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Abstract— Detecting potential dangers in the environment is
a fundamental ability of living beings. In order to endure such
ability to a robot, this paper presents an algorithm for detecting
potential falling objects, i.e. physically unsafe objects, given
an input of 3D point clouds captured by the range sensors.
We formulate the falling risk as a probability or a potential
that an object may fall given human action or certain natural
disturbances, such as earthquake and wind. Our approach
differs from traditional object detection paradigm, it first infers
hidden and situated “causes (disturbance) of the scene, and
then introduces intuitive physical mechanics to predict possible
“effects (falls) as consequences of the causes. In particular, we
infer a disturbance field by making use of motion capture data
as a rich source of common human pose movement. We show
that, by applying various disturbance fields, our model achieves
a human level recognition rate of potential falling objects on a
dataset of challenging and realistic indoor scenes.

I. INTRODUCTION

The recent development of consumer-grade range cameras,
such as the Kinect camera, has attracted increasing studies
in the field of 3D scene understanding [4] [9] [13] [21].
However, most of existing work is focused on locating and
naming the object in the scene, and leaves a big gap to
answer human-level scene understanding questions, such as:
how does a human interact with a scene? how does the scene
response to the action? What and where are potential dangers
in the environment?

In this paper, we present an potential falling object detec-
tion algorithm, which is an essential component of a safety-
aware robot. As shown in Fig.1, the algorithm is useful for
three main scenarios:

i) Safety surveillance robots. Objects have the potential to
fall onto or hit people at the construction site as the warning
sign shown in Fig.1 (a). To prevent objects from falling freely
from one level to another, the safety risk surveillance ensures
that objects are being stored where a secure physical barrier
provided.

ii) Human assistant robots for children, elders and people
with disabilities. As the example shown in Fig.1 (b), we
can predict a possible action of the child - he is reaching
for something, and then infer possible consequences of his
action - he might be struck by the falling teapot.
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Fig. 1. The detection of potential falling objects is an essential ability
of a safety-aware robot: (a) the safety surveillance robot for a construction
site, (b) the human assistant robot for the baby proofing, and (c) A building
where was crashed by earthquake and tsunami on March 11, 2011, Japan.

iii) Disaster rescue robots. The Fig.1 (c) showed post-
disaster scene captured by a 3D range sensor. It was a ex-
tremely dangerous environment due to the M9.0 earthquake
and tsunami in Japan. A robot working in such environments
requires to understand the potential risks due to many objects
at unstable state.

Related work. The study of falling objects can be traced
back to an early work by Kriegman [10] that first proposed
an algorithm to calculate the capture regions where a 3D
object may fall according to the Morse theory. There is a
recent rise of related studies in following four streams:

i). Safe Motion Planning. As the planning is a classic
problem in robotics, Petti and Fraichard [22], Phillips and
Likhachev [23] tackled the problem of safe motion planning
in the presence of moving obstacles. They consider the
moving obstacles as the real-time constraint inherent to
the dynamic environment. However, we first argue that a
robot need to be aware of potential dangers even in a static
environment due to possible incoming disturbances.

http://www.stat.ucla.edu/~ybzhao/research/fallingobjects
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Fig. 2. (a) The input point cloud; (b) “Imagined” human action field and detected potential falling objects with red tags.

ii). Physics based model. Gupta et al. [7] revisited the
block world model and worked on labeling of the 2D
image by reasoning the physical force based on a block
representation of 2D image segments. Lee et al. [11], Zhao
and Zhu [15], has made promising progress on volumetric
reasoning of 2D indoor scene. Recently, Zheng et al. [17]
and Jia et al. [24] proposed very interesting approaches to
segment point clouds and detect 3d objects by incorporating
the physics stability as a prior.

