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Abstract

Action recognition and pose estimation from video are
closely related tasks for understanding human motion, most
methods, however, learn separate models and combine them
sequentially. In this paper, we propose a framework to in-
tegrate training and testing of the two tasks. A spatial-
temporal And-Or graph model is introduced to represent ac-
tion at three scales. Specifically the action is decomposed
into poses which are further divided to mid-level ST-parts
and then parts. The hierarchical structure of our model
captures the geometric and appearance variations of pose
at each frame and lateral connections between ST-parts at
adjacent frames capture the action-specific motion informa-
tion. The model parameters for three scales are learned dis-
criminatively, and action labels and poses are efficiently in-
ferred by dynamic programming. Experiments demonstrate
that our approach achieves state-of-art accuracy in action
recognition while also improving pose estimation.

1. Introduction

1.1. Motivation and Objective

Action recognition and pose estimation are both im-
portant tasks for vision-based human motion understand-
ing. They are widely used in applications, such as, intel-
ligent surveillance systems and human-computer interac-
tion systems. Despite their different goals, the two tasks
are highly coupled and it is desirable to study them in
a common framework. However, existing methods train
models for the two tasks separately and combine the infer-
ence sequentially: taking pose estimation as input for ac-
tion recognition[15, 34, 25, 8, 27, 24]. For certain actions
defined by specific geometric configuration of body parts,
pose estimation from a single image may be sufficient for
action recognition [15, 28, 5, 32].

The main drawback of such methods is that the accu-
racy of action recognition highly relies on the obtained pose
estimations. Due to the large pose variation and complex

Figure 1. (a) Single frame human poses estimated by [29]. (b)
Action recognition and poses estimation by our approach.

background in action datasets, the most discriminative parts
(such as ’arms’, ’hands’, ’legs’ and ’feet’) are often missed
in pose estimation, thereby deteriorating subsequent action
recognition. However, those human parts have large motion
in actions and can be recovered by motion information. For
example, Fig. 1 shows that the arms and legs mis-detected
by a pose estimation method [29] are successfully detected
by our method. Besides the motion information on arms and
legs, action recognition also provides strong priors on the
pose sequences. Furthermore, if actions are limited to pre-
defined categorizes, the actions provide strong constraints
on the plaussible poses in space and time [7].

Many methods for action recognition bypass body poses
and achieve promising results by using coarse/mid-level
features for action classification on some datasets[6, 10,
26, 12, 18, 2, 33, 30]. In this paper, we will jointly train
coarse/mid-level features with pose estimation so that these
features are better aligned with body parts and improve the
results.

The prevailing methods for pose estimation from still im-
ages adopt probabilistic and compositional graphical mod-
els where nodes represent part appearance and edges rep-
resent geometrical deformation[29, 19, 17, 20]. Errors
mainly arise from small parts, like forearms and wrists due
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Figure 2. (a) Our spatial-temporal AOG model for action ”Baseball pitch”. The action is decomposed into poses, ST-parts, and parts. Each
ST-part is an Or-Node that represents the mixture components. For simplicity we only draw all nodes at the second frame. The orange edges
represent geometric deformations between ST-parts and parts. (b) The three feature levels. Action nodes, ST-part nodes and part nodes
connect to terminal nodes that represent coarse-level, mid-level and fine-level features respectively. (c) An example of temporal relation
on ST-part ’left arm’. The purple edges connecting five ST-parts at adjacent frames capture the temporal co-occurrence and deformation
relations. During inference we select the best component (red rectangle) for each ST-part.

to large variation and blending with background features.
Video pose estimation methods capture motion informa-
tion by adding many pairwise terms among parts at sub-
sequent frames to the graphical model[3, 36, 21], however,
these models are loopy and require approximate inference.
The smoothness features on pairwise terms are restricted to
videos with slow motion and small appearance variation,
but such prior assumptions break in action datasets. Human
motion can become much larger and the changing of view-
point makes appearance inconsistent at adjacent frames. As
illustrated in Fig. 1, we improve the estimation of part loca-
tions by using action specific information.

1.2. Method Overview

This paper integrates the training and testing of action
recognition and video pose estimation. During training, in-
formation from both tasks is utilized to optimize model pa-
rameters and in testing the action labels and part locations
are inferred jointly.

