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Abstract

Cosegmentation refers to the problem of segmenting mul-
tiple images simultaneously by exploiting the similarities
between the foreground and background regions in these
images. The key issue in cosegmentation is to align com-
mon objects between these images. To address this issue,
we propose an unsupervised learning framework for coseg-
mentation, by coupling cosegmentation with what we call
“cosketch”. The goal of cosketch is to automatically dis-
cover a codebook of deformable shape templates shared by
the input images. These shape templates capture distinct
image patterns and each template is matched to similar im-
age patches in different images. Thus the cosketch of the
images helps to align foreground objects, thereby providing
crucial information for cosegmentation. We present a sta-
tistical model whose energy function couples cosketch and
cosegmentation. We then present an unsupervised learn-
ing algorithm that performs cosketch and cosegmentation
by energy minimization. Experiments show that our method
outperforms state of the art methods for cosegmentation
on the challenging MSRC and iCoseg datasets. We also
illustrate our method on a new dataset called Coseg-Rep
where cosegmentation can be performed within a single im-
age with repetitive patterns.

1. Introduction
Recently, the problem of cosegmentation has attracted

considerable attention from the vision community. Coseg-
mentation refers to the problem of segmenting multiple im-
ages into foreground and background simultaneously by
aligning similar objects or regions across different images.

To address this alignment problem, we propose an unsu-
pervised learning framework for cosegmentation. The key
idea is to couple the task of cosegmentation with what we
call “cosketch.” The goal of cosketch is to learn a codebook
of deformable shape templates that are shared by the input
images, and to sketch the images by these commonly shared
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Figure 1. Distinct shape templates are learned (from 19 input im-
ages) and are matched to specific image patches in different im-
ages. Shape templates are coupled with segmentation templates
that provide top-down clues for segmentation.

templates. Fig. 1 illustrates the basic idea. A codebook of
two shape templates (head and body) are learned from a
set of input images of deer that are not a priori aligned or
annotated. These shape templates capture distinct and spe-
cific image patterns and the same template is matched to
similar image patches in different images. Each shape tem-
plate is associated with a segmentation template to be ex-
plained below. The sketch of the input images by these two
templates help establish correspondence between different
images, and the associated segmentation templates provide
crucial top-down information for segmentation.

Model. The learned model consists of the following
three components.

(1) Sketch model. It seeks to encode the “sketchable”
patterns of the input images by a codebook of shape tem-
plates. The sketchable patterns include region boundaries
as well as non-boundary edges and lines. Each shape tem-
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plate is represented by an active basis model [23], which is
a generative model with explicit variables for shape defor-
mations and is suitable for unsupervised learning.

(2) Region model. It seeks to encode the “non-
sketchable” patterns such as region interiors and shapeless
patterns such as sky and water etc. Each pixel of an in-
put image is assigned a label indicating which region this
pixel belongs to. The region model is defined conditional
on the pixel labels. It is in the form of a Markov random
field, which models marginal distributions of pixel colors
and pairwise similarities between neighboring pixels.

(3) Coupling. The sketch model and region model are
coupled by associating each shape template with a segmen-
tation template, which is in the form of a probability map of
pixel labels. That is, for each pixel within the bounding box
of the shape template, the probability map gives the prob-
ability that this pixel belongs to each region. These prob-
ability maps provide top-down prior information for pixel
labels in the region model. Conversely, the pixel labels ob-
tained from segmentation serve as data for the probability
maps, and they provide bottom-up information for inferring
sketch representation.

Unsupervised learning algorithm. Fitting the above
model by energy minimization leads to a relaxation algo-
rithm that alternates the following two steps.

(I) Image parsing: Given the current shape templates,
segmentation templates and the parameters for the shape
and region models, sketch the images by the shape tem-
plates, and segment the images by graph cuts [4].

(II) Re-learning: Given the current image sketches and
segmentations, re-learn the shape templates, segmentation
templates and model parameters.

The image parsing step itself consists of two sub-steps.
(I.1) Sketch-guided segmentation. Given the current

sketches of the images by the shape templates, segment the
images by graph cuts with the associated segmentation tem-
plates as prior.

