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Abstract

This paper presents a hierarchical composition ap-
proach for multi-view object tracking. The key idea is to
adaptively exploit multiple cues in both 2D and 3D, e.g.,
ground occupancy consistency, appearance similarity, mo-
tion coherence etc., which are mutually complementary
while tracking the humans of interests over time. While fea-
ture online selection has been extensively studied in the past
literature, it remains unclear how to effectively schedule
these cues for the tracking purpose especially when encoun-
tering various challenges, e.g. occlusions, conjunctions,
and appearance variations. To do so, we propose a hi-
erarchical composition model and re-formulate multi-view
multi-object tracking as a problem of compositional struc-
ture optimization. We setup a set of composition criteria,
each of which corresponds to one particular cue. The hier-
archical composition process is pursued by exploiting dif-
ferent criteria, which impose constraints between a graph n-
ode and its offsprings in the hierarchy. We learn the compo-
sition criteria using MLE on annotated data and efficiently
construct the hierarchical graph by an iterative greedy pur-
suit algorithm. In the experiments, we demonstrate superior
performance of our approach on three public datasets, one
of which is newly created by us to test various challenges in
multi-view multi-object tracking.

1. Introduction
Multi-view multi-object tracking has attracted lots of at-

tentions in the literature [22]. Tracking objects from mul-
tiple views is by nature a composition optimization prob-
lem. For example, a 3D trajectory of a human can be hier-
archically decomposed into trajectories of individual views,
trajectory fragments, and bounding boxes. While exist-
ing trackers have exploited the above principles more or
less, they enforced strong assumptions over the validity of
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Figure 1. An illustration of utilizing different cues at different pe-
riods for the task multi-view multi-object tracking.

a particular cue, e.g. appearance similarity [1], motion
consistency [9], sparsity [30, 50], 3D localization coinci-
dence [24], etc., which are not always correct. Actually,
different cues may dominate different periods over object
trajectories, especially for complicated scenes. In this pa-
per, we are interested in automatically discovering the op-
timal compositional hierarchy for object trajectories from
various cues, in order to handle a wider variety of tracking
scenarios.

As illustrated in Fig. 1, suppose we would like to track
the highlighted subject and obtain its complete trajectory
(e). The optimal strategy for tracking may vary over space
and time. For example, in (a), since the subject shares the
same appearance within certain time period, we apply an
appearance based tracker to get a 2D tracklet; in (b) and (c),
since the subject can be fully observed from two differen-
t views, we can group these two boxes into a 3D tracklet
by testing the proximity of their 3D locations; in (d), since
the subject is fully occluded in this view, we consider sam-
pling its position from the 3D trajectory curve constrained
by background occupancy.

In this work, we formulate multi-view multi-object
tracking as a structure optimization problem described by
a hierarchical composition model. As illustrated in Fig. 2,
our objective is to discover composition gradients of each



object in the hierarchical graph. We start from structureless
tracklets, i.e., object bounding boxes, and gradually com-
pose them into tracklets of larger size and eventually into
trajectories. Each trajectory entity may be observed in s-
ingle view or multiple views. The composition process is
guided by a set of criteria, which describe the composition
feasibility in the hierarchical structure.

Each criterion focuses on one certain cue and in fac-
t is equivalent to a simple tracker, e.g., appearance track-
er [29, 45], geometry tracker [35], motion tracker [2], etc.,
which groups tracklets of the same view or different views
into tracklets of larger sizes. Composition criteria lie in the
heart of our method: feasible compositions can be conduct-
ed recursively and thus the criteria can be efficiently uti-
lized.

To infer the compositional structure, we divest MCMC
sampling-based algorithms due to their heavy computation
complexity. We approximate the hierarchy by a progressive
composing process. The composition scheduling problem
is solved by an iterative greedy pursuit algorithm. At each
step, we first greedily find and apply the composition with
maximum probability and then re-estimate parameters for
the incremental part.

