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Abstract
This paper proposes an alternating back-propagation algorithm
for learning the generator network model. The model is a non-
linear generalization of factor analysis. In this model, the map-
ping from the continuous latent factors to the observed signal
is parametrized by a convolutional neural network. The alter-
nating back-propagation algorithm iterates the following two
steps: (1) Inferential back-propagation, which infers the latent
factors by Langevin dynamics or gradient descent. (2) Learn-
ing back-propagation, which updates the parameters given
the inferred latent factors by gradient descent. The gradient
computations in both steps are powered by back-propagation,
and they share most of their code in common. We show that
the alternating back-propagation algorithm can learn realis-
tic generator models of natural images, video sequences, and
sounds. Moreover, it can also be used to learn from incomplete
or indirect training data.

1 Introduction
This paper studies the fundamental problem of learning and
inference in the generator network (Goodfellow et al. 2014),
which is a generative model that has become popular recently.
Specifically, we propose an alternating back-propagation al-
gorithm for learning and inference in this model.

1.1 Non-linear factor analysis
The generator network is a non-linear generalization of factor
analysis. Factor analysis is a prototype model in unsuper-
vised learning of distributed representations. There are two
directions one can pursue in order to generalize the factor
analysis model. One direction is to generalize the prior model
or the prior assumption about the latent factors. This led to
methods such as independent component analysis (Hyväri-
nen, Karhunen, and Oja 2004), sparse coding (Olshausen
and Field 1997), non-negative matrix factorization (Lee and
Seung 2001), matrix factorization and completion for recom-
mender systems (Koren, Bell, and Volinsky 2009), etc.

The other direction to generalize the factor analysis model
is to generalize the mapping from the continuous latent fac-
tors to the observed signal. The generator network is an exam-
ple in this direction. It generalizes the linear mapping in factor
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analysis to a non-linear mapping that is defined by a convolu-
tional neural network (ConvNet or CNN) (LeCun et al. 1998;
Krizhevsky, Sutskever, and Hinton 2012; Dosovitskiy, Sprin-
genberg, and Brox 2015). It has been shown recently that the
generator network is capable of generating realistic images
(Denton et al. 2015; Radford, Metz, and Chintala 2016).

The generator network is a fundamental representation of
knowledge, and it has the following properties: (1) Analysis:
The model disentangles the variations in the observed signals
into independent variations of latent factors. (2) Synthesis:
The model can synthesize new signals by sampling the fac-
tors from the known prior distribution and transforming the
factors into the signal. (3) Embedding: The model embeds
the high-dimensional non-Euclidean manifold formed by the
observed signals into the low-dimensional Euclidean space
of the latent factors, so that linear interpolation in the low-
dimensional factor space results in non-linear interpolation
in the data space.

1.2 Alternating back-propagation
The factor analysis model can be learned by the Rubin-Thayer
EM algorithm (Rubin and Thayer 1982; Dempster, Laird, and
Rubin 1977), where both the E-step and the M-step are based
on multivariate linear regression. Inspired by this algorithm,
we propose an alternating back-propagation algorithm for
learning the generator network that iterates the following
two-steps:

(1) Inferential back-propagation: For each training exam-
ple, infer the continuous latent factors by Langevin dynamics
or gradient descent.

(2) Learning back-propagation: Update the parameters
given the inferred latent factors by gradient descent.

The Langevin dynamics (Neal 2011) is a stochastic sam-
pling counterpart of gradient descent. The gradient computa-
tions in both steps are powered by back-propagation. Because
of the ConvNet structure, the gradient computation in step
(1) is actually a by-product of the gradient computation in
step (2) in terms of coding.

Given the factors, the learning of the ConvNet is a su-
pervised learning problem (Dosovitskiy, Springenberg, and
Brox 2015) that can be accomplished by the learning back-
propagation. With factors unknown, the learning becomes an
unsupervised problem, which can be solved by adding the
inferential back-propagation as an inner loop of the learning



process. We shall show that the alternating back-propagation
algorithm can learn realistic generator models of natural im-
ages, video sequences, and sounds.