(I.2) Segmentation-assisted sketch. Given the current
pixel labels of segmentation, sketch the images by matching
the shape templates and the associated segmentation tem-
plates to the images and their label maps respectively.

Random initialization with no preprocessing. The shape
templates and the associated segmentation templates are ini-
tialized by learning from randomly cropped image patches,
without any sophisticated pre-processing. Relaxation by en-
ergy minimization automatically results in alignment and
segmentation, while distinct templates are being learned.

Experiments, datasets and performances. We evalu-
ate the proposed method on the MSRC [20] and iCoseg [3]
datasets. Our method achieves higher accuracies than state
of the art methods. To further test the proposed method,
we collect a new dataset called Coseg-Rep, which contains
23 object categories with 572 images. One special cate-

gory contains 116 images such as tree leaves, where similar
shape patterns repeat themselves within the same image. As
a result, cosegmentation can be performed on each single
image. This dataset will be released with the paper.

2. Related work
Existing methods for cosegmentation can be roughly di-

vided into two classes. The first class of methods employ
local features, such as [7–9, 14, 17, 19, 21], where image
features such as color histogram, SIFT, Fisher vectors etc.
are extracted at all the pixels (or superpixels), and pixels (or
superpixels) with similar features are encouraged to share
the same segmentation results. One potential problem with
the image features is that they may be too local to be dis-
tinctive, so they may not provide strong prior information
for segmentation. In contrast, the explicit shape templates
employed by our method cover much larger area (100 ×
100) and capture much larger and distinctive patterns, so
that cosketch by these templates help to establish the corre-
spondence between different images.

The second class of methods, such as [2, 22] and our
method, employ explicit models for the sketchable patterns.
In [22], the edge model is defined by Gaussian distribu-
tions over Canny edge strength transformed by a deforma-
tion field. In [2], shape model is in the form of a rigid
energy map covering regions determined by salient object
detector. Both algorithms are only tested on images with
roughly aligned object instances. In contrast, our unsuper-
vised learning method can be effectively applied to non-
aligned images where the common object instances can ap-
pear at different locations, orientations and scales.

Strongly supervised segmentation is another popular
topic in image segmentation, where training images with
annotated ground truth are used to train generic segmenta-
tion model [5, 11, 15, 18] or to perform segmentation prop-
agation [10]. In [11, 15], template-based models capturing
high-level shape cues are trained from the aligned training
images. However, unlike our method, these methods do not
work with the scenario of cosegmentation where the ground
truth annotations are not available.

This work is also related to [1, 13], where repeated
sketchable patterns are learned. Unlike our method, they
do not deal with the problem of segmentation.

3. Model
For clarity, we first present the simplest form of the

model and algorithm. Implementation issues for the gen-
eral situation will be treated at the end of Section 4.

3.1. Notation and problem definition

Let Im, m = 1, ...,M be a set of multiple input im-
ages. Let Dm be image domain of Im, i.e., Dm collects



all the pixels of Im. For each pixel x ∈ Dm (x is a two-
dimensional coordinate in Dm), let δm(x) be the label of
pixel x for image segmentation, so that δm(x) = 1 if x
belongs to foreground, and δm(x) = 0 if x belongs to back-
ground. The task of cosementation is to take multiple im-
ages {Im,m = 1, ...,M} as input, and return the label maps
{(δm(x), x ∈ Dm),m = 1, ...,M} as output.

In the sketch model, Im(x) is assumed to be a grey level
intensity. In the region model, Im(x) is assumed to be a
three-dimensional vector in the color space.

3.2. Sketch model

The sketch model consists of a codebook of shape tem-
plates. Each template is represented by an active basis
model [6, 23], which is a composition of Gabor wavelets at
selected locations, scales and orientations. In Fig. 1, each
selected Gabor wavelet is shown by a bar, and these bars il-
lustrate the shape templates. Specifically, let Bx,s,α denote
a Gabor wavelet (or in general, a basis function) centered at
pixel x and tuned to scale s and orientation α. An active ba-
sis template is in the form of B = (Bxi,s,αi , i = 1, ..., n),
where the constituent basis functions are allowed to perturb
their locations and orientations while the scale s is fixed.