iii). Human in the loop. This stream of research empha-
sizes a human-centric representation, differing from the clas-
sic feature-classifier paradigm of object recognition. Some
recent work utilized the notion of ”affordance”. Grabner et
al. [5] recognizes chairs by imagining an ”sitting” actor
interacting with the scene. Gupta et al. [6] predicts the
”workspace” of a human given a estimated 3D scene ge-
ometry. Fouhey and Delaitre et al. [19][20] demonstrate that
observing people performing different actions can signifi-
cantly improve estimates of scene geometry and scene se-
mantics. Jiang [25] [26] proposed scene labeling algorithms
by considering humans as the hidden context.

iv). Cognitive studies. Psychology studies suggested that
approximate Newtonian principles underlie human judg-
ments about dynamics and stability [3] [14]. Hamrick et
al. [8] showed that knowledge of Newtonian principles
and probabilistic representations are generally applied for
human physical reasoning, and the intuitive physics model
is an important perspective for human-level complex scene
understanding.

Overview of our approach. We address the prob-
lem of detecting potential falling objects by inferring hid-
den ”causes” (disturbance) and reasoning possible ”effect”
(falling) using intuitive mechanics. Taking a 3D point cloud
as the input as shown in Fig.2 (a), our method first segments
the point cloud and recovers volumetric 3D objects in the
scene following a recent approach by Zheng et al. [17], and

predicts the walkable area by hallucinating the human actions
[5] [6] [25]. Given the scene geometry and walkable area, we
detect the potential falling objects by calculating its expected
falling risk given a disturbance field in Fig.2 (b).

i) We infer the disturbance field caused by earthquake
or wind, as well as the human activities. A disturbance
field representing the possible physical work applied to each
position in the 3D space. We use the motion capture data
of human actions, as the red stick figures in Fig.2 (b),
and situate it to the 3D scene (walkable areas) to estimate
the statistical distribution of human disturbance. In order to
generate a meaningful human action field, we first predict a
primary motions on the 2D ground plan which recodes the
visiting frequency and walking direction for each walkable
position, and add detailed secondary body part motions in 3D
space on top. We estimate the distribution of primary motions
by synthesizing human walking trajectories following two
simple observations: (a) A rational agent mostly walks along
a shortest path with minimal effort; (b) A agent has a basic
need to travel between any two walkable positions in the
scene. As a result, a convex corner, like the table corners in
Fig.2 (b), has a high probability to be visited, and the pan
on the corner of the table are less safe than others. Similarly,
the box on the chair is easy to be knocked off the stool by
a swinging hand as well.

ii) We then reason ”effects” (falling) of each possible
disturbance (an accidental collision) by intuitive mechanism.
We first decompose the velocity of input disturbance ac-
cording to the directions of rotational movement (rolling)
and translational movement (sliding) by a parallelogram rule.
And we calculate the initial kinetic energy of object after a
collision as an input work to the system. According to two
principles: conservation of kinetic energy and conservation
of momentum, we can infer that the velocity of the object
after the collision. We then calculate the minimum kinetic
energy to move an entity from one stable point to a local



maximum, i.e. knocking it off equilibrium, and then we
further calculate the risk of releasing the energy in reaching
a deeper minimum.

In experiments, we quantitatively evaluated the accuracy
of potential falling object detection, as well as the ranking of
falling risk w.r.t. human judgements on a challenging dataset.

II. DEFINITION OF THE FALLING RISK

We measure the risk of a potential falling object as illus-
trated in Fig.3. The curve represents the change of potential
energy in terms of different positions. At the beginning,
an object a stays in the position x0 which is a stable
equilibrium. When a work W applies to the object, it start to
move upward towards the position of unstable equilibrium x̃.
The total energy needed to go over the unstable equilibrium
∆E(x → x̃) is called ”energy barrier”. If the work is larger
than the energy barrier W ≥ 4E(x → x̃), then the object
will fall over the unstable equilibrium. In this way, we define
the falling risk as:

Definition 1. The falling risk R(a,x0,W ) of an entity
a at x0 in the presence of a disturbance work W is the
maximum energy that it can release when it moves out the
energy barrier by the work W .

