associated with the local
scene parts. (ii) Compared with traditional classification al-
gorithms, our method achieves better attribute recognition
performance. (iii) We improve the precision of attribute lo-
calization against a baseline sliding window method [10].

2. Related Work
Scene models For scene classification, there are four

typical representations. (i) Bag-of-Words (BoW) represen-
tation [11] treats a scene as a collection of visual words and
ignores the spatial information. (ii) Grid structure repre-
sentation, such as spatial pyramid matching [16], implicitly
adopt squares as elements in different sizes and locations
and divide the images into grids. (iii) Non-parametric rep-
resentation, such as label transfer [4], remembers all the
observed images and interprets the new data through near-
est neighbor search. All these representations miss the hi-
erarchical reconfigurable structures. (iv) The most related
work is the Hierarchical Space Tiling (HST) [17] which in-

troduced a scene hierarchy by the And-Or Tree (AOT) and
proposed a structure learning method to learn a scene part
dictionary and compact HST model. However, it relies on
the label maps as training samples. We extend [17] to take
raw images with text as input and associate scene attributes
to the learned scene part dictionary.

Scene attributes Beyond recognizing an individual
scene category, visual attributes are demonstrated as valu-
able semantic cues in various problems such as generat-
ing descriptions of unfamiliar objects [6]. Patterson and
Hays [7] proposed an attribute based scene representation
containing 102 binary attributes to describe the intra-class
scene variations (e.g. a canyon might have water or it might
not) and the inter-class scene relationships (e.g. both a
canyon and a beach could have water). Beside the binary
attributes, Parikh and Grauman [5] introduced the relative
attributes, e.g. more natural or less man-made, to provide
a semantically rich way describing and comparing scenes.
These attributes were learned and inferred at the image level
without localization. In contrast, we jointly parse the im-
ages into spatial configurations and localize the attributes,
which allows us to provide more accurate and detailed de-
scriptions.

Attributes localization In learning the relationships
between the attributes and specific image regions, we relate
to the recent work on object detection and localization. The
two communities of object localization include sliding win-
dow based methods and Multiple Instance Learning (MIL).
(i) The sliding window methods [10] operate by evaluat-
ing a classifier function at many different sub-windows of
the image and then predicting the object presence in sub-
windows with high-score. (ii) Multiple Instance Learning
(MIL) based algorithms [2, 3] view images as bags of seg-
ments. Then MIL trains a binary classifier to predict the
class of segments, under the assumption that each posi-
tive training image contains at least one true-positive seg-
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ment. However, these approaches incur the problem faced
by the unreliable segmentation. The above methods can lo-
calize an individual object at a time, while our aim is pars-
ing the images into multiple objects/attributes simultane-
ously. Moreover, by considering the global compatibility,
our method will not confuse the objects with similar ap-
pearance (e.g. “blue ocean” and “blue sky”) as the above
methods did.

3. Representation: HST/AOT
As shown in Fig.2, we extend the original HST[17] to

two parts: (i) HST-geo which models the geometric ar-
rangements of the scenes, i.e. scene configurations, and (ii)
HST-att which models the appearance types of the scene
attributes and the correlations between the scene parts and
attributes.

For HST-geo, there are three types of nodes: Or-nodes
V OR, And-nodes V AND, and Terminal nodes V T .

The Or-nodes V OR, correspond to the grammar rules like
rOR : S → A|B|C, acting as “switches” between the pos-
sible compositions. The branching probabilities p(A|S),
p(B|S), p(C|S) indicate the preference for each compo-
sition and can be learned from the scene images in Sec-
tion.4.1.

The And-nodes V AND, correspond to the grammar rules
like rAND : C → D ·E, representing a fixed decomposition
from a node C into lower-level parts D and E. For simplic-
ity, we only divide the rectangular parts in horizontal and
vertical ways.