The alternating back-propagation algorithm follows the
tradition of alternating operations in unsupervised learning,
such as alternating linear regression in the EM algorithm for
factor analysis, alternating least squares algorithm for matrix
factorization (Koren, Bell, and Volinsky 2009; Kim and Park
2008), and alternating gradient descent algorithm for sparse
coding (Olshausen and Field 1997). All these unsupervised
learning algorithms alternate an inference step and a learning
step, as is the case with alternating back-propagation.

1.3 Explaining-away inference
The inferential back-propagation solves an inverse problem
by an explaining-away process, where the latent factors com-
pete with each other to explain each training example. The
following are the advantages of the explaining-away infer-
ence of the latent factors:

(1) The latent factors may follow sophisticated prior mod-
els. For instance, in textured motions (Wang and Zhu 2003)
or dynamic textures (Doretto et al. 2003), the latent factors
may follow a dynamic model such as vector auto-regression.
By inferring the latent factors that explain the observed ex-
amples, we can learn the prior model.

(2) The observed data may be incomplete or indirect. For
instance, the training images may contain occluded objects.
In this case, the latent factors can still be obtained by explain-
ing the incomplete or indirect observations, and the model
can still be learned as before.

1.4 Learning from incomplete or indirect data
We venture to propose that a main advantage of a generative
model is to learn from incomplete or indirect data, which are
not uncommon in practice. The generative model can then
be evaluated based on how well it recovers the unobserved
original data, while still learning a model that can generate
new data. Learning the generator network from incomplete
data can be considered a non-linear generalization of matrix
completion.

We also propose to evaluate the learned generator network
by the reconstruction error on the testing data.

1.5 Contribution and related work
The main contribution of this paper is to propose the alter-
nating back-propagation algorithm for training the generator
network. Another contribution is to evaluate the generative
models by learning from incomplete or indirect training data.

Existing training methods for the generator network avoid
explain-away inference of latent factors. Two methods have
recently been devised to accomplish this. Both methods in-
volve an assisting network with a separate set of parameters
in addition to the original network that generates the sig-
nals. One method is variational auto-encoder (VAE) (Kingma
and Welling 2014; Rezende, Mohamed, and Wierstra 2014;
Mnih and Gregor 2014), where the assisting network is an in-
ferential or recognition network that seeks to approximate the
posterior distribution of the latent factors. The other method

is the generative adversarial network (GAN) (Goodfellow et
al. 2014; Denton et al. 2015; Radford, Metz, and Chintala
2016), where the assisting network is a discriminator network
that plays an adversarial role against the generator network.

Unlike alternating back-propagation, VAE does not per-
form explicit explain-away inference, while GAN avoids
inferring the latent factors altogether. In comparison, the al-
ternating back-propagation algorithm is simpler and more
basic, without resorting to an extra network. While it is dif-
ficult to compare these methods directly, we illustrate the
strength of alternating back-propagation by learning from
incomplete and indirect data, where we only need to explain
whatever data we are given. This may prove difficult or less
convenient for VAE and GAN.

Meanwhile, alternating back-propagation is complemen-
tary to VAE and GAN training. It may use VAE to initialize
the inferential back-propagation, and as a result, may im-
prove the inference in VAE. The inferential back-propagation
may help infer the latent factors of the observed examples for
GAN, thus providing a method to test if GAN can explain
the entire training set.

The generator network is based on a top-down ConvNet.
One can also obtain a probabilistic model based on a bottom-
up ConvNet that defines descriptive features (Xie et al. 2016;
Lu, Zhu, and Wu 2016).