R(a,x0,W ) = δ[W ≥ 4E(x → x̃)]4E(x̃→ x′
), (1)

δ() is an indicator function and δ(z) = 1 if condition z is

satisfied otherwise δ(z) = 0.

Definition 2. The falling risk R(a,x0) of an entity a at
position x0 in the presence of a disturbance field p(W,x) is
the expected risk with respect to the disturbance distribution.

R(a,x0) =

∫
p(W,x0)R(a,x0,W )dW, (2)

The energy barrier ∆E(x → x̃) is the minimum energy
needed to move from the current state (say a local minimum)
x0 to an unstable equilibrium x̃. For example, as shown in
Fig. 4, when a cone is currently in stable state B, its energy
barrier is the minimum work needed to push it out of the
current energy basin. Passing that point B′, the cone will fall
to a new stable state at lower position. Also, for example,
when a cup is at the center of the table, its energy barrier is
the minimum work needed (to overcome friction) to push it
to the edge.

The potential falling risk ∆E(x̃ → x′
) is the energy

released when an entity moves from its unstable equilibrium
x̃ to a lower minimum x′

0. For example, when the cup falls
of from the edge of the table to the ground. The higher the
table, the larger the energy risk ∆E(x̃→ x′

).
With the definition of the potential falling object, we

introduce the inference of the disturbance field in Sect.III
and the calculation of potential energy and initial kinetic
energy given a disturbance in Sect.IV.
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Fig. 3. An illustration of falling risk definition and other basic concepts
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Fig. 4. An simple example that a cone is being knocked down. It is pushed
up from the stable equilibrium B, and about to go over the energy barrier
B′. The correspondent potential energy map is on the right.

III. INFERRING THE DISTURBANCE FIELD

Taking a 3D point cloud as the input as shown in Fig.2
(a), our method first segments the point cloud and recovers
volumetric 3d objects the scene following a recent approach
by Zheng et al. [17], and predict the walkable area and
sittable area by hallucinating the human actions [5][6]. The
result is shown in Fig.2 (b). In order to approximate arbitrary
shape of 3D objects, we discretize the 3D space to voxels,
which are the smallest units in the space. So that all the
3D entities are represented by a group of voxels. In such
recovered 3D environment, we then estimate disturbance
field caused by natural forces and human actions.

A. Natural disturbance field

Despite the gravity applies a constant downward force to
all the voxels, other natural disturbances such as earthquakes
and winds are also present in a natural scene.

1) Earthquake transmits energy by forces of interactions
between contacting faces, typically by the frictions in our
scenes. Here, we estimate the disturbance field by generating
random horizontal forces to the voxels along the contacting
surfaces. We use a certain constant to simulate the strength
of the earthquake and the work W it generates.

2) Wind applies fluid forces to exposed voxels in the
space. A precise simulation need to simulate the fluid flow
in the space. Here, we simplify it as an uniformly distributed
field over the space.

B. Human action disturbance field

In order to generate a meaningful disturbance field of
human actions, we decompose the human actions into the
primary motions i.e. the center of mass movements in Fig.5
and the secondary motions i.e. the body parts movements in
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Fig. 5. Primary motion field: (a) The hallucinated human trajectories (white
lines); (b) The distribution of the primary motion space. The red represents
high probability to be visited.

Fig.6. We first predict a human primary motion field on the
2D ground plan, and add detailed secondary motions in 3D
space on top. The disturbance field is characterized by the
moving frequency and moving velocity for each quantized
voxel.

Primary motion field captures the movement of human
body as a particle. We estimate the distribution of primary
human motion space by synthesizing human motion trajec-
tories following two simple observations:

1) A rational agent mostly walks along a shortest path
with minimal effort;

2) A agent has a basic need to travel between any two
walkable positions in the scene.