The terminal nodes V T , form a scene part dictionary
∆ = V T . At the bottom of the hierarchy, an image lattice is
divided into a n× n grid, and each cell is seen as an atomic
shape element of the dictionary. A number of the atomic
elements compose the higher-level terminal nodes at differ-
ent scales, locations and shapes. To avoid the combination
explosion, only regular shapes i.e., squares, rectangles are
allowed.

Beyond HST-geo, we combine the scene attributes to

represent both the geometry and semantics of the scenes.
Scene attributes come from the text descriptions of training
images which contain several noun+adjective phrases. The
nouns correspond to the objects in the scenes and the adjec-
tives correspond to the appearance. We model the HST-att
as a two level AOT. Each noun, acting as an appearance-Or
node, has a mixture of adjectives. And each terminal node
in HST-geo can link to a noun and further an adjective at-
tribute by an association matrix. The association matrix can
be learned in Section.4.2.

The HST is naturally recursive, starting from a root
which is an Or-node, generating the alternating levels of
And-nodes and Or-nodes, and stopping at the terminal
nodes with a specific appearance type (noun+adjective).
The And-Or structure defines a space of possible parse trees
and embodies probabilistic context free grammar (PCFG)
[15]. By selecting the branches at Or-nodes, a parse tree
pt is derived, e.g. the red and blue paths in Fig.2 represents
two parse trees as instances of the HST. When parse trees
collapse to the image lattice, they produce configurations.

The initial HST is excessive and generates a combina-
torial number of parse trees. In the learning process, we
maximize the likelihood subject to a model complexity and
prune out the branches with zero or low probability to ob-
tain a compact HST and the scene part dictionary.

4. Learning

4.1. Learning for the HST-geo

We define the HST-geo as a 4-tupe

HST-geo = (S, V N , V T ; Θ) (1)

where S is a start symbol at root. V N = V AND ∪NOR is a
set of non-terminal nodes including the And-nodes and Or-
nodes. V T is a set of terminal nodes forming the scene part
dictionary ∆ = V T . Let v index the nodes; Ch(v) denote
the child node set of v. The parameters Θ are the branching
probabilities of each branch at the Or-nodes Θ = {θ(v →
vi); v ∈ V OR, vi ∈ Ch(v)}.

Given a set of training images I = {Im,m = 1...M},
in order to avoid the false compositions, e.g. sky and ocean
may be grouped wrongly into one region due to their sim-
ilar appearance, we first segment the images in multi-scale
in a coarse-to-fine manner so that we can focus the learning
on the label maps and thus separate the geometric config-
urations from appearance. Let C = {Cm,m = 1...M}
denotes the multi-scale segmentation. Cm = {Ckm} in-
cludes |k| segmented layers. For each image, we adopt
[13] to obtain the multi-scale segmentation by tuning k ∈
300, 400, ..., 5000, where k is a variable controlling the
granularity of the segmentation (Fig.3). Then we select six
segmented layers of significant difference by comparing the
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Figure 3. Multi-scale segmentation. (a) Input image. (b) Segmen-
tations in different layers. The segmentations in the red frames
form a multi-scale segmentation C.

adjacent layers in pixels (red frames in Fig.3(b)), and com-
pose a multi-scale segmentation set C = {Ck, |k| = 6}.

The learning requires us to estimate the branching prob-
abilities Θ and scene part dictionary ∆ by maximizing a
log-likelihood.

(Θ,∆)∗ = arg max
Θ,∆

log p(I; Θ,∆) (2)

∝ arg max
Θ,∆

M∑
m=1

log
∑
ptm,k

p(Ckm, ptm; Θ,∆)p(Im|Ckm)

where log p(I|Ck) = −
∑
c∈{R,G,B}

∑
r∈Ck σ2

c (I(r)),c is
a color channel, r is a segment in Ck, σ() returns the stan-
dard divination of the pixel intensities in a segment. This
term measures the pixel intensity homogeneity of the seg-
ments. p(Ck, pt; Θ,∆) is the joint probability with Θ and
∆ being the parameters to be learned.

log p(Ck, pt; Θ,∆) ∝ −E(Ck, pt; Θ,∆) (3)

= −
∑

v∈V OR
pt ,vi∈Ch(v)

EOR(vi|v)− λ
∑
v∈V T

pt

ET (Ckv |v)

where V ORpt , V Tpt denote the Or-nodes and terminal nodes
in the pt, and λ is the parameter to balance the two terms
(λ = 0.25 in this paper). Ckv denotes the segmented patch
covered by the terminal node v.