2 Factor analysis with ConvNet
2.1 Factor analysis and beyond
Let Y be a D-dimensional observed data vector, such as
an image. Let Z be the d-dimensional vector of continuous
latent factors, Z = (zk, k = 1, ..., d). The traditional fac-
tor analysis model is Y = WZ + ε, where W is D × d
matrix, and ε is a D-dimensional error vector or the observa-
tional noise. We assume that Z ∼ N(0, Id), where Id stands
for the d-dimensional identity matrix. We also assume that
ε ∼ N(0, σ2ID), i.e., the observational errors are Gaussian
white noises. There are three perspectives to view W . (1)
Basis vectors. Write W = (W1, ...,Wd), where each Wk is a
D-dimensional column vector. Then Y =

∑d
k=1 zkWk + ε,

i.e., Wk are the basis vectors and zk are the coefficients. (2)
Loading matrix. Write W = (w1, ..., wD)>, where w>j is
the j-th row of W . Then yj = 〈wj , Z〉 + εj , where yj and
εj are the j-th components of Y and ε respectively. Each yj
is a loading of the d factors where wj is a vector of loading
weights, indicating which factors are important for determin-
ing yj . W is called the loading matrix. (3) Matrix factoriza-
tion. Suppose we observe Y = (Y1, ..., Yn), whose factors
are Z = (Z1, ..., Zn), then Y ≈WZ.

The factor analysis model can be learned by the Rubin-
Thayer EM algorithm, which involves alternating regressions
of Z on Y in the E-step and of Y on Z in the M-step, with
both steps powered by the sweep operator (Rubin and Thayer
1982; Liu, Rubin, and Wu 1998).

The factor analysis model is the prototype of many sub-
sequent models that generalize the prior model of Z. (1)
Independent component analysis (Hyvärinen, Karhunen, and
Oja 2004), d = D, ε = 0, and zk are assumed to follow
independent heavy tailed distributions. (2) Sparse coding



(Olshausen and Field 1997), d > D, and Z is assumed to
be a redundant but sparse vector, i.e., only a small number
of zk are non-zero or significantly different from zero. (3)
Non-negative matrix factorization (Lee and Seung 2001), it
is assumed that zk ≥ 0. (4) Recommender system (Koren,
Bell, and Volinsky 2009), Z is a vector of a customer’s de-
sires in different aspects, and wj is a vector of product j’s
desirabilities in these aspects.

2.2 ConvNet mapping
In addition to generalizing the prior model of the latent fac-
tors Z, we can also generalize the mapping from Z to Y . In
this paper, we consider the generator network model (Good-
fellow et al. 2014) that retains the assumptions that d < D,
Z ∼ N(0, Id), and ε ∼ N(0, σ2ID) as in traditional fac-
tor analysis, but generalizes the linear mapping WZ to a
non-linear mapping f(Z;W ), where f is a ConvNet, and
W collects all the connection weights and bias terms of the
ConvNet. Then the model becomes

Y = f(Z;W ) + ε,

Z ∼ N(0, Id), ε ∼ N(0, σ2ID), d < D. (1)

The reconstruction error is ||Y − f(Z;W )||2. We may as-
sume more sophisticated models for ε, such as colored noise
or non-Gaussian texture. If Y is binary, we can emit Y by
a probability map P = 1/[1 + exp(−f(Z;W ))], where the
sigmoid transformation and Bernoulli sampling are carried
out pixel-wise. If Y is multi-level, we may assume multi-
nomial logistic emission model or some ordinal emission
model.

Although f(Z;W ) can be any non-linear mapping, the
ConvNet parameterization of f(Z;W ) makes it particularly
close to the original factor analysis. Specifically, we can write
the top-down ConvNet as follows:

Z(l−1) = fl(WlZ
(l) + bl), (2)

where fl is element-wise non-linearity at layer l, Wl is the
matrix of connection weights, bl is the vector of bias terms
at layer l, and W = (Wl, bl, l = 1, ..., L). Z(0) = f(Z;W ),
and Z(L) = Z. The top-down ConvNet (2) can be considered
a recursion of the original factor analysis model, where the
factors at the layer l − 1 are obtained by the linear superpo-
sition of the basis vectors or basis functions that are column
vectors of Wl, with the factors at the layer l serving as the co-
efficients of the linear superposition. In the case of ConvNet,
the basis functions are shift-invariant versions of one another,
like wavelets. See Appendix for an in-depth understanding
of the model.