We start by building a spatial-temporal And-Or graph
model[37][23][14][13] to represent actions and poses
jointly. Hierarchical structure of our model can represent
top-down part geometric configurations in a single frame
and lateral temporal pose relation in subsequent frames. On
the top layer, the low-resolution action information is cap-
tured by coarse-level features and the action is decomposed

into poses at each frame. Each pose is decomposed into
five independent mid-level ’ST-parts’ (ST means Spatio-
Temporal) that cover a large portion of human bodies and
are robust to image variations. All fine-level parts are condi-
tioned on their ST-part parents. Each ST-part is discretized
into several components by clustering. The ST-parts with
the same component can be seen as a poselet[1] that has
small variation of appearance and deformation and each
component is represented by mid-level features and fine-
level part features from single image pose estimation.

In order to capture the specific motion information of
each action, ST-parts at adjacent frames are connected to
represent temporal co-occurrence and deformation. The
model parameters at three levels are trained separately by
S-SVM and combined by a mixture of experts method. Due
to the independence between ST-parts of each pose, we can
infer both action label and poses efficiently by DP.

2. Related Works and Our Contributions
Action recognition and pose estimation are both popular

topics in computer vision and there are numerous literature.
This section refers to some recent work on both topics. Ac-
tion recognition methods are grouped into two categories:
coarse/mid-level feature based and pose feature based. Pose
estimation methods are reviewed with two aspects: single
image pose estimation and video pose estimation.
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Coarse/mid-level feature based methods. The most
successful framework is built on spatial-temporal interest
points such as cubiods[6] and 3D Harris corner[10]. This
framework extends object detection using 2D spatial inter-
est points. After the interest points are detected, appear-
ance and motion features like HOG[4] and HOF[11] are
extracted and the bag-of-words representation is used for
classification. Instead of using interest points, Wang et al.
[26] extracts dense trajectories by optical flow and builds a
bag-of-words representation on trajectory aligned features.
While it has achieved good performance on many action
datasets, it highly relies on the quality of optical flow. Al-
though the coarse/mid-level features based methods suc-
ceed on some datasets, they offer no intuition about the re-
lation between pose and action. The learning and inference
with these methods is simple and fast, and they can work on
the low-resolution videos.

Pose feature based methods. Recently, due to the great
progress made in pose estimation, many action recognition
methods try to borrow strength from high-level pose infor-
mation. Yao et al. [34] represents action as several key-
poses with an AOG model. Each key pose corresponds
to a latent variable in a HMM model. Wang et al. [25]
first runs pose estimation on video frames and builds pose
features directly on the estimated poses, classifying with a
bag-of-words framework. Jiang Wang et al. [27] develops
MST-AOG model for cross-view action recognition. The
3D skeleton training data is applied to help mine the dis-
criminative parts.

Single image pose estimation methods. The most pop-
ular framework used in single image pose estimation is to
build a part graphical model based on human joints. Yang
and Ramanan [29] build a tree-structure spring model to
capture both spatial and co-occurrence relations between
parts. Brandon et al. [19] uses a compositional AOG model
to represent large appearance and geometry variation and
image segmentation is employed to help distinguish the
parts from cluttered background. Pishchulin et al. [17]
builds a more flexible graphical model with strong local
appearance representations and the mid-level semi-global
poselets are combined with fine part appearance model.

Video pose estimation methods. Cherian et al. [3]
extends the graphical model with temporal edges between
parts at adjacent frames. The geometric and appearance
comparability between parts is captured by temporal edges
and approximate inference is performed on the highly loopy
graphical model. Instead of using a graphical model Shen et
al. [22] formulates the video pose estimation as a matching
problem that tries to match the dense trajectories from 2D
video with the projection of the 3D trajectories of human
motion under different viewpoints in a 3D database.

To the best of our knowledge Yao et al. [31] is the only
paper that tries to couple action recognition and pose esti-

mation. It formulates the pose estimation as an optimization
over a set of action specific manifold and conducts the two
tasks iteratively. In training it requires that each video is
from multiple views however we can work on datasets in
which each sample is from only one view.