In the experiments, we evaluate the proposed method on
a set of challenging sequences and the results demonstrate
superior performance over other state-of-the-art approach-
es. Furthermore, we design a series of comparison exper-
iments to systematically analyze the effectiveness of each
criterion.

The main contributions of this work are two-fold. First-
ly, we re-frame multi-view multi-object tracking as a hier-
archical structure optimization problem and present three
tracklet-based composition criteria to jointly exploit differ-
ent kinds of cues. Secondly, we establish a new dataset to
cover more challenges, to present richer visual information
and to provide more detailed annotations than existing ones.

The rest of this paper is organized as follows. We review
the related work in Section 2, introduce the formulation of
our approach in Section 3, and discuss the learning and in-
ference procedures in Section 4. The experiments and com-
parisons are presented in Section 5, and finally comes the
conclusion in Section 6.

2. Related Work
Our work is closely related to the following four research

streams.
Multi-object tracking has been extensively studied in

the last decades. In the literature, the tracking-by-detection
pipeline [47, 20, 33, 41, 7, 8] attracts wide-spreaded atten-
tions and acquires impressive results, thanks to the consid-
erable progress in object detection [12, 37, 34], as well as
in data association [48, 32, 6]. In particular, network flow
based methods [32, 6] organize detected bounding boxes in-

to directed multiple Markov chains with chronological or-
der and pursue the trajectory as finding pathes. Andriyenko
et al. [2] propose to track objects in discrete space and use
splines to model trajectories in continuous space. Our ap-
proach also follows this pipeline but considers bounding
boxes as structureless elements. With preliminary associa-
tions to preserve locality, we can better explore the nonlocal
properties [23] of trajectories in the time domain. For ex-
ample, tracklets with evident appearance similarities can be
grouped together without considering the time interval.

Multi-view object tracking is usually addressed as a
data association problem across cameras. The typical solu-
tions include, homography constraints [24, 4], ground prob-
abilistic occupancy [14], network flow optimization [42, 6,
25], marked point process [38], joint reconstruction and
tracking [19], multi-commodity network [36] and muti-
view SVM [49]. All these methods have certain strong as-
sumptions and thus are restricted to certain specific scenar-
ios. In contrast, we are interested in discovering the optimal
composition structure to obtain complete trajectories in a
wide variety of scenarios.

Hierarchical model receives heated endorsement for its
effectiveness in modeling diverse tasks. In [17], a stochas-
tic grammar model was proposed and applied to solve the
image parsing problem. After that, Zhao et al. [51] and Liu
et al. [27] introduced generative grammar models for scene
parsing. Pero et al. [31] further built a generative scene
grammar to model the constitutionality of Manhattan struc-
tures in indoor scenes. Ross et al. presented a discriminative
grammar for the problem of object detection [15]. Grosse
et al. [16] formulated matrix decomposition as a structure
discovery problem and solved it by a context-free gram-
mar model. In this paper, our representation can be analo-
gized as a special hierarchical attributed grammar model,
with similar hierarchical structures, composition criteria as
production rules, and soft constraints as probabilistic gram-
mars. The difference lies in that our model is fully recursive
and without semantics in middle levels.

Combinatorial optimization receives considerable at-
tentions in the surveillance literature [43]. When the so-
lution space is discrete and the structure cannot be topo-
logically sorted (e.g., loopy graphs), there comes the prob-
lem of combinatorial optimization. Among all the solution-
s, MCMC techiques are widely acknowledged. For exam-
ple, Khan et al. [24] integrated the MCMC sampling within
the particle filer tracking framework. Yu et al. [46] utilized
the single site sampler for associating foreground blobs to
trajectories. Liu et al. [28] introduced a spatial-temporal
graph to jointly solve the region labeling and object tracking
problem by Swendsen-Wang Cut [5]. In this work, though
facing a similar combinatorial optimization problem, we
propose a very efficient inference algorithm with acceptable
trade-off.



3. Representation
In this section, we first introduce the compositional hi-

erarchy representation, and then discuss the proposed prob-
lem formulation for multi-view multi-object tracking.