The energy for an Or-node is defined on its branching
probability, which favors the sub-structures that often make
a larger part. i.e.,

EOR(vi|v) = − ln θ(v → vi) (4)

The energy for a terminal node is defined as

ET (Ckv |v) = − ln
1

|Ckv |
∑
i∈Ck

v

1
[
lki = lkv

]
+ ln

k

|Ckv |
(5)

where 1[·] is the indicator function. In the k-th layer, lki
is the segmentation label of pixel i and lkv is the dominant
label of the terminal node v. The first term measures the
homogeneity of the terminal nodes in terms of segmentation
labels and the second term penalizes large k.

Iterative learning of the HST-geo To maximize the
Eq.2, we adopt an iteratively learning-by-parsing strategy

including: (i) inferring the optimal parse tree pt by dy-
namic programming (optimize Eq.3); and (ii) estimating the
parameters Θ by a maximum likelihood estimator (MLE).
After it converges, those branches whose probabilities are
below a certain threshold (say 0.01) are pruned. Then we
collect the terminal nodes from all the parse trees to form a
scene part dictionary ∆. (see more details in [17]).

Terminal node local adjustment Although the scenes
from one category share similar spatial layouts, there are
still considerable variations/deformations in their configu-
rations. Hence, the terminal nodes are allowed to be lo-
cally adjustable to fit the scene region boundaries. We in-
troduce the perturbations in location, scale and orientation
denoted as δ(x) = [±8,±16], δ(s) = [1± 1

32 , 1 ±
1
16 ] and

δ(a) = [± π
48 ,±

π
24 ], respectively. Thus the total number of

node activities is 12 in addition to the original one.

4.2. Learning for the HST-att

The text descriptions usually contain noun+adjective
phrases: The nouns indicate objects/regions inside a scene
(e.g. sky, field); and the adjectives describe their appearance
(e.g. overcast, green). Let A = {An,Aadj} denote the at-
tribute set, where An is the noun attribute set and Aadj is
the adjective attribute set.

We explore the relationship between a noun a ∈ An and
a scene part v ∈ ∆ by an association matrix:

Φ : An ×∆ 7→ [0, 1], s.t.
∑
a∈An

Φ(a, v) = 1,∀v ∈ ∆ (6)

where the entries of the rows in Φ are the noun attributes
and the columns are the scene parts, and we normalize each
columns to be one.

After learning the HST-geo in Section.4.1, each training
image has an optimal parse tree pt. Because the attributes
are annotated at the image level rather than the precise im-
age regions, we initialize Φ by counting all the combina-
tions of the nouns and the terminal nodes in pt:

Φ(a, v) =

M∑
m=1

1[a ∈ Anm] · 1[v ∈ ptm] · φm(a, v) (7)

where Anm ⊆ An is the noun attribute set for an image, and
φm(a, v) denotes its association probability initialized by
φm(a, v) = 1.

We pursue Φ by a greedy non-maximum suppression.
The algorithm first selects an (a, v) pair which receives the
highest association probability: (a∗, v∗) = arg max(a,v) Φ,
and find the image set Ĩ ⊆ I having (a∗, v∗), i.e. Ĩ =
{Im; a∗ ∈ Anm, v∗ ∈ V Tptm}. Then (i) suppress the associa-
tion between the selected attribute with other terminal nodes
except v∗: φm(a∗, v) = s×φm(a∗, v); v ∈ V Tptm\v

∗, Im ∈
Ĩ , where s = 0.3 is the suppression parameter; (ii) suppress
the association between the selected node with other noun
attributes: φm(a, v∗) = s× φm(a, v∗); a ∈ Anm\a∗, I ∈ Ĩ;

4324



sky

field ocean flower

sand road

cliff waterfall

building tower tree

bison

ibis horse elephant

mountain

sky

waterfall

horse

Figure 4. The association of noun attributes and the scene parts.
building

front-view birdseye perspective

cliff

green black

Figure 5. The adjective clusters belonging to the noun attributes.