3 Alternating back-propagation
If we observe a training set of data vectors {Yi, i = 1, ..., n},
then each Yi has a corresponding Zi, but all the Yi share
the same ConvNet W . Intuitively, we should infer {Zi} and
learn W to minimize the reconstruction error

∑n
i=1 ||Yi −

f(Zi;W )||2 plus a regularization term that corresponds to
the prior on Z.

More formally, the model can be written as Z ∼ p(Z) and
[Y |Z,W ] ∼ p(Y |Z,W ). Adopting the language of the EM

algorithm (Dempster, Laird, and Rubin 1977), the complete-
data model is given by

log p(Y,Z;W ) = log [p(Z)p(Y |Z,W )]

= − 1

2σ2
‖Y − f(Z;W )‖2 − 1

2
‖Z‖2 + const. (3)

The observed-data model is obtained by integrating out Z:
p(Y ;W ) =

∫
p(Z)p(Y |Z,W )dZ. The posterior distribu-

tion of Z is given by p(Z|Y,W ) = p(Y,Z;W )/p(Y ;W ) ∝
p(Z)p(Y |Z,W ) as a function of Z.

For the training data {Yi}, the complete-data log-
likelihood is L(W, {Zi}) =

∑n
i=1 log p(Yi, Zi;W ), where

we assume σ2 is given. Learning and inference can be ac-
complished by maximizing the complete-data log-likelihood,
which can be obtained by the alternating gradient descent
algorithm that iterates the following two steps: (1) Inference
step: update Zi by running l steps of gradient descent. (2)
Learning step: update W by one step of gradient descent.

A more rigorous method is to maximize the observed-data
log-likelihood, which is L(W ) =

∑n
i=1 log p(Yi;W ) =∑n

i=1 log
∫
p(Yi, Zi;W )dZi. The observed-data log-

likelihood takes into account the uncertainties in inferring
Zi. See Appendix for an in-depth understanding.

The gradient of L(W ) can be calculated according to the
following well-known fact that underlies the EM algorithm:

∂

∂W
log p(Y ;W ) =

1

P (Y ;W )

∂

∂W

∫
p(Y,Z;W )dZ

= Ep(Z|Y,W )

[
∂

∂W
log p(Y,Z;W )

]
. (4)

The expectation with respect to p(Z|Y,W ) can be approxi-
mated by drawing samples from p(Z|Y,W ) and then com-
puting the Monte Carlo average.

The Langevin dynamics for sampling Z ∼ p(Z|Y,W )
iterates

Zτ+1 = Zτ + sUτ +

s2

2

[
1

σ2
(Y − f(Zτ ;W ))

∂

∂Z
f(Zτ ;W )− Zτ

]
, (5)

where τ denotes the time step for the Langevin sampling, s
is the step size, and Uτ denotes a random vector that follows
N(0, Id). The Langevin dynamics (5) is an explain-away
process, where the latent factors in Z compete to explain
away the current residual Y − f(Zτ ;W ).

To explain Langevin dynamics, its continuous time ver-
sion for sampling π(x) ∝ exp[−E(x)] is xt+∆t = xt −
∆tE ′(xt)/2 +

√
∆tUt. The dynamics has π as its station-

ary distribution, because it can be shown that for any well-
behaved testing function h, if xt ∼ π, then E[h(xt+∆t)] −
E[h(xt)] → 0, as ∆t → 0, so that xt+∆t ∼ π. Alter-
natively, given xt = x, suppose xt+∆t ∼ K(x, y), then
[π(y)K(y, x)]/[π(x)K(x, y)]→ 1 as ∆t→ 0.