Preparation: Aligned images and a single template.
Let us temporarily assume that {Im} are defined on the
same image domain, i.e., Dm = D is the same for m =
1, ...,M . Let us also assume that these images are aligned
so that objects in these images can be represented by a
single shape template with D being its bounding box (the
bounding box of a template in this article is 100 × 100 pix-
els). The active basis model then assumes the following
form:

Im =
n∑

i=1

cm,iBxi+∆xm,i,s,αi+∆αm,i + Um, (1)

where Um is the unexplained residue image, B =
(Bxi,s,αi , i = 1, ..., n) form the nominal template of an ac-
tive basis model (the number of basis functions n in our
work is fixed at 40). Bm = (Bxi+∆xm,i,s,αi+∆αm,i , i =
1, ..., n) is the deformed version of the nominal template B
for encoding Im, where (∆xm,i,∆αm,i) are the perturba-
tions of the location and orientation of the i-th basis func-
tion. The perturbations are introduced to account for shape
deformations. Both ∆xm,i and ∆αm,i are assumed to vary
within limited ranges (default setting: ∆xm,i ∈ [−3, 3] pix-
els, and ∆αm,i ∈ {−1, 0, 1} × π/16).

For the convenience of stochastic modeling
and for the efficiency of computation, we assume
that (Bxi+∆xm,i,s,αi+∆αm,i

, i = 1, ..., n) are or-
thogonal to each other, so that the coefficient
cm,i = ⟨Im, Bxi+∆xm,i,s,αi+∆αm,i

⟩ is a deterministic
transform extracted from Im.

For statistical modeling, let p(Im | Bm) be the dis-
tribution of Im given the deformed template Bm =
(Bxi+∆xm,i,s,αi+∆αm,i , i = 1, ..., n). Let q(Im) be a refer-
ence distribution, such as the distribution of natural images.
The active basis model assumes the following form:

p(Im | Bm)

q(Im)
=

n∏
i=1

1

Z(λi)
exp{λih(|cm,i|2)} (2)

where (cm,i, i = 1, ..., n) are assumed to be independent
under both p(Im | Bm) and q(Im). For r = |cm,i|2 (a Ga-
bor wavelet may consist of a pair of sine and cosine com-
ponents, so r is the sum of squares of the responses from
the two components), h(r) = ξ[2/(1 + e−2r/ξ) − 1], so
h(r) ≈ r for small r, and h(r)→ ξ as r →∞ (default set-
ting: ξ = 6). Z(λ) = Eq[exp{λh(r)}] is the normalizing
constant, which is computed from natural images.

Shared matching pursuit algorithm. This algorithm is
used to learn the active basis model from aligned {Im}.
At the i-th iteration, the algorithm selects Bxi,s,αi and es-
timates the associated λi by seeking the maximal increase
of the likelihood. Specifically, for each Im, we initialize
the response maps Rm(x, α)← ⟨Im, Bx,s,α⟩ for all (x, α).
Then in the i-th iteration, we select

(xi, αi) = argmax
x,α

M∑
m=1

max
∆x,∆α

h(|Rm(x+∆x, α+∆α)|2),

(3)
where max∆x,∆α is local maximum pooling within the per-
turbation range. After that, for each Im, we infer the per-
turbations (∆xm,i,∆αm,i) by retrieving the arg-max in the
above local maximum pooling, and let the arg-max basis
function Bxi+∆xm,i,s,αi+∆αm,i inhibit those Bx,s,α whose
squared correlation with Bxi+∆xm,i,s,αi+∆αm,i

exceeds a
tolerance value (default tolerance = .1). For such Bx,s,α, we
set the corresponding Rm(x, α) = 0. The associated λi is
estimated by maximum likelihood. We then select the next
basis function and repeat this process until n basis functions
are selected. See [23] for more details.