This paper combines action recognition and video pose
estimation in a unified framework with a spatial-temporal
And-Or Graph model. This paper makes three contributions
to both action recognition and video pose estimation prob-
lems:

i) It proposes a spatial-temporal AOG model to integrate
action recognition and video pose estimation. The two tasks
are mutually benefit from each other in training and testing.

ii) It represents actions at three scales. Coarse and mid-
dle level features are trained jointly with pose features.

iii) It outperforms state-of-art action recognition and
pose estimation methods on two action datasets: Penn Ac-
tion dataset and sub-JHMDB dataset.

3. Representation and Modeling
3.1. Spatial-Temporal And-Or Graph Model

Fig.2 shows our spatial-temporal AOG model for repre-
senting action and poses. There are three kinds of nodes:
And nodes, Or nodes and Terminal nodes. The And node
captures the decomposition of a large entity. In our case the
action and poses are represented by And nodes because they
are decomposed into several children. The Or node repre-
sents structural variations. Here each ST-part is an Or node
because it has different components. The Terminal node is
observable and directly associates with image evidence. We
have three kinds of terminal nodes to represent actions at
different scales. The terminal nodes associated with action
and ST-parts represent coarse and mid-level features and the
terminal nodes at bottom level represent fine part features.

To unify action recognition and video pose estimation
each action exampleA is represented by the poses pt at each
frame:

A = {p1, p2, ..., pT } (1)

T is the number of frames. Each pose pt is represented
by an And node and decomposed into several ST-parts li
(Fig. 2(a)):

pt = {l1, l2, ..., lM} (2)

M is the number of ST-parts. Each ST-part li is a mixture
components model with several parts oj :

li = {o0, ..., oNi−1, ci} (3)

oj = {xj , yj} denotes the position of part j which
should be one of the human joints, oj ∈ Ωpart,Ωpart =
{′head′,′ torso′,′ leftarm′,′ rightarm′, ...}, Ni is the
number of parts that belong to parent i, o0 is the root part for
this ST-part. ci is the component id and ci ∈ {1, 2, ..., zi},
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zi is the number of components of ST-part i. The ST-parts
with the same component have small appearance and geo-
metrical variations and represent a motion status of the ac-
tion. The learning of ST-parts will be discussed in the next
section.

We divide the feature vector of ST-part into two cate-
gories: classification feature for action classification and
detection feature for regularization.

Classification feature includes two terms: ψ(li) and
ψ(ci). ψ(li) = [d1 d2 ... dzi ]

T where dj = (o0 − uj) is the
normalized Euclidean distance between the root part and
the component center. ψ(ci) = [0, 0,1(ci), ..., 0, 0] is a zi
dimension indicator where the entry corresponding to com-
ponent ci is one and the others are zero.

Detection feature contains two portions: the part score∑Ni

j=0 S(oj) and the deformation score
∑Ni

j=1 S(oj , o0).
The two scores are directly obtained from a single image
pose estimation[29] and used to regularize action classifica-
tion.

There are two kinds of edges in our model: orange edges
represent the geometric deformation in a single frame and
purple edges represent the smoothness and temporal co-
occurrence of ST-parts at adjacent frames.

Deformation feature is a four-dimension vector which
models deformation between ST-part and part as a 2D gaus-
sian distribution: ψ(Ed) = [dx, dy, dx2, dy2]T , Ed ∈ ΩD.

Temporal co-occurrence feature at ST-part i of
frame t is a zi × zi dimension indicator: ψ(Eo) =
[0, 0,1(ct)1(ct+1), ..., 0], Eo ∈ ΩO which means that only
the entry corresponding to components ct and ct+1 is one
and the others are zero.

Smoothness feature d(lti , l
t+1
i ) is the negative Eu-

clidean distance between the root parts of lti and lt+1
i .

Although the action is represented by a sequence of
poses, it is insufficient to only use pose features for action
recognition because low resolutions makes part detection
unreliable. Here we borrow the strength from coarse-level
and mid-level features for compensation. For the coarse
feature ψL, we follow the framework of [26] to extract the
bag-of-words feature on the dense trajectories. For the mid-
level feature ψM , we use the method from [27] to train
HOG/HOF templates for each selected ST-part component,
using the filter responses as features.

3.2. Score Functions

In this section, we introduce the score functions of our
model in a bottom-up fashion. For simplicity we drop the
action label in all formulations in this section.