3.1. Hierarchical Composition Model

Given an input sequence containing videos shot by mul-
tiple cameras, we follow a default tracking-by-detection
pipeline and apply [34] to obtain detected bounding box-
es. After that, we associate them into short trajectory frag-
ments, i.e., tracklets, similar to [20, 40]. Tracklets preserve
better local properties of appearance and motion as well as
better robustness against errors and noises, compared with
bounding boxes.

We denote a tracklet asO, which contains the appearance
and geometry information over a certain period of time:

O = {(ai, li, ti) : i = 1, 2, . . . , |O|}, (1)

where ai is the appearance feature, li the location informa-
tion (i.e., 2D bounding box and 3D ground position) and ti
the time stamp. Note that the 3D ground position is calcu-
lated by projecting the foot point of the 2D bounding box
onto the world reference frame. For convenience, we de-
note the start time and end time of a tracklet by ts and te,
respectively. We further augment a set of states x(O) for
each tracklet O

x(O) = {ωi : i = 1, . . . , |O|}, (2)

where ωi ∈ {1, 0} indicates the state of visibili-
ty/invisibility on the 3D ground plane at time ti. x(0) de-
scribes the sparsity of a trajectory and can be utilized to en-
force the consistency of object appearing and disappearing
over time.

As shown in Fig. 2, we organize the scene as a composi-
tional hierarchy G to recover the trajectory for each object
in both single views and 3D ground. The compositional hi-
erarchy G is denoted as

G = (VN , VT , S,X), (3)

where VT denotes the set of terminal nodes, VN indicates
the set of non-terminal nodes, S is the root node represent-
ing the scene, and X represents the set of states of both
terminal and non-terminal nodes.

A non-terminal nodeO is constructed by composing two
nodes O1 and O2 together, that is

O ← f(O1, O2), gi(x(O)) = fi(x(O1), x(O2)), (4)

where gi(·) and fi(·) are associated operations on states.
Note that gi(·) and fi(·) can assign states in either bottom-
up or top-down direction, which act like functions of pass-
ing messages.

…
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Figure 2. An illustration of the hierarchical compositional struc-
ture.

3.2. Bayesian Formulation
According to Bayes’ rule, we can solve the problem of

inferring the hierarchical composition model by maximiz-
ing a posterior, that is,

G∗ = arg max
G

p(G|I) ∝ arg max
G

p(I|G) · p(G),

(5)
where I denotes the input video data.

Prior. Due to the property of hierarchy, we can further
factorize the prior p(G) as

p(G) =
∏

Oi∈VN

p(x(Oi))
∏
k

pcpk (Oi1, Oi2)δi==k, (6)

where δi is an indicator for the type of criterion used in
composition, and Oi1 and Oi2 are two children nodes of
tracklet Oi.
p(x(O)) is a unary probability defined on the state of

O. We employ a simple Ising/Potts model to penalize the
discontinuity of the trajectory, i.e.,

p(x(O)) ∝ exp{−β
|O|−1∑
i=1

1(ωi 6= ωi+1) }, (7)

where β is a coefficient. p(x(O)) in fact constrain the num-
ber of times a trajectory switches between visible and invis-
ible.



pcpk (Oi, Oj) represents the composition probability us-
ing the k-th type of cue. We will discuss details about of
composition criteria in Section 3.3.

Likelihood. The video data I is only dependent on the
terminal nodes VT and can be further decomposed as

p(I|G) =

 ∏
Oi∈VT

∏
aj∈Oi

pfg(aj)

 · ∏
aj∈I\VT

pbg(aj)

=
∏

Oi∈VT

∏
aj∈Oi

pfg(aj)

pbg(aj)
·
∏
aj∈I

pbg(aj),

(8)

where pfg(·) and pbg(·) are foreground and background
probabilities, respectively. The second term

∏
aj
pbg(aj)

measures the background probability over the entire video
data and thus can be treated as a constant, and the first ter-
m measures the divergence between foreground and back-
ground, which can be analogous to a probabilistic fore-
ground/background classifier. We use the detection scores
to approximate this log-likelihood ratio.