Our situation: Non-aligned images and a codebook of
templates. Now suppose that {Im} are not aligned, and we
want to encode the sketchable parts of {Im} by a codebook
of templates {B(t), t = 1, ..., T} (default: T = 4). Each
template B(t) = (B

x
(t)
i ,s,α

(t)
i

, i = 1, ..., n) is associated

with parameters Λ(t) = (λ
(t)
i , i = 1, ..., n). Define ΘS =

(B(t),Λ(t), t = 1, ..., T ) to be the sketch model parameter.
For each Im, suppose we encode Im by K templates

which are spatially translated instances of templates in the
codebook. For now, let us assume that these K templates do
not overlap with each other. The issues of overlap as well
as rotation and scaling of the templates will be considered
later, which do not add anything conceptually.



For template B(t), let B
(t)
X = (B

X+x
(t)
i ,s,α

(t)
i
, i =

1, ..., n) be the template obtained by spatially translating
B(t) to X . Suppose Im is encoded by (B

(tm,k)
Xm,k

, k =

1, ...,K). We define WS
m = (B

(tm,k)
Xm,k

, k = 1, ...,K) to
be the sketch representation of Im. Then the log-likelihood
ratio is the sum of the log-likelihood ratios of the K tem-
plates,

l(Im |WS
m) =

K∑
k=1

l
(
Im | B

(tm,k)
Xm,k

)
, (4)

where the log-likelihood ratio or the template matching
score of B(t)

X on Im is

l
(
Im | B(t)

X

)
=

n∑
i=1

[
λ
(t)
i max

∆x,∆α
h
(
|⟨Im,

B
X+x

(t)
i +∆x,s,α

(t)
i +∆α

⟩|2
)
− logZ

(
λ
(t)
i

)]
.

(5)

Energy function for sketch model. We define the energy
function of the sketch model to be

E(Im |WS
m,ΘS) = −l(Im |WS

m). (6)

3.3. Region model

The region model generates non-sketchable visual pat-
terns, by modeling the marginal distributions of Im(x) (here
Im(x) is a three-dimensional vector in the color space), and
the pairwise similarities between neighboring pixels, condi-
tioning on pixel labels for segmentation. The energy func-
tion of the region model is in the form of pair-potential
Markov random field. It consists of two terms: the unary
potential and the pairwise potential.

Unary potential. The unary potential models the
marginal distribution of pixel colors conditional on the pixel
labels by mixtures of Gaussian distributions. Let g(v;µ,Σ)
denote a three-dimensional Gaussian density function with
mean µ and variance-covariance matrix Σ, and ρ denote
the prior of a Gaussian density function within the mixture
model, the unary potential is as

ϕ1(Im(x)|δm(x))

= − log

[ C∑
c=1

ρ
(0)
δm(x),cg(Im(x);µ

(0)
δm(x),c,Σ

(0)
δm(x),c)

+
C∑

c=1

ρ
(m)
δm(x),cg(Im(x);µ

(m)
δm(x),c,Σ

(m)
δm(x),c)

]
,

(7)

where θ
(0)
R = (ρ

(0)
δ,c , µ

(0)
δ,c ,Σ

(0)
δ,c ) is a generic color model

shared by all input images, θ(m)
R = (ρ

(m)
δ,c , µ

(m)
δ,c ,Σ

(m)
δ,c ) is

an image specific color model. As a commonly used ap-
proximation, the sum operation in (7) can be replaced by
max operation. The default value of C is set to be 5.

Pairwise potential. If pixels x and y are nearest neigh-
bors as denoted by x ∼ y, then we want Im(x) and Im(y)
to be different from each other if x and y belong to different
regions. The pairwise potential is defined as

ϕ2(Im(x), Im(y)|δm(x), δm(y))

= 1(δm(x) ̸= δm(y)) exp

[
−∥Im(x)− Im(y)∥22

2σ2

]
.

(8)

where 1() is the indicator function, ∥·∥22 denotes the squared
ℓ2 distance between the colors of neighboring pixels, and σ2

is taken to be the mean squared distance between neighbor-
ing pixels.