The terminal nodes in the bottom layer ground all parts
to image data. Instead of training part templates with action,
we train them independently by single image pose estima-
tion [29]. The part scores and part deformation scores are
obtained directly from [29].

The score of ST-part i is defined by:

S(li) = Sd(li) + Sh(li) + λ

Ni∑
j=0

S(oj) + λ

Ni∑
j=1

S(oj , o0)

(4)
There are four terms contributing to the ST-part score.

The first two terms are classification scores and the last
two terms are detection scores. Sd(li) =< ωli

d , ψ(li) >
measures the compatibility of component ci. Sh(li) =<
ωli
h , ψ(ci) > is the histogram score of component ci. S(oj)

is the score of part j and S(oj) = P (oj) where P (oj) is the
part marginal score from pose estimation. S(oj , o0) =<

ωij , ψ(Eij
d ) > is the deformation score of part j related to

the root part. Parameter λ is the weight for detection score.
The inference algorithm will search all possible ST-parts in
the feature pyramid and output a top candidate list for each
frame.

Each pose is composed of M ST-parts thus the score is
written as a summation of their scores.

S(pt) =

M∑
i=1

S(lti) (5)

The relation between ST-parts in a single image is ig-
nored so they are independent of each other, avoiding the
loopy graph structure that is a common case in video pose
estimation. The details will be discussed in section 5.

In our model, each action example is a sequence of poses
following the transitions between poses at adjacent frames.
Thus, the fine-level score of an action can be formulated as:

SH(A) =

T∑
t=1

S(pt) +

T−1∑
t=1

S(pt+1|pt) (6)

S(pt) is defined in Eq. (5) and S(pt+1|pt) measures
the transition score between two poses. The transition re-
lation of two poses is captured by transitions between their
ST-parts and it is thus written as a summation of transition
scores of ST-parts.

S(pt+1|pt) =

M∑
i=1

S(lt+1
i |lti) (7)

The transition score between two ST-parts is defined as:

S(lt+1
i |lti) = S(cti, c

t+1
i ) + βd(lti , l

t+1
i ) (8)

It includes two components: the co-occurrence score

S(cti, c
t+1
i ) =< ωli

o , ψ(E
cti,c

t+1
i

o ) > and smoothness score
βd(lti , l

t+1
i ), where β is the weight for the smoothness.

The fine-level score of one image sequence is rewritten
as follows, combining eqns. (5), (6) and (7).

SH(A) =

M∑
i=1

(

T∑
t=1

S(lti) +

T−1∑
t=1

S(lt+1
i |lti)) (9)
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In this form, the fine-level score is only related to the ST-
parts. The inference algorithm will search for the positions
and components of ST-parts that maximize this score.

With coarse-level and mid-level scores, the action score
can be written as,

S(A) = πL(A)SL(A) + πM (A)SM (A) + πH(A)SH(A)
(10)

SL(A) =< ωL, ψL(A) > is coarse-level score and
SM (A) =< ωM , ψM (A) > is mid-level score. The
weights πL(A) =< ω′L, φ

′
L(A) >, πM (A) =<

ω′M , φ
′
M (A) > and πH(A) =< ω′H , φ

′
H(A) > are linear

functions on features of action example A.

4. Inference

t=1 t=2 t=3 
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Figure 3. An example of our inference method. (a) For each frame
we generate several ST-part candidates and obtain the best path for
each ST-part by DP. (b) The ST-part is represented by the mid-level
features (HOG and HOF template) and fine-level features (scores
of knee and ankle).

The objective of our inference is to find the action la-
bel and part locations. The coarse-level score SL(A) and
mid-level score SM (A) are computed directly by linear-
SVM. As illustrated in Fig.3 (a), The fine-level action score
SH(A) is divided into M independent terms each of which
corresponds to the summation of unary scores and binary
transition scores for one ST-part, thus dynamic program-
ming can be used to find the best ST-part path:

[l1i , l
2
i , ..., l

T
i ] = arg max

T∑
t=1

S(lti) +

T−1∑
t=1

S(lt+1
i |lti) (11)

This procedure is repeated M times to find the total M
best paths for each action label. Finally the action label
with maximum score is obtained in Eq. (10).