3.3. Composition Criteria
In this section, we introduce details of the proposed com-

position criteria.
Appearance Coherence. Instead of using traditional

descriptors (e.g., SIFT, color histograms, MSCR) to mea-
sure the appearance discrepancy, we employ the powerful
DCNN to model people’s appearance variations. Notice
that most DCNNs are trained over generic object categories
and insufficient to provide fine-grained level of information
about peoples identities [44]. We therefore fine-tune the
CaffeNet [21] using people image samples with identity la-
bels. The new DCNN consists of 5 convolutional layers,
2 max-pooling layers, 3 fully-connected layers and a final
1000-dimensional output. The last two layers are discarded
and replaced by random initializations. The output is new
1000 labels on people’s identities. Note the training sam-
ples are augmented from unlabeled data and identity labels
are obtained in an unsupervised way.

Similar to bag-of-words (BoW), our DCNN plays the
role of a codebook, which codes a person image with
common people appearance templates. We use this 1000-
dimensional output as our appearance descriptor. Given two
tracklets Oi and Oj , the appearance coherence constraint
pcp1 (Oi, Oj) is defined as

pcp1 (Oi, Oj) ∝ exp{−
∑
an∈Oi

∑
am∈Oj

‖an − am‖2
|Oi| · |Oj |

}.

(9)
pcp1 (Oi, Oj) actually measures the mean complete-link ap-
pearance dissimilarities among object bounding boxes be-
longing to two tracklets.

Geometry Proximity. Given tracklets from a single
view or cross views, we first project them on the world refer-

ence frame to measure their geometric distances uniformly.
However, considering tracklets with different time stamps
and lengths, it is not a trivial task to determine whether the
two given tracklets belong to the same object or not. The
reason lies in: i) the time stamps of tracklet pairs might not
be well aligned; ii) the localizations across views usually
lead to remarkable amount of errors.

In order to address these issues, we introduce a kernel to
measure these time series samples. The kernel K(Oi, Oj)
to measure the distance between two tracklets Oi and Oj is
defined as the product of two kernel distances in space and
time

K(Oi, Oj) =
∑

(ln,tn)∈Oi

∑
(lm,tm)∈Oj

φl(ln, lm) · φt(tn, tm)

|Oi| · |Oj |
,

(10)
where φl(ln, lm) and φt(tn, tm) are two RBF kernels be-
tween two points. We use different σl and σt values for
the two kernels, respectively. This new kernel acts like a
sequential convolution filter and takes both spatial and tem-
poral proximities into consideration.

Given a set of training samples D,

D = {(Oi, Oj , yn) : n = 1, . . . , |D|}, (11)

where yn ∈ {1, 0} indicates whether or not the two tracklets
Oi andOj belong to the same identity, we can train a kernel
SVM with the energy function

min
w

1

2
<w,w>+ C

∑
n

max(0, 1− yn<w,K(Oi, O)>),

(12)
where C is a regularization factor.

We therefore interpret the normalized classification mar-
gin as the composition probability pcp2 (Oi, Oj).

Motion Consistency. We model the motion information
of a tracklet O as a continuous function of its 3D ground
positions l w.r.t. time t, i.e., l = τ(t). We define a con-
straint on two tracklets that they can be interpreted with the
same motion function. However, finding this motion pattern
is a challenging problem. The reason lies in two-fold: i) i-
naccurate 3D positions due to perspective effects, detection
errors and false alarms; ii) missing detections and objec-
t inter-occlusions in certain views, especially for crowded
scenarios. In this paper, we address these issues in the fol-
lowing two aspects.