The stochastic gradient algorithm of (Younes 1999) can be
used for learning, where in each iteration, for each Zi, only a
single copy of Zi is sampled from p(Zi|Yi,W ) by running a
finite number of steps of Langevin dynamics starting from the
current value of Zi, i.e., the warm start. With {Zi} sampled



in this manner, we can update the parameter W based on the
gradient L′(W ), whose Monte Carlo approximation is:

L′(W ) ≈
n∑
i=1

∂

∂W
log p(Yi, Zi;W )

= −
n∑
i=1

∂

∂W

1

2σ2
‖Yi − f(Zi;W )‖2

=

n∑
i=1

1

σ2
(Yi − f(Zi;W ))

∂

∂W
f(Zi;W ).(6)

Algorithm 1 describes the details of the learning and sam-
pling algorithm.

Algorithm 1 Alternating back-propagation

Require:
(1) training examples {Yi, i = 1, ..., n}
(2) number of Langevin steps l
(3) number of learning iterations T

Ensure:
(1) learned parameters W
(2) inferred latent factors {Zi, i = 1, ..., n}

1: Let t← 0, initialize W .
2: Initialize Zi, for i = 1, ..., n.
3: repeat
4: Inferential back-propagation: For each i, run l steps

of Langevin dynamics to sample Zi ∼ p(Zi|Yi,W )
with warm start, i.e., starting from the current Zi, each
step follows equation (5).

5: Learning back-propagation: Update W ← W +
γtL
′(W ), where L′(W ) is computed according to

equation (6), with learning rate γt.
6: Let t← t+ 1
7: until t = T

If the Gaussian noise Uτ in the Langevin dynamics (5) is
removed, then the above algorithm becomes the alternating
gradient descent algorithm. It is possible to update both W
and {Zi} simultaneously by joint gradient descent.

Both the inferential back-propagation and the learn-
ing back-propagation are guided by the residual Yi −
f(Zi;W ). The inferential back-propagation is based on
∂f(Z;W )/∂Z, whereas the learning back-propagation is
based on ∂f(Z;W )/∂W . Both gradients can be efficiently
computed by back-propagation. The computations of the
two gradients share most of their steps. Specifically, for
the top-down ConvNet defined by (2), ∂f(Z;W )/∂W and
∂f(Z;W )/∂Z share the same code for the chain rule com-
putation of ∂Z(l−1)/∂Z(l) for l = 1, ..., L. Thus, the code
for ∂f(Z;W )/∂Z is part of the code for ∂f(Z;W )/∂W .

In Algorithm 1, the Langevin dynamics samples from a
gradually changing posterior distribution p(Zi|Yi,W ) be-
causeW keeps changing. The updating of bothZi andW col-
laborate to reduce the reconstruction error ‖Yi−f(Zi;W )||2.
The parameter σ2 plays the role of annealing or tempering
in Langevin sampling. If σ2 is very large, then the posterior

is close to the prior N(0, Id). If σ2 is very small, then the
posterior may be multi-modal, but the evolving energy land-
scape of p(Zi|Yi,W ) may help alleviate the trapping of the
local modes. In practice, we tune the value of σ2 instead of
estimating it. The Langevin dynamics can be extended to
Hamiltonian Monte Carlo (Neal 2011) or more sophisticated
versions (Girolami and Calderhead 2011).

4 Experiments
The code in our experiments is based on the MatConvNet
package of (Vedaldi and Lenc 2015).

The training images and sounds are scaled so that the inten-
sities are within the range [−1, 1]. We adopt the structure of
the generator network of (Radford, Metz, and Chintala 2016;
Dosovitskiy, Springenberg, and Brox 2015), where the top-
down network consists of multiple layers of deconvolution by
linear superposition, ReLU non-linearity, and up-sampling,
with tanh non-linearity at the bottom-layer (Radford, Metz,
and Chintala 2016) to make the signals fall within [−1, 1].
We also adopt batch normalization (Ioffe and Szegedy 2015).

We fix σ = .3 for the standard deviation of the noise
vector ε. We use l = 10 or 30 steps of Langevin dynamics
within each learning iteration, and the Langevin step size
s is set at .1 or .3. We run T = 600 learning iterations,
with learning rate .0001, and momentum .5. The learning
algorithm produces the learned network parameters W and
the inferred latent factors Z for each signal Y in the end. The
synthesized signals are obtained by f(Z;W ), where Z is
sampled from the prior distribution N(0, Id).