(iii) update Φ by Eq.7. Repeatedly find the next maximum
(a, v) pair and do non-maximum suppression until no more
(a, v) pair can be selected. Finally, normalize each columns
in Φ to be one.

Fig.4 (left) shows the association of noun attributes and
scene parts, where the horizontal axis denotes the nodes in
HST-geo and the vertical axis denotes the normalized as-
sociation probability. For example, “sky” has highly prob-
ability with the nodes covering the top area of an image
and “horse” has highly probability with the nodes covering
the middle area of an image. To qualitatively evaluate the
association, for each noun attribute, we average the image
patches assigned to it. Interestingly, as illustrated in Fig.4
(right), although learning in a weakly supervised way, our
association shows the similar spatial priors of the object cat-
egories with [4] (see Fig.5 in [4]).

Fig.5 shows the image patches assigned to each noun
are then split into multiple clusters according to the given
adjectives. And we train a binary SVM classifier for each
noun+adjective attribute based on those image patches us-
ing color histogram feature and SIFT bag-of-words feature.

5. Joint inference and learning
Take the learned HST-geo and association matrix Φ as

an initialization, we infer pt+={pt,A} to simultaneously
achieve the optimal scene configuration pt and attribute as-
signment A={An,Aadj}, then re-estimate HST-geo and Φ.
Thus rewrite Eq.2 as:

(Θ,∆,Φ)∗ = arg max
Θ,∆

log p(I; Θ,∆,Φ) (8)

∝ arg max
Θ,∆

M∑
m=1

log
∑
pt+m

p(Im, pt
+
m; Θ,∆,Φ)

Table 1. The learning algorithm
Algorithm Iterative HST-att Learning
Initialization

1 Learn HST-geo (optimize Eq.2)
2 Pursue Φ and train appearance models based on HST-geo

Jointly learn HST-att (optimize Eq.8)
3 Jointly infer pt+ with attribute localization (optimize Eq.9)
4 Update Θ and ∆ in HST-geo (optimize Eq.2)
5 Update Φ and train appearance models based on pt+ (Eq.7)
6 Repeat 3 - 5 until convergence

pt+ is inferred from maximizing the joint probability
p(pt+, I; Θ,∆,Φ) ∝ exp{−E(pt+, I; Θ,∆,Φ)}.

E(pt+, I; Θ,∆,Φ) (9)

=
∑

v∈V OR
pt ,vi∈Ch(v)

EOR(vi|v) + λ1

∑
v∈V T

pt ,a
n∈An

En(an|v)

+ λ2

∑
an∈An,aadj∈Aadj

Ea(aadj |an) + λ3

∑
v∈V T

pt ,a∈A

ET (a|Iv)

where Λ = {λ1, λ2, λ3} are the parameters balancing the
energy terms (Λ={0.7, 0.1, 2} in this paper). The first term
measuring the scene configuration prior is the same as Eq.4.
The second term measures the noun attribute association:

En(an|v) = − ln Φ(an, v) (10)

The third term is designed to model the co-occurrence of
a noun and an adjective attribute

Ea(aadj |an) = − ln p(aadj |an) (11)

where p(aadj |an) =
∑M

m=1 1[an∈An
m]1[aadj∈Aadj

m ]∑M
m=1 1[an∈An

m]
encodes

the compatibility between a noun and an adjective and can
be counted from the given text phrases.

The forth term is an attribute specific data term which
represented by the image features of the terminal node,

ET (a|Iv) = − 1

|Iv|
ln p(a|Iv) (12)

where a = {aadj , an} denotes the noun+adjective attribute,
Iv is the image region occupied by v, F (·, ·) is a (strong)
classifier learnt by SVM and p(a|Iv) is given by p(a|Iv) =

− exp{F (Iv,a)}∑
a′ exp{F (Iv,a′)} .