Energy function for region model. Define WR
m =

(δm(x), x ∈ Dm) to be the region representation of Im.
Define ΘR = (θ

(0)
R , θ

(m)
R ,∀m) to be the parameters of the

region model. The energy function for the region model is

E(Im|WR
m ,ΘR) =

∑
x

ϕ1(Im(x)|δm(x))

+
∑
x∼y

ϕ2(Im(x), Im(y)|δm(x), δm(y)).
(9)

3.4. Coupling sketch and region models

The generative model that involves both the sketch
model and the region model can be written as:
P (WS

m,WR
m)P (Im | WS

m,WR
m). The prior model can

be factorized into P (WS
m,WR

m) = P (WS
m)P (WR

m |WS
m),

where WR
m = (δm(x), x ∈ Dm) consists of pixel labels,

and WS
m = (B

(tm,k)
Xm,k

, k = 1, ...,K) consists of selected
templates. We couple them by modeling P (WR

m |WS
m),

where the templates provide prior for pixel labels.
Segmentation templates as probability maps. For the

codebook of template {B(t), t = 1, ..., T}, we associate a
segmentation template with each B(t). Specifically, letD(t)

be the bounding box of B(t). We assume that D(t) is cen-
tered at origin. The segmentation template is in the form
of a probability map P(t) defined on D(t), so that for each
x ∈ D(t), P(t)(x, δ) = Pr(δ(x) = δ), where δ(x) = 1 if x
belongs to the foreground, and δ(x) = 0 otherwise.

If we spatially translate B(t) = (B
x
(t)
i ,s,α

(t)
i
,∀i) to

B
(t)
X = (B

X+x
(t)
i ,s,α

(t)
i

,∀i), then we also translate the

bounding box D(t) to D(t)
X = {X + x, x ∈ D(t)}. For

each x ∈ D(t)
X , Pr(δ(x) = δ) = P(t)(x−X, δ). Therefore,

given WS
m = (B

(tm,k)
Xm,k

,∀k), we have the prior probabilities
of WR

m = (δm(x), x ∈ Dm).
Coupling energy function. Let ΘC = (P

(t)
x (δ), t =

1, ..., T, x ∈ D(t), δ ∈ {0, 1}) be the segmentation tem-



plates, we define the coupling energy

E(WR
m |WS

m,ΘC)

= −
K∑

k=1

∑
x∈D

(tm,k)

Xm,k

logP(tm,k)(x−Xm,k, δm(x)). (10)

Combined energy function. Let Wm = (WR
m ,WS

m), and
let Θ = (ΘR,ΘS ,ΘC). The combined energy function is:

E(Im,Wm|Θ) = γE(Im|WS
m,ΘS) + E(Im|WR

m ,ΘR)

+ E(WR
m |WS

m,ΘC).
(11)

Here we introduce a weighting parameter γ because the
sketch model is a sparse model with n (default: n = 40)
basis functions, whereas the region model and the coupling
model are dense models defined on all the pixels (default:
the size of P(t) is 100 × 100). The parameter γ is in-
troduced to balance these two terms (default: γ = 100).
One may consider that E(Im,Wm|Θ) defines a joint prob-
ability via the Gibbs distribution: P (Im,Wm | Θ) =
exp{−E(Im,Wm|Θ)/γ}/Z(Θ), where Z(Θ) is the nor-
malizing constant.

4. Learning algorithm
The input of the learning algorithm is {Im}. The

output includes {Wm = (WS
m,WR

m),∀m} and Θ =
(ΘS ,ΘR,ΘC). The cosegmentation results are {WR

m}.
The unsupervised learning algorithm seeks to minimize

the total energy function
∑

m E(Im,Wm|Θ) over {Wm}
and Θ. The algorithm iterates the following two steps. (I)
Image parsing: Given Θ, infer Wm for each Im. (II) Re-
learning: Given {Wm,∀m}, estimate Θ.