Firstly, we employ the b-spline function to represent the
motion pattern of the trajectory. B-spline functions can
enforce high-order smoothness constraints, which enables
learning from sparse and noisy data. Considering a tracklet
O with 3D positions {li : i = 1, . . . , |O|}, starting time ts

and ending time and te, the spline function τ(t) uses some
quadratic basis functions Bk(t), and represents the motion
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Figure 3. An illustration of finding feasible regions (polygons) for
interacting people.

path as a linear combination of Bk(t):

τ(t) =
∑
k

αkBk(t),

s.t. τ ′′(ts) = τ ′′(te) = 0,

(13)

where τ ′′(t) denotes the second derivative of τ(t). The con-
straints enforce zero curvature at the starting and the ending
point.

Secondly, we take advantages of the multi-view setting
and derive feasible regions for object 3D positions to fur-
ther confine the fitted motion curve. As illustrated in Fig. 3,
given bounding boxes of a single object in the views (a), (b)
and (c), we first perform exhaustive search to find the two
anchor points (yellow dots in the image) along two sides of
the foot position of each object. An anchor point is defined
as a position where the surrounding 8×8 area contains most
of background regions. Note that we generate background
masks by GMM background modeling.

Once obtaining all the anchor points for an object, we
can find the union area Ω, i.e., a polygon on the world
ground plane, as shown the shaded area in (d). These poly-
gons serve as additional localization feasibility constraints
on the motion pattern. That is, the spline fitting is formulat-
ed as minimizing the following objective function:

min
αk,Bk

E(Oi, Oj) =
∑

(ln,tn)∈Oi∪Oj

(
ln −

∑
k

αkBk(tn)

)2

,

s.t. αkBk(tn) ∈ Ωn.
(14)

This is a constrained convex programming problem consid-
ering that all polygons are convex. We refer the readers
to find more details about b-spline and robust fitting algo-
rithms in [10].

The probability p3(Oi, Oj) is defined upon the averaged
residuals for spline fitting, i.e.,

pcp3 (Oi, Oj) ∝ exp{−E(Oi, Oj)

|Oi ∪Oj |
}. (15)

4. Learning and Inference
In this section, we first discuss the learning procedure for

our constraints and then introduce how to infer the hierar-
chical compositional structure.

4.1. Learning Constraints
Appearance Coherence. Even for fine-tuning a DCNN,

fair amount of training samples are required. We therefore
augment the training data by external samples from public
people detection datasets, e.g., CaltechPedestrians, NICTA,
ETH and TUD-Brussels. The augmented training set con-
tains around 30,0000 samples of cropped people images.
We resize all the samples to 128×256 and horizontally flip
them to double the training set size. And then we extrac-
t dense HSV color histograms with 16 bins from 16×16
non-overlapping patches for each image. The computed
histograms are concatenated into a 6144-dimensional fea-
ture vector. We perform K-means clustering on the data and
obtain 1000 clusters. Each cluster is regarded as a class and
we utilize them to fine tune our DCNN. In general, the fine-
tuning process converges after 100000 iterations and costs
about 8 hours.

Geometry Proximity. Given the training data and
groundtruth of a scenario, we first generate initial tracklet-
s and then associate them with the groundtruth. A tracklet
is treated as a fragment of a groundtruth trajectory if more
than 50% of its bounding boxes are correctly assigned (i.e.,
hit/miss cutoff with 50% IoU ratio). The training data set
D can thus be constructed using tracklets from the same
trajectory as positive pairs samples and those from differ-
ent trajectories as negative pairs. We learn the parameters
of our kernel SVM for each pair of views (including self-
to-self). The kernel parameters σl and σt are also tuned by
cross-validation.

Note we also estimate the normalization constant for
each constraint pcpk (Oi, Oj) using the training data.

4.2. Inferring Hierarchy
Our objective is to find a compositional hierarchy G by

maximizing the posterior probability formulated in Equa-
tion (5). The optimization algorithm should accomplish two
goals: i) composing hierarchical structures, and ii) estimat-
ing states for terminal and non-terminal nodes.