Therefore, we randomly pick 500 pairs of positions in
the walkable space, we calculate the shortest path that
connecting these two positions as shown in Fig.5 (a). And we
calculate the walking frequency as well as walking directions
based on the synthesized trajectories. Fig.5 (b) demonstrates
a distribution of walkable space, the red color means the
position has high probability to be visited, and the length of
the small arrows shows the probability of moving directions.

In the Fig.5 (b), we can see some more details that convex
corners, e.g. table corners, are more likely to be visited, and
objects in these busy area may have higher risk than the ones
in a concave corners. A hallway connecting two walkable
area is also frequently visited, and objects in the hallway
are less safe too. It is worth noting that the distribution
of moving direction is also very distinctive, it help us to
locate human body move in the right direction to generate
the human disturbance field.

Secondary motion field is the movement thats not part
of the main action e.g. arms swinging while walking. But
secondary motion is important to capture the random distur-
bance, for example, people may push objects off the edge of
the table by hand or kick objects on the ground by foot. We
also use the Kinect camera to collect human motion capture
data Fig.6 (a), and then calculate the distribution of moving
velocity as shown in Fig.6 (b).

The primary motion field further convolves with secondary
motion field, thus generate a dense disturbance field that
capturing the distribution of motion velocity for each voxel

(a) (b)

Fig. 6. Secondary motion field: (a) Secondary motion trajectories of hands
and feet from motion capture data; (b) Distribution of the secondary motion
field. Long vectors represent large velocity of body movement.

in the space. The disturbance field is then represented by a
probability distribution over the entire space for the velocities
along different directions and frequencies that they occur.
For example, a cup in the middle of a large table will not be
reachable by a walking person and thus the distribution of
velocity above the table center, or any unreachable points, is
zero. Five typical cases in the integrated field is demonstrate
in Fig.7.

IV. CALCULATING THE PHYSICAL ENERGY

Given the disturbance field, in this section, we present
a feasible way for calculating input work (energy) that
might lead to object falling. However, building sophisticated
physical engineering models is not feasible, as it becomes
intractable if we consider complex object shapes and material
properties, e.g. , to detect a cup falling off from a table,
huge amount of action need to be simulated until meeting
the case that human body acting on the cup. The relation
between intuitive physical model and human psychology was
discussed by recent cognitive study [8].

In this paper, to obtain a simple intuitive physical model
we make following assumptions.

1. All the objects in the scene are rigid.
2. All the objects are made from same material, such as

wood (friction coefficient: 0.6, uniform density: 700kg/m3).
3. A scene is a dissipative mechanical system that total

mechanical energy along any trajectory is always decreasing
caused by friction, while kinetic and potential energy may
be traded off at different states due to elastic collision.

A. Initial kinetic energy after an elastic collision

We now calculate the initial kinetic energy, which is con-
sidered as the input work in Fig. 3 after an elastic collision.
Here, we simplify objects as mass points to illustrate the
simple idea, we will extend the model to more general rigid
bodies with arbitrary shapes and arbitrary collision points in
the next sub-section.

A head-on elastic collision between two bodies can be
represented by velocities in one dimension along a line
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Fig. 7. The integrated human action field by convolving primary motions with secondary motions. The objects a-e are five typical cases in the disturbance
field: the object b on edge of table and the object c along the passway exhibit more disturbances (accidental collisions) than other objects such as a in the
center of the table, e below the table and d on a concave corner of space.

passing through the bodies. If the velocities are u1 and
u2 before the collision and v1 and v2 after, the equations
expressing conservation of momentum and kinetic energy
are:

m1u1 +m2u2 = m1v1 +m2v2 (3)
1
2m1u

2
1 + 1

2m2u
2
2 = 1

2m1v
2
1 + 1

2m2v
2
2 . (4)

Considering the case that one hand with m1 knocked off
a cup with m2, we set the initial velocities of hand as u1
and the cup is still u2 = 0. The final velocity of the cup is
given by

v2 =

(
2m1

m1 +m2

)
u1 . (5)

If the cup has the same mass as the hand, then the hand that
was moving is now stopped and the cup is moving away
at speed u1. However, if the hand collide with a table with
much greater mass, then the table will be little affected by
a collision while the hand will be rebounded back.