Because of the tree structure of HST and the linear form
of Eq.9, the dynamic programming algorithm can be em-
ployed to infer the optimal parse tree with the attributes
(pt+)∗ = arg minpt+ E(pt+, I; Θ,∆,Φ).

Then based on the inferred pt+, the HST-geo (i.e., Θ
and ∆) and HST-att (including the association matrix Φ
and the appearance SVM classifiers) can be updated un-
der the learning-by-parsing framework [17]. We summa-
rize the entire learning procedure in Table.1, which contains
two aspects. (i) Learn HST-geo and Φ based on the multi-
scale segmentations as an initialization; and (ii) Re-estimate
HST-geo and HST-att based on the joint inference.
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6. Experiments

6.1. Datasets

There are two series of datasets relate to our task: scene
datasets and image+text datasets. (i) For scenes, SUN
dataset [18] contains 130,519 images with 397 categories.
However, it is annotated at image level rather than specific
regions. LabelMe Outdoor (LMO) [4] contains 2,688 fully
annotated outdoor scene images. SUN Attribute database
[7] contains 14,000 outdoor and indoor scene images with
700 attributes. In this paper, we focus on the outdoor
scenes, while the indoor scenes are not treated because of
the large 3D geometric variations caused by the view point
changes. Moreover, some attribute types in [7], such as
functions and affordances (e.g. playing, cooking), defined
by human activities and recognized via human pose and ac-
tivity reasoning, are beyond our scope. Therefore we se-
lect a subset of the above datasets for evaluation. (ii) For
image+text, Kulkarni et al. [9] generate descriptions from
scratch based on detected object, attribute, and preposi-
tional relationships. Ordonez et al. [12] designed a SBU
Captioned Photo Dataset through retrieving thousands of
Flickr queries. Farhardi et al. [6] proposed the CORE
dataset including 2,800 images with segmentations and at-
tribute annotations for vehicles and animals. The above
datasets provide a multitude of descriptions for images that
are usually related to image content, however, they are not
designed specifically for the natural scenes. Most of them
focused on the objects, humans or the functional activities.
Furthermore, those datasets always do not share intrinsic
structures, in contrast, our goal is studying both the text de-
scriptions and image configurations.

Therefore, we have created a new outdoor scene dataset
as shown in Fig.6. The dataset (1226 images of 256 × 256
pixels in size) was selected from LMO [4] and SUN At-
tribute dataset [7]. To tolerate more objects (e.g., wild an-
imals), we also added some images collected from Google
images and Flickr, and got 12 categories in total. Text de-

scriptions were created by one author to ensure consistency
and are publicly available.1 Finally, we got the attribute
setAn={sky, flower, mountain, ibis, horse...}, Aadj={blue,
cloudy, rocky, snowy, brown...} which contains 17 noun at-
tributes and 30 noun+adjective attribute pairs in total. The
average number of noun+adjective pairs attached to each
image is 3. And for each noun+adjective pair, the average
image number is 96. The dataset is split into 645 images
for training (50 images per noun+adjective pair in average)
and the rest for testing. For the testing set, we also ask peo-
ple to localize the attributes through bounding box Bgdth as
ground truth for evaluating the part localization accuracy, as
it is shown at the bottom right panel of Fig.6.

6.2. Attribute Recognition

Baselines We first compare our method in attribute
recognition, which evaluates the accuracy of an attribute
presence in images. (i) cKernel+SVM: Xiao et al. [18]
showed the combined feature kernels result in a signifi-
cantly more powerful classifier than any individual kernel.
We compare a combined kernel generated from gist, dense
SIFT, HOG 2 × 2, self-similarity, and geometric context
color histogram (see [18] for detail) and train a binary SVM
classifier for each attribute. (ii) BoW+SPM: The spatial
pyramid matching (SPM) proposed by Lazebnik et al. [16]
partitions an image into increasingly finer spatial subregions
and computes the SIFT bag-of-words (BoW) feature from
each sub-region. (iii) HST-geo: To evaluate the contribu-
tion of attribute association, we also compare our method
with HST-geo [17]. Specifically, for a given image, we first
parse it from its multi-layer segmentation and classify each
terminal nodes in the parse tree by the classifiers trained in
(i).