The main challenge in optimizing Equation (5) lies in
the size of the solution space. For example, if there are
n terminal nodes, even a single group can be formed in
2n−1 different ways, which is exponential. Although M-
CMC sampling-based algorithms [28, 43] are favored to



Ours [6] [14]

Methods

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
et

ric
 M

ea
su

re
m

en
t

Terrace

MODA
MODP
MOTA
MOTP

Ours [6] [14]

Methods

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
et

ric
 M

ea
su

re
m

en
t

Passageway

MODA
MODP
MOTA
MOTP

Ours [6] [14]

Methods

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
et

ric
 M

ea
su

re
m

en
t

Basketball

MODA
MODP
MOTA
MOTP

Ours [3] [25] [6] [14]

Methods

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
et

ric
 M

ea
su

re
m

en
t

PETS2009 S2/L1

MODA
MODP
MOTA
MOTP

Figure 4. Comparison charts using CLEAR metrics on EPFL and PETS 2009 datasets.

solve such kinds of combinatorial optimization problems,
they are typically computationally expensive and difficult
to converge, especially for our case, with thousands of ter-
minal nodes and numerous possible compositions.

Hereby, we approximate the construction of the hierar-
chical structure by a progressive composing process. In the
beginning, given a set of initial tracklets VT , we initialize
the state ωi ∈ x(O) for each tracklet O as visible. We then
enumerate all the tracklets over all composition criteria, and
find two tracklets Oi and Oj with maximum probability to
be composed into a new tracklet On, that is,

max
Oi,Oj ,δn

p(x(On))
∏
k

pcpk (Oi, Oj)
δn==k, (16)

where δn is an indicator for which cue is selected. We then
group these two tracklets Oi and Oj together, and create
their parent node On.

The states for this newly merged node On are re-
estimated by

x(On) = x(Oi) ∪ x(Oj),

tsn = min(tsi , t
s
j), ten = max(tei , t

e
j),

|x(On)| = ten − tsn + 1.

(17)

Note we set all the states of missing time stamps within
the time scope [tsn, t

e
n] to 0, i.e., invisible. This encourages

future filling-in operations.

If a composition performed based on motion consistency
constraint, we then fill in the missing fragments by interpo-
lations, and create a corresponding tracklet Om ∈ VT . The
new tracklet Om will be naturally incorporated into the hi-
erarchical structure by subsequent compositions.

We continue this process iteratively. If the maximum
composition probability reaches the lower limit, we termi-
nate the algorithm and connect all the top non-terminal n-
odes to the root node S. Each sub-tree connected to the root
node is essentially an object trajectory.

5. Experiment
In this section, we first introduce the datasets and the

parameter settings, and then show our experimental results
as well as component analysis of the proposed approach.

5.1. Datasets and Settings
We evaluate our approach on three public datasets:
(i) EPFL dataset1 [14]. We adopt the Terrace sequence

1, Passageway sequence and Basketball sequence in our ex-
periments. In general, each sequence consists of 4 differ-
ent views and films 6-11 pedestrians walking or running
around, lasting 3.5-6 minutes. Each view is shot at 25fps
and in a relatively low resolution 360×288.

(ii) PETS 2009 dataset2 [13]. This dataset is widely
used in evaluating tracking tasks and sequence S2/L1 is spe-

1Available at cvlab.epfl.ch/data/pom/
2Available at www.cvg.reading.ac.uk/PETS2009/a.html

cvlab.epfl.ch/data/pom/
www.cvg.reading.ac.uk/PETS2009/a.html


Sequence Method MODA(%) MODP(%) MOTA(%) MOTP(%) MT(%) PT(%) ML(%) IDSW FRAG

Garden1

Our-full 49.30 72.02 49.03 71.87 31.25 62.50 6.25 299 200
Our-3 44.63 72.35 44.36 72.20 18.75 68.75 12.50 296 202
Our-2 42.10 71.08 41.69 70.97 12.50 75.00 12.50 448 296
Our-1 41.21 71.06 37.21 70.94 12.50 75.00 12.50 4352 4390
[6] 30.47 62.13 28.10 62.01 6.25 68.75 25.00 2577 2553
[14] 24.52 64.28 22.43 64.17 0.00 56.25 43.75 2269 2233