4.1. Image parsing

The image parsing step can be further divided into two
sub-steps. (I.1) Sketch-guided segmentation: Given WS

m,
infer WR

m . (I.2) Segmentation-assisted sketch: Given WR
m ,

infer WS
m. An illustration of the image parsing algorithm is

shown in Fig. 2. The issue of overlap between templates
will be discussed at the end of this section.

I.1: Sketch-guided segmentation. This step minimizes

E(Im|WR
m ,ΘR) + E(WR

m |WS
m,ΘC)

=

[∑
x

ϕ1(Im(x)|δm(x))

−
K∑

k=1

∑
x∈D

(tm,k)

Xm,k

logP(tm,k)(x−Xm,k, δm(x))

]

+
∑
x∼y

ϕ2(Im(x), Im(y)|δm(x), δm(y))

(12)
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Figure 2. Image parsing by sketch-guided segmentation and
segmentation-assisted sketch. Sketch result helps to locate the
foreground objects and provides top-down prior information for
segmentation. Conversely, segmentation result provides bottom-
up information for sketch.

over WR
m . The energy function is in the form of a unary

term and a pairwise term, which satisfies the submodular
condition and can be efficiently optimized by graph cuts [4].
The sketch representation generates the prior distribution of
pixel labels and adds to the unary term of the energy func-
tion of the region model E(Im|WR

m ,ΘR).
I.2: Segmentation-assisted sketch. This step mini-

mizes

γE(Im|WS
m,ΘS) + E(WR

m |WS
m,ΘC)

=−
K∑

k=1

[
γl(Im | B

(tm,k)
Xm,k

)

+
∑

x∈D
(tm,k)

Xm,k

logP(tm,k)(x−Xm,k, δm(x))

] (13)

over WS
m. We scan each pair of shape and segmen-

tation templates (B(t),P(t)) over Im and its label map
(δm(x), x ∈ Dm) to get the combined template matching
score:

R(t)
m (X) = γl(Im | B(t)

X ) +
∑

x∈D(t)
X

logP(t)(x−X, δm(x)).

(14)
Template matching pursuit algorithm. This algorithm

sequentially selects templates from the codebook to sketch
Im based on the maps of the combined score R

(t)
m (X).

Specifically, at the k-th iteration, we select the k-th tem-
plate by finding the global maximum (Xm,k, tm,k) =

argmaxX,t R
(t)
m (X). Then we let the selected template

B
(tm,k)
Xm,k

suppress overlapping templates B(t)
X by modifying



R
(t)
m (X)← −∞. We then select the next template until K

templates are selected.
When performing cosegmentation on multiple images,

we further require that each template in the codebook can
only be used once for each image. So K = T . When
performing cosegmentation on images with repetitive pat-
terns, we do not impose such requirement, and we choose K
adaptively for each image by stopping the template match-
ing pursuit algorithm when all R(t)

m (X) are less then a pre-
specified threshold (default threshold = 0).

4.2. Re­learning

This step seeks to minimize the total energy function∑
m E(Im,Wm|Θ) over ΘS , ΘR and ΘC given {WS

m} and
{WR

m}. These three parameters are decoupled so the mini-
mizations can be carried out separately.

II.1: Re-learn shape templates. For each t = 1, ..., T ,
we re-learn B(t) from all the image patches that are cur-
rently covered by B(t). Specifically, for image I, let I(D)
be the image patch of I within set D. Then we re-learn
B(t) from the aligned image patches {Im(D(tm,k)

Xm,k
), tm,k =

t, ∀k,m} by the shared matching pursuit algorithm in sub-
section 3.2.

II.2: Re-learn marginal distributions of regions. For
foreground and background, fit the corresponding mixture
of Gaussian distributions using the EM algorithm.