With the best action label, we trace back to the best ST-
part paths for the action and obtain all joint locations. No-
tice that the joints ’left shoulder’ and ’right shoulder’ are

shared by two ST-parts and we pick them from the ST-part
’head shoulder’ because it is more robust than ’left arm’ and
’right arm’.

To speed up computation, we first run [16] for each
frame and compute response maps for all ST-parts. After
non-maximum suppression we pick the ST-part candidates
that have a score above τ . We connect all candidates on con-
secutive frames and compute their unary scores and binary
transition scores. To determine the optimal threshold τ , we
compute ST-part scores on the ground truth of all training
images and pick the highest value for the threshold that does
not prune the optimal one on training examples.

5. Learning

Our learning process includes two main stages: The first
stage is to learn ST-parts. The second stage is to learn
the model parameters for three levels including weights for
unary ST-part score , temporal score between ST-parts in
adjacent frames and classification weights for each action.

5.1. Learning ST-parts

As a mid-level representation of human pose, ST-parts
are much more robust to image variations than fine parts,
especially on action datasets containing large appearance,
geometric and motion variations that make fine parts hard
to detect. With pose annotations we can learn ST-parts from
training data.

5.1.1 ST-part Representation

We use 13 joints to represent the human subject. The
13 joints are divided into 5 ST-parts: ’head-shoulder’,’left
arm’,’right arm’,’left leg’,’right leg’ each of which includes
3 joints Fig.5(a). In order to compute deformation we de-
fine 5 joints as root parts for ST-parts:head, left elbow, right
elbow, left knee, right knee. Each ST-part is encoded by a
feature vector:

f(lti) = [∆p1,∆p2,∆p
t
0,∆p

t
1,∆p

t
2] (12)

∆p1 = p1 − p0 and ∆p2 = p2 − p0 are the offsets of
parts relative to the root part. ∆pt0 = [pt−10 − pt0, pt+1

0 − pt0]
is the temporal offset of root part relative to the same joint
in previous frame and the next frame. ∆pt1 and ∆pt2 are
defined in the same way. Using the temporal offset as a
feature is important because some ST-parts have the same
joint configuration and can be only distinguished by motion.
To make the feature invariant to scale, we estimate the pose
scale st at each frame by head length, and then the feature
is normalized by the scale factor: f(lti) = f(lti)/st.
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（a） （b） （c）

Figure 4. (a) The 13 joints used in our model. They are divided into five ST-parts each of which contains 3 joints. (b) Some examples of
pose annotations in training data and their generated ST-parts. (c) Some examples of two components for each ST-part.

5.1.2 ST-part Clustering

To capture image variations from different viewpoints and
actions each ST-part is represented as a mixture of com-
ponents model and the components are obtained by doing
k-means on the features f(lti). In order to make the ST-part
component compact in appearance and motion, we first run
k-means on the training examples with same action label
and view label to get many small clusters each of which has
small variation. Clusters that have few examples and belong
to only one video are removed as annotation errors. Finally
we combine these clusters according to their distance to let
them to be shared by different actions and viewpoints. See
some examples in Fig.5 (c).

5.2. Learning Model Parameters

5.2.1 Learning Coarse-level and Mid-level Templates

The coarse-level template ωL is learned by linear-SVM on
the dense trajectory features[26]. These features don’t need
any pose information and they capture the appearance and
short-term motion on the moving blocks. The mid-level in-
formation is captured by HOG/HOF templates of ST-parts.
Following[27], we train HOG/HOF templates on our ST-
part components with SVM and convolute them with train-
ing images. The feature vector is constructed by performing
spatial-temporal max-pooling on response maps, and the
template ωM is learned by linear-SVM.