Garden2

Our-full 27.81 71.74 25.79 71.59 21.43 78.57 0.00 94 73
Our-3 23.39 71.13 22.50 71.08 14.29 85.71 0.00 92 72
Our-2 18.76 70.20 17.27 70.12 14.29 78.57 7.14 142 97
Our-1 17.68 70.12 10.24 70.11 14.29 78.57 7.14 700 733
[6] 24.35 61.79 21.87 61.64 14.29 85.71 0.00 268 249
[14] 16.51 63.92 13.95 63.81 14.29 78.57 7.14 241 216

Auditorium

Our-full 20.84 69.26 20.62 69.21 33.33 55.56 11.11 31 28
Our-3 18.83 68.99 18.62 68.95 22.22 61.11 16.67 30 28
Our-2 18.02 68.32 17.29 68.25 16.67 66.67 16.67 104 94
Our-1 17.78 68.33 14.11 68.28 16.67 66.67 16.67 523 536
[6] 19.46 59.45 17.63 59.29 22.22 61.11 16.67 264 257
[14] 17.90 61.19 16.15 61.02 16.67 66.67 16.67 249 235

ParkingLot

Our-full 24.46 66.41 24.08 66.21 6.67 66.67 26.67 459 203
Our-3 19.23 66.50 18.84 66.38 0.00 53.33 46.67 477 191
Our-2 12.85 65.70 12.23 65.61 0.00 46.67 53.33 754 285
Our-1 10.86 65.77 8.74 65.72 0.00 46.67 53.33 2567 2600
[6] 14.73 58.51 13.99 58.36 0.00 53.33 46.67 893 880
[14] 11.68 60.10 11.00 59.98 0.00 46.67 53.33 828 812

Table 1. Quantitative results and comparisons on CAMPUS dataset. Our-1, Our-2, Our-3 are three benchmarks set up for component
evaluation. See text for detailed explanations.

cially designed for multi-view-based tasks. With 3 surveil-
lance cameras and 4 DV cameras, 10 pedestrians are record-
ed entering, passing through, staying and exiting the pic-
tured area. The video is downsampled to 720×576 and the
frame rate is set to 7fps.

(iii) CAMPUS dataset. To cover more complete chal-
lenges not presented in existing databases, we design this
dataset based on the idea of dense foreground (around 15-
25 objects, frequent conjunctions and occlusions), complex
scenarios (objects conducting diverse activities, dynamic
background, interactions between objects and background),
various object scales (tracking targets sometimes either too
tiny or huge to be accommodated in certain cameras). We
incorporate 4 sequences into this dataset: Garden 1, Gar-
den 2, Auditorium and Parking Lot. Each sequence is shot
by 3-4 high-quality DV cameras mounted around 1.5m-
2m above ground and each camera covers both overlap-
ping regions and non-overlapping regions with other cam-
eras. The videos are recorded with frame rate 30fps and
duration about 3-4 minutes. The resolution is preserved in
1920×1080, for better precision and richer information.

For all three datasets, videos in each sequence are syn-
chronized. We fully annotate the groundtruth trajectories
for all the videos in all the sequences using [39]. Note
that we assign an unique ID for each object, whether it ap-
pears once or several times in the scene. Since the ultimate
task of multi-view multi-object tracking is to discover the
complete 3D trajectory of any targeted individual under a
camera network, we believe uniquely assigned ID should be

the groundtruth to fully evaluate the trackers, which poses
higher requirements than conventional tracking tasks [22].
In experiments, we use the beginning 10% video data for
training and the rest for testing.

All the parameters are fixed in the experiments. For
object detection, we use the PASCAL VOC fine-tuned ZF
net, score threshold 0.3 and NMS threshold 0.3, which ob-
tains proper trade-off between the efficiency and effective-
ness. As for tracklet initialization, we construct a graph with
edges only connected among successive frames and with-
in limited scale changes. That is, sizes of two successive
bounding boxes should not change more than 25% larger or
smaller, in either height or width. We then run the succes-
sive shortest path algorithm [32] to generate tracklets. Em-
pirically, this produces short but identity consistent tracklet-
s. β = 0.05 in the unary probability p(x(O)). The motion
consistency constraint is conducted on tracklets with time
interval no longer than 2 seconds, with the B-spline of or-
der at most 3 and breaks at most 4. In the hierarchical com-
position, the lower limit is set to 0.2, which obtains good
results.