II.3: Re-learn segmentation templates. The prob-
ability map P(t) associated with each B(t) is learned
from the pixel labels of all the aligned image patches
{Im(D(tm,k)

Xm,k
), tm,k = t, ∀k,m} explained by B(t):

P(t)(x, δ) =

∑
m,k 1(δm(x+Xm,k) = δ)1(tm,k = t)∑

m,k 1(tm,k = t)
. (15)

Initialization. For ΘS , B(t) and the associated Λ(t) are
learned from randomly cropped image patches. For ΘR, the
marginal distribution of background is learned from pixels
within 10 pixels (default) from the boundary. The marginal
distribution of foreground is learned from pixels covered by
the aforementioned random patches. The label maps are
then initialized by graph cuts. For ΘC , P(t) is learned from
the label maps of aforementioned random patches.

4.3. Implementation issues

The model and algorithm presented so far are of simplest
prototype form, where the templates do not overlap and are
only subject to spatial translation. In practical implementa-
tions, it is desirable to allow limited overlaps between the
selected templates so that we do not miss important struc-
tures in the images. It is also desirable to scan the templates
over images at multiple resolutions to account for scale vari-
ation. In addition, we should allow the templates to undergo
rotation and mirror reflection.

Overlap. In the template matching pursuit algorithm, a
selected template only inhibits nearby candidate templates
with significant overlapping, instead of all overlapping tem-
plates. In sketch-guided segmentation, the prior probabil-
ity of a pixel covered by multiple overlapping segmentation
templates is determined by the one with the highest tem-
plate matching score.

Resolution. In template matching pursuit, we scan
(B(t),P(t)) over multiple resolutions of Im and its label
map (δm(x), x ∈ Dm) (default: we use three resolutions,
which are .8, 1, 1.2 relative to the original image). After
that, we map the selected shape and segmentation templates
back to the original or the highest resolution, and perform
inhibition and image segmentation at this resolution.

In addition, we also allow the templates to rotate (default
range: {−2,−1, 0, 1, 2} × π/16) and to mirror reflect.

5. Experiments

5.1. Cosegmentation on MSRC and iCoseg

The MSRC [20] and iCoseg [3] datasets are widely used
by previous work to evaluate co-segmentation performace.
In both datasets, instances are of varying appearances, lo-
cations, deformations and in cluttered backgrounds. There
have been different evaluation protocols employed by dif-
ferent cosegmentation algorithms. Here for clarity and fair
comparison, we use all the images of the major object cat-
egories in both datasets to avoid bias, and compare with
the unsupervised cosegmentaion algorithms without inter-
active input or additional annotated training images. As for
evaluation criterion, we follow the evaluation protocols em-
ployed by two recent state-of-the-art methods applied to the
two datasets respectively.

For experiments on the MSRC dataset, we use all the im-
ages in 14 well defined main object categories, which is the
same as in [8]. The pixels corresponding to main objects in
each image are deemed as foreground, while the rest pix-
els are treated as background. Segmentation performance is
measured by the intersection-of-union score following [8],
which is defined as 1

M

∑M
m=1

GTm∩Rm

GTm∪Rm
, where GTm is the

ground truth and Rm is the segmented region of foreground.
The results of the proposed approach, Joulin et al. [8], Kim
et al. [9], Mukherjee et al. [14] and Joulin et al. [7] are
presented in Table 1, in which the results for [7–9, 14] are
taken from Table 1 in [8]. The results show that our pro-
posed approach surpasses the other methods in 13 out of 14
categories. And it achieves an average accuracy of 63.0%,
which is higher than existing methods by a clear margin.

The iCoseg dataset [3] contains 643 images separated
into 38 object categories (e.g. kites, pyramids, hot balloons
etc.). Experiments are conducted on all the images of the 38
object categories. Segmentation accuracy is measured by
the ratio of correctly labeled pixels of foreground and back-



Table 1. Intersection-over-union scores of the proposed approach
and the methods in [7–9, 14] on the MSRC dataset. The results
of [7–9, 14] are taken from Table 1 in [8].