5.2.2 Learning Fine-level Parameters

The parameters we need to learn for the fine-level score in-
clude ωli

d and ωli
h for the compatibility score and histogram

score of each ST-part, ωli
o for the ST-part co-occurrence

score. We adapt latent Structure-SVM for learning those

parameters with regularization. Although all training data
have part annotations and we have ground truth for part lo-
cations and ST-part components, only using ground truth
may hurt performance because there is a large difference be-
tween pose estimation results and ground truth in such chal-
lenging action datasets. Thus we allow the parts to move
between the top N detected parts that are within a certain
distance of the ground truth part locations. Learning iter-
ates between two steps until convergence:

i) To train parameters w = [ωl1
d ω

l1
h ω

l1
o ...ω

lM
d ωlM

h ωlM
o ],

we discard the detection scores λ
∑Ni

j=0 S(oj) and

λ
∑Ni

j=1 S(oj , o0) and the smoothness score βd(lti , l
t+1
i )

and train the parameters with detected poses hi. For the first
iteration, h0 is set to ground truth poses. This is formulated
as a supervised multi-class classification problem:

minωt

1
2‖ωt‖2 + C

n

∑n
i=1 ξi, (13)

s.t. maxŷ∈Y ω
T
t (φ(xi, y

t
i)− φ(xi, ŷ

t
i)) ≥ ∆(yi, ŷi)− ξi,

Here yti = (ai, h
t
i) where ai is action label. ∆(yi, ŷi) is 1 if

ai = âiand 0 otherwise. t indexes the iteration.
ii) After computing parameters at iteration t, we add the

detection score and the smoothness score back into the fine-
level score function and infer the poses for each training
example. λ and β are determined by experiments. Similar
to inference in testing, we first generate the top N ST-parts
candidates within a certain distance around the ground truth
and find the best ST-part paths among those candidates un-
der the ground truth action label by Eq. (11). Then we get
the poses ht+1

i from the poselets and go back to step 1.
After learning the parameters for the three levels, we ob-

tain the scores for the three levels separately. Finally we
learn the weights πL(A), πM (A) and πH(A) to combine
them for the final action score. We formulate this combi-
nation in the mixture of experts framework[9] where each
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expert corresponds to a classifier in each level. The weights
are computed on each action example, so different weights
indicate which expert the example prefers to use. Here we
concatenate scores of different categories at each level as
features to learn the weights.

6. Experiments
We test our method on two public action datasets: the

Penn Action dataset[35] and the sub-JHMDB dataset[8].
Both datasets are proposed for the purpose of action recog-
nition but they also provide annotations of human joints
which are required by our training approach. The perfor-
mance of both action recognition and pose estimation are
evaluated on each dataset.

6.1. Evaluation on Penn Action Dataset

The Penn Action Dataset contains 15 action categories
and the annotations include action labels, rough view la-
bels and 13 human joints for each image. The occlusion
label of each joint is also provided. We follow [35] to split
the data into 50/50 for training/testing. The action ’playing
guitar’ and several other videos are removed because less
than one third of a person is visible in those data. We find
that there exist some un-annotated joints that always remain
at the left-top corner of image. To correct those errors we
train a regression model to predict positions of un-annotated
joints by using the visible neighbor joints from videos with
the same action and view label. In order to get diverse poses
to train [29] we first cluster the training data based on whole
pose features to get 500 clusters. Then we uniformly select
total 5000 images from those clusters as training images.
We use the code provided by [29], and we set part mixture
number to 8: 6 for visible joints and 2 for occluded joints.

The number of mixture components of 5 S-T parts are
43, 37, 31, 56, 58. We find that more components does not
improve performance but greatly increase training burden.
The parameters λ = 10 and β = 0.01 for detection score
and smooth score are determined by cross-validation on the
training data. Training converges in only 3 iterations. The
coarse-level and mid-level action templates are trained by
the code from [26] and [27]. The number of candidates of
the ST-part ’head-shoulder’ is around 200 and of other ST-
parts is around 1000 because the parts ’head’ and ’shoulder’
only have high scores on a few locations whereas other parts
have much larger variations on the score map.

Table.2 compares the action recognition accuracy be-
tween previous methods and ours. We use the num-
bers of STIP, Dense, Action Bank and Actemes from
[35]. Ours(fine) is trained by only fine-level features and
Ours(all) is trained with all feature levels. With only fine-
level features, the performance is not very good, but when
coarse/mid-level features are added in the performance is
improved due to the low resolution and heavy occlusion that

Method Accuracy
STIP[35] 82.9%
Dense[26] 73.4%
MST[27] 74.0%

Action Bank[35] 83.9%
Actemes[35] 79.4%

Ours(fine) 73.4%
Ours(all) 85.5%

Table 2. Recognition accuracy on Penn Action dataset. Action
Bank is not directly comparable since it uses other training dataset.

make part detection unreliable and not good enough to clas-
sify actions.