Given the initial velocity of the object, we can easily
calculate the initial kinetic energy, which is also the input
work in Fig.3:

W = Ek =
1

2
m2v

2
2 =

2m2
1m2

(m1 +m2)2
u21 (6)

B. Decomposition of the force, the velocity and the momen-
tum

Here, we treat the object as a rigid body with arbitrary
shape. As shown in Fig.8, the input force V can be de-
composed to a force Vt along a line passing through the
center of mass and another force Vr perpendicular to Vt.
The former force Vt generates an translational movement,
while the latter force Vr generates an rotational movement.
Vt can further be decomposed as three velocities V x

t , V
y
t , V

z
t

along three axes, and Vr is decomposed as three rotational
velocity V x

r , V
y
r , V

z
r around three axes. The input force or

momentum can be decomposed in the same way.
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Fig. 8. The decomposition of action velocity. The gray polygon represents
an object with its center of mass on the red dot. The action velocity V
first decompose as a rotational velocity Vr and translational velocity Vt,
and each velocity is further decomposed as three components along three
dimensions.

Consider the object supported by a flat surface from the
bottom, we can ignore V y

t because it will be rebounded back
along the y axis as we discussed before. We can also ignore
the V y

r because the rotation around the y axis will not change
potential energy, and it also suffer a large friction at the time.

C. Potential energy

As we discussed in the Sect.II, we calculate an energy
map of potential energy. By comparing the input work with
the energy landscapes on potential energy map, we calculate
the falling risk according to Eq.1 and Eq.2. In a same spirit
of decomposition above, fortunately we can decompose the
change of potential energy according to rotation (rolling by
itself) movement and translation (position change) move-
ment. By ignoring the translation and rotation along y axis,
we calculate the rotational energy map according to two
vectors V x

r , V
z
r , which can be also projected onto spherical

coordinate system see [10]; and calculate the translational
energy map according to the V x

t , V
z
t .
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Fig. 9. Potential energy map for (b) the rotational movement and (c) the
displacement movement of the box on a table in (a).

Fig.9 shows a simple example, giving energy a book is
falling off table. We roughly decompose this process into
two sub-steps: 1) it rolls from stable state (in black) to
unstable state (in blue); and 2) it falls off to the position
(in yellow) as a mass point. Therefore we can draw the state
change (along the blue and yellow arrows) on the energy
maps shown in Fig. 9 (b) and (c) respectively. In each energy
map, red means high potential energy, whereas blue means
low potential energy. We can see that the object is initially
lying at the energy minimum (stable equilibrium) on both
maps, and it need some work to push out of the unstable
equilibrium. Once it is pushed into the unstable states, the
case in Fig.9 (c) releases much more energy than that in
Fig.9 (b).

V. EXPERIMENTS

In our experiments, we evaluate our approach by two
datasets of large-scale point clouds. The first dataset cap-
tured by Microsoft Kinect sensor contains 100 scenes, and
each scene is composed by 20-30 rgb-depth images with a
powerful SLAM algorithm [12]. Another dataset is captured
by a high-end 3D sensor Leica ScanStation C10. It contains
20 large scenes, and each snapshot of the sensor scans 260
rgb-depth images covers a panorama of the scene.

Qualitative evaluation. As shown in Fig. 10, we compare
the potential falling objects under three different disturbance
fields: 1) The human action field in Fig. 10 (b,e); 2) The
wind field (an uniform directional field) in Fig. 10 (c,f) and
3) earthquake (random forces on contacting object surface)
in Fig. 10 (d,g). As we can see the cups with red tags are
detected potential falling objects, which are very close to
human judgements.