Images Class Ours [8] [9] [14] [7]
30 Bike 51.1 43.3 29.9 42.8 42.3
30 Bird 51.2 47.7 29.9 - 33.2
30 Car 63.7 59.7 37.1 52.5 59.0
24 Cat 61.0 31.9 24.4 5.6 30.1
30 Chair 56.1 39.6 28.7 39.4 37.6
30 Cow 69.9 52.7 33.5 26.1 45.0
26 Dog 63.8 41.8 33.0 - 41.3
30 Face 55.6 70.0 33.2 40.8 66.2
30 Flower 68.8 51.9 40.2 - 50.9
30 House 70.8 51.0 32.2 66.4 50.5
30 Plane 46.5 21.6 25.1 33.4 21.7
30 Sheep 75.2 66.3 60.8 45.7 60.4
30 Sign 73.3 58.9 43.2 - 55.2
30 Tree 74.3 67.0 61.2 55.9 60.0

Average 63.0 50.2 36.6 40.9 46.7

Table 2. Correctly labeled pixel ratios of the proposed approach
and the methods in [7, 19, 21] on the iCoseg dataset. The results
of [7, 19, 21] are taken from Table 1 in [19]. The method in [21]
utilizes an additional annotated dataset for training.

Ours [19] [7] [21]
Average 89.5 83.9 78.9 85.3

ground with respect to the total number of pixels, following
the criterion in [19]. The average accuracies of the proposed
approach, two recent unsupervised methods in [19] and [7]
are presented in Table 2. We also reported the performance
of the method in [21], which trained model parameters on
an additional annotated dataset. The results of [7,19,21] are
taken from Table 1 in [19]. The experiment results show
that the proposed approach achieves an average accuracy
of 89.5%, which is 5.6%, 10.6% and 4.2% higher than the
methods in [19], [7] and [21] respectively.

Figure 3 shows some learned models and the correspond-
ing parsing results on the MSRC and iCoseg datasets. It
can be seen that our proposed approach can effectively per-
form cosegmentation and cosketch despite that the object
instances in the images are of varying appearances, loca-
tions, deformations and in cluttered backgrounds.

5.2. Cosegmentation on Coseg­Rep

To further test our method, we collected a new dataset
called Coseg-Rep, which has 23 object categories with 572
images. 1 Among them, 22 categories are different species
of animals and flowers, and each category has 9 to 49 im-
ages. More important, there is a special category called
“repetitive”, which contains 116 natural images where simi-
lar shape patterns repeat themselves within the same image,
such as tree leaves and grapes etc. Segmentation of a single
image with repetitive patterns is an important step for appli-

1The dataset, code and a demo can be downloaded from
http://www.stat.ucla.edu/˜jifeng.dai/research/
CosegmentationCosketch.html.

Shape templates 

Segmentation templates 

Final cosketch result 

Initial Final (10th  iteration) 

Cosegmentation results Segmentation by Grabcut 

Figure 4. Learned templates and corresponding parsing results in
the initial and final iterations of the proposed approach on a sin-
gle image with repetitive patterns. More accurate segmentation is
achieved than the Grabcut [16] baseline.

cations like automatic leaves recognition [12]. Cosegmenta-
tion results of our proposed approach are presented in Table
3. The mean accuracies are 67.4% and 90.2% when eval-
uated by the intersection-of-union score and the correctly
labeled pixel ratio respectively. Fig. 4 shows the learn-
ing procedure on a single image with repetitive patterns.
Meaningful templates and satisfactory parsing results can
be obtained although the algorithm starts from random ini-
tialization. As a comparison, our method gives more accu-
rate segmentation result than a Grabut [16] baseline method
where the bounding box is set to be 10 pixels away from
the boundary. Fig. 3 presents more parsing results on the
Coseg-Rep dataset and some failure examples.

6. Conclusion

This paper makes the following contributions. (1) We
propose a principled model-based unsupervised learning
framework for cosgementation and cosketch. (2) Shape
templates and segmentation templates are automatically
learned from non-aligned images without ground-truth an-
notation. (3) We create a new dataset Coseg-Rep for coseg-
mentation. A special category of the dataset contains natu-
ral images with repetitive patterns.
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Figure 3. Some cosketch and cosegmentation examples in the MSRC, iCoseg and Coseg-Rep datasets.
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