5.2. Experimental Results
We employ the widely used CLEAR metrics [22], Mul-

tiple Object Detection Accuracy (MODA), Detection Pre-
cision (MODP), Tracking Accuracy (MOTA) and Tracking
Precision (MOTP) to measure three kinds of errors in track-
ing: false positives, false negatives and identity switches.
Besides, we also report the percentage of mostly tracked
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Figure 5. Results generated by the proposed method on CAMPUS, EPFL and PETS 2009 datasets.

(MT), partly tracked (PT) and mostly lost (ML) groundtruth
(referring to [26]), as well as the number of identity switch-
es (IDSW) and fragments (FRAG). Hit/miss for the assign-
ment of tracking output to groundtruth is set to a threshold
of Intersection-over-Union (IoU) ratio 50%.

We compare the proposed approach with 4 state-of-the-
arts methods: Probabilistic Occupancy Map (POM) [14],
K-Shortest Path (KSP) [6], Branch-and-Price [25] and
Discrete-Continuous Optimization [3]. We adopt the public
code of POM detection and implement the data association
algorithms ”DP with appearance” [14] and KSP [6] accord-
ing to their descriptions. The reported metrics for compar-
ing methods are quoted on PETS 2009 dataset from [11]
and computed on the rest by conducting experiments.

Quantitative evaluations on EPFL and PETS 2009
datasets is shown in Fig. 4 and CAMPUS dataset in Ta-
ble 1, as well as qualitative results in Fig. 5. From the re-
sults, our method demonstrates superior performance over
the competing methods. We can also observe the proposed
method acquires significant margins on MODP, MOTP,
IDSW and FRAG, which indicates two empirical conclu-
sions: i) detection-based tracklet initialization is more ben-
eficial to object overall localization than foreground-blob-
based methods which mainly concerns ground positions; ii)
when it comes to occlusions, multiple cues (e.g., appear-
ance, geometry, and motion) are all neccessary to keep the
trajectory identity consistent, which has also been approved
in [18]. Competing methods do not work well on CAM-
PUS dataset mainly due to their strong dependence on clear
visibility of ground plane and uniform object size.

Component Analysis. We set up three benchmarks
to further analyze the benefits of each production rule on

CAMPUS dataset. Our-1 outputs the initial tracklets di-
rectly, i.e., no composition performed; Our-2 composes the
hierarchy only using the appearance coherence criterion;
Our-3 further incorporates the geometry proximity crite-
rion; Our-full employs all criteria proposed in this paper.
From the results, it is apparent that each constraint con-
tributes to a better hierarchical composition model.

Efficiency. Our method is implemented in MATLAB
and runs on a desktop with Intel I7 3.0GHz CPU, 32GB
memory and Nvidia GTX780Ti GPU. Given a 1080P se-
quence, the runtime on average is 15-20fps for object de-
tection, 1000-1500fps for tracklet initialization, and 2-4fps
for optimizing the hierarchical structure. Overall, the pro-
posed algorithm obtains 1-3fps, which is related to the ob-
ject density of the sequence. With proper code migration
and optimization, e.g., batch processing, we believe the re-
altime processing can be achieved.

6. Conclusion
This paper studies a novel formulation for multi-view

multi-object tracking. We represent object trajectories as
a compositional hierarchy and construct it with probabilis-
tic constraints, which characterize the geometry, appear-
ance and motion properties of trajectories. By exploiting
multiple cues and composing them with proper scheduling,
our method handles challenges in multi-view multi-object
tracking well. Furthermore, we will explore more powerful
inter-tracklet relations and better composition algorithms in
the future.
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