Fig.7 shows the average precision (AP) for classifying
each attribute and the mean average precision (MAP) for the
entire attribute set is reported in Table.2. BoW+SPM shows
lower performance because the lack of color feature which
is a strong cue in scene attribute recognition. Though HST-
geo and cKernel+SVM share classifiers, cKernel+SVM per-
forms better because those classifiers are trained at the im-
age level while the testing inputs of HST-geo are just image
patches. Benefit from integrating scene geometry with at-
tributes, our method outperforms all others.

6.3. Attribute Localization

Baselines For attribute localization, we benchmark our
method against a fully supervised sliding window method
(SW-FS) [10]. SW-FS trains an attribute classifier using
ground truth bounding boxes as positive examples and ran-
dom rectangles from each negative image for negative data.
By treating localization as localized detection, the SW-FS
applies attribute classifiers subsequently to sub-images at

1http://www.stat.ucla.edu/∼shuo.wang/SceneAtt.rar
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Figure 7. Average precision of attribute recognition.

different locations and scales. The detected sub-windows
is ordered by the classification score and taken as indica-
tions for the presence of an attribute in this region by non-
maximum suppression with 0.3 overlap threshold. In ad-
dition, we also compare with HST-geo for evaluating the
attribute association.

Fig.8(b) shows the comparison of the benchmark meth-
ods with ours. Without the geometric constraint, (i) Certain
attributes will be confused by appearance (e.g. HST-geo lo-
cates “sky” at the bottom region in the first row of Fig.8(b)),
and (ii) The semantic region will be divided into fragments
(e.g. the “black-bison” in SW-FS). Fig.8(a) shows the at-
tributed parse trees and configurations generated from the
joint inference and Fig.8(c) shows more localization results.

We quantitatively evaluate the attribute localization per-
formance by following the procedure adopted in [18]. A
ground truth bounding box (Bgdth) annotated “blue sky”
implies if a localized bounding box (Bv) has at least
T % overlap with Bgdth, it can be correctly classified
as “blue sky”. Specifically, a correct localization has
area(Bv∩Bgdth)

area(Bv) >= T . We do not care if the ground truth
window is larger than the localization, e.g. a “blue sky”
patch is correctly localized even if the ground truth “blue
sky” has much greater spatial occupation. In this experi-
ment, we set T % = 50%. The threshold of 50% is set
deliberately low to tolerate the inaccurate bounding box of
highly non-convex objects, e.g. steep mountain. We use 11-
point interpolated average precision [14] to evaluate the lo-
calization accuracy. The average precisions (AP) for each
attribute are shown in Fig.9. The mean average precision
(MAP) reported in Table.3 shows a surprising improvement
of attribute localization of our method.

7. Discussion and future work

This paper presents a weakly supervised method for
learning the scene configurations with attribute localiza-
tions. (i) We quantize the space of scene configurations by
an Hierarchical Space Tiling (HST) and utilize a learning-
by-parsing strategy to do parameter estimation; (ii) We dis-
cover the relationship between the scene parts and attributes

Table 2. The attribute recognition performance
cKernel+SVM BoW+SPM HST-geo HST-att

MAP(%) 64.48 53.11 51.67 67.58
Table 3. The attribute localization performance

SW-FS HST-geo HST-att
MAP(%) 33.88 32.55 50.22

(nouns and adjectives) by an association matrix; (iii) We
joint infer the scene configuration and attribute localiza-
tion by dynamic programming. Our experiments show the
promises in simultaneous parsing and localization. The at-
tributes used in this paper are related to local object and re-
gions, but there are also global attributes (style of the whole
parse tree) such as aesthetics, which we are studying in on-
going work by extending our model to an attribute grammar.
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