In Fig.11, we show four large-scale point clouds in each
row, where (a) shows input 3D point clouds with rgb color
for reference; (b) illustrates inferred human action fields, the
larger and more complex environment like the last scene
on the bottom exhibits more sophisticated motion patterns,
which beautifully matches with human motion patterns; (c)
shows a overview of potential falling objects with their risk

scores on yellow tags; and (d) shows the zoom-in details
of some typical successful and failure detection examples.
Some false positives may caused by highly occlusions.

Quantitative evaluation. We conduct two quantitative
evaluations:

Accuracy of potential falling object detection. In this
experiment, we first manually labeled 83 potential falling
objects from 20 large scale point clouds, some of them are
shown in 2 5 7 9 10 Fig.11. The groundtruth come from
majority vote (> 50%) of 10 participants. We calculated
the ROC curve of potential falling object detection by our
proposed approaches in Fig.12 (a). It is shown that our
algorithm can reliably detect potential falling objects with
80% true positive rate and keep a 20% false positive rate at
the same time.

Ranking of falling risk. The human judgements of
potential falling objects can be very subjective, and they
may not be reliable ground truths. Instead of calculating the
error rate, we compare the ranking of several potential falling
objects in a scene with the ranking of human judgement
in this experiment. We asked 10 participants to choose a
reasonable order of the object according to their falling risk.
The results are shown in Fig.12 (b) where the model output
fit well with the human judgement, but still keep a certain
variance. Then we conducted a similar experiment. We
random split the participants into two groups, and evaluate
the correlation between these two groups. As shown in Fig.12
(c), the correlation between human judgements keep the
same amount of variance as the correlation between model
and human. It is also interesting to note that the variance is
larger when the risk score is low (lower left corner of Fig.12
(b,c)), or say the falling risk judgement will become less
ambiguous when the risk is higher.

The similar judgment correlation between machine and
human in Fig.12(b,c) implies the algorithm may pass the
Turing test because the judge cannot reliably tell the machine
from the actual human according to the answers.

VI. CONCLUSION AND DISCUSSION

This paper presents a novel approach for detecting
potential falling objects. We demonstrated that, by applying
various disturbance fields, our model achieves a human
level recognition rate of potential falling objects on a dataset
of challenging and realistic indoor scenes. Differing from
traditional object classification paradigm, our approach goes
beyond the estimation of 3D scene geometry. The approach
is implemented by making use of the ”causal physics”. It
first infers hidden and situated ”causes” (disturbance) of
the scene, and introduces intuitive mechanics to predict
possible ”effects” (falls) as consequences of the causes.
Our approach revisits classic physics-based representation,
and feeds by the state-of-the-art algorithms. Further studies
along this way, including friction, material properties, causal
reasoning, can be very interesting dimensions of vision
research.
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Fig. 10. The potential falling objects (with red tags) under the human action field (b,e), the wind field (c,f) and the earthquake field (d,g) respectively. The
results match with human perception: (i) objects around table corner are not safe w.r.t human walking action; (ii) object along the edge of wind direction
are not safe w.r.t wind disturbance; and (iii) object along all the edges are not safe w.r.t earthquake disturbance.

Please visit our project page for the supplementary demo
and high-resolution results:
http://www.stat.ucla.edu/˜ybzhao/research/

fallingobjects.
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Fig. 11. (a) Input 3D scene point clouds; (b) Inferred human action fields and segmented objects shown in different colors; (c) Detected potential falling
objects with their risk scores on the yellow labels; (d) Some zoom-in details of detected potential falling objects. See text for more explanation.
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Fig. 12. (a) The ROC curve of the potential falling object detection (b) The correlation between the falling risk ranking by our algorithm and the ranking
by human subjects. (c) The correlation between the falling risk ranking by two different random split groups of human subjects.
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