The confusion matrix of Ours(all) is shown in Figure. 6.
Our approach performs well on the actions such as ’bowl’,
’pull up’, ’push up’ and ’squat’, however we achieve low ac-
curacy on actions with fast movement such as ’tennis fore-
hand’ because the motion blur makes the positions of criti-
cal parts like wrists always wrong.
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Figure 6. The confusion matrix of our method on Penn Action
Dataset.

We compare pose estimation accuracy with Yang et al.
[29] and Park et al. [16]. We use their evaluation criteria
and set the threshold to 0.2. The results are illustrated in
Table. 1. Our method outperforms theirs at every part. It is
reasonable that the action specific motion information can
help our method to select better parts which are not always
the oen with highest score provided by single image based
pose estimation.

6.2. Evaluation on sub-JHMDB Dataset

The sub-JHMDB dataset contains 316 clips with 12 ac-
tion categories. It provides action labels, rough-view labels
and 15 human joints for each frame. All joints are inside
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Penn Action Dataset
Head Shou Elbo Wris Hip Knee Ankle mean

[29] 57.9 51.3 30.1 21.4 52.6 49.7 46.2 44.2
[16] 62.8 52.0 32.3 23.3 53.3 50.2 43.0 45.3
[3] − − − − − − − −

Ours 64.2 55.4 33.8 24.4 56.4 54.1 48.0 48.0

sub-JHMDB Dataset
Head Shou Elbo Wris Hip Knee Ankle mean
73.8 57.5 30.7 22.1 69.9 58.2 48.9 51.6
79.0 60.3 28.7 16.0 74.8 59.2 49.3 52.5
47.4 18.2 0.08 0.07 − − − 16.4
80.3 63.5 32.5 21.6 76.3 62.7 53.1 55.7

Table 1. Pose estimation accuracy in %. The left table shows the results of Penn Action Dataset and the right table shows the results of
sub-JHMDB Dataset.

Penn

sub-JHMDB

Figure 5. Some pose estimation results of our method on the two datasets. The last two columns show failure examples with red rectangle.

the image and there are no un-annotated joints. We use 13
human joints to train the single image pose estimation. We
also do clustering on all frames using the whole pose fea-
tures and select a total 1500 images from clusters for train-
ing. The part mixture number is set to 6.

We use the 3-fold cross validation setting provided by
the dataset to do experiments. The number of mixture com-
ponents of 5 ST parts are 36, 42, 39, 64 and 64. The param-
eters λ = 20 and β = 0.01 for detection score and smooth
score are decided by cross-validation and the training con-
verges in 3 iterations.

Method Accuracy
Dense[8] 46.0%
MST[27] 45.3%
Pose[8] 52.9%

Ours(fine) 55.7%
Ours(all) 61.2%

Table 3. Recognition accuracy on sub-JHMDB dataset.

Table. 3 compares our action recognition performance
with others. We use the numbers of ’Dense’ and ’Pose’
from [8]. For Pose[8], we use the highest number they ob-
tained by using pose features extracted from pose estima-
tion. With only fine-level features our method already out-
performs others. With coarse/mid features the accuracy is

increased by nearly 6 percent because there are many low-
resolution videos with large errors of pose estimation.

The comparison of pose estimation is illustrated in Ta-
ble. 1. Our method outperforms [29] the most at parts
’Head’ and ’Hip’ by nearly 7%, however for the parts ’El-
bows’ and ’Wrists’ our performance is comparable which
we believe is caused by those parts that are very subtle and
because the specific action motion information may prefer
the distinguished part locations which are never in the right
positions. To compare with [3], we re-train their method on
our dataset, and they only estimate the joints in upper body.
Results show that the pairwise smoothness features they use
are not working well in the action dataset with large motion
and appearance changing.

7. Conclusion

We have proposed a new framework to joint action
recognition and pose estimation, which are traditionally
trained separately and combined sequentially. One limi-
tation of our method is that we do not handle the self-
occlusion explicitly which always appears in action datasets
and is a big challenge for pose estimation. In the future, we
are going to integrate the 3D pose estimation with the cur-
rent framework, because only with the help of 3D informa-
tion we can solve the occlusion issue.
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