4.1 Qualitative experiments

Figure 1: Modeling texture patterns. For each example, Left:
the 224×224 observed image. Right: the 448×448 generated
image.

Experiment 1. Modeling texture patterns. We learn a
separate model from each texture image. The images are
collected from the Internet, and then resized to 224× 224.
The synthesized images are 448 × 448. Figures 1 shows four
examples.

The factors Z at the top layer form a
√
d×
√
d image, with

each pixel following N(0, 1) independently. The
√
d ×
√
d



image Z is then transformed to Y by the top-down Con-
vNet. We use d = 72 in the learning stage for all the texture
experiments. In order to obtain the synthesized image, we
randomly sample a 14× 14 Z from N(0, I), and then expand
the learned networkW to generate the 448× 448 synthesized
image f(Z;W ).

The training network is as follows. Starting from 7 × 7
imageZ, the network has 5 layers of deconvolution with 5×5
kernels (i.e., linear superposition of 5 × 5 basis functions),
with an up-sampling factor of 2 at each layer (i.e., the basis
functions are 2 pixels apart). The number of channels in
the first layer is 512 (i.e., 512 translation invariant basis
functions), and is decreased by a factor 2 at each layer. The
Langevin steps l = 10 with step size s = .1.

Figure 2: Modeling sound patterns. Row 1: the waveform
of the training sound (the range is 0-5 seconds). Row 2: the
waveform of the synthesized sound (the range is 0-11 sec-
onds).

Experiment 2. Modeling sound patterns. A sound signal
can be treated as a one-dimensional texture image (McDer-
mott and Simoncelli 2011). The sound data are collected
from the Internet. Each training signal is a 5 second clip with
the sampling rate of 11025 Hertz and is represented as a
1×60000 vector. We learn a separate model from each sound
signal.

The latent factors Z form a sequence that follows N(0, Id),
with d = 6. The top-down network consists of 4 layers of
deconvolution with kernels of size 1× 25, and up-sampling
factor of 10. The number of channels in the first layer is 256,
and decreases by a factor of 2 at each layer. For synthesis,
we start from a longer Gaussian white noise sequence Z with
d = 12 and generate the synthesized sound by expanding
the learned network. Figure 2 shows the waveforms of the
observed sound signal in the first row and the synthesized
sound signal in the second row.

Experiment 3. Modeling object patterns. We model object
patterns using the network structure that is essentially the
same as the network for the texture model, except that we
include a fully connected layer under the latent factors Z,
now a d-dimensional vector. The images are 64× 64. We use
ReLU with a leaking factor .2 (Maas, Hannun, and Ng 2013;
Xu et al. 2015). The Langevin steps l = 30 with step size
s = .3.

In the first experiment, we learn a model where Z has two
components, i.e., Z = (z1, z2), and d = 2. The training data
are 11 images of 6 tigers and 5 lions. After training the model,
we generate images using the learned top-down ConvNet for

Figure 3: Modeling object patterns. Left: the synthesized
images generated by our method. They are generated by
f(Z;W ) with the learned W , where Z = (z1, z2) ∈
[−2, 2]2, and Z is discretized into 9 × 9 values. Right: the
synthesized images generated using Deep Convolutional Gen-
erative Adversarial Net (DCGAN). Z is discretized into 9×9
values within [−1, 1]2.

Figure 4: Modeling object patterns. Left: each image gen-
erated by our method is obtained by first sampling Z ∼
N(0, I100) and then generating the image by f(Z;W ) with
the learned W . Middle: interpolation. The images at the four
corners are reconstructed from the inferred Z vectors of four
images randomly selected from the training set. Each image
in the middle is obtained by first interpolating the Z vectors
of the four corner images, and then generating the image
by f(Z;W ). Right: the synthesized images generated by
DCGAN, where Z is a 100 dimension vector sampled from
uniform distribution.

(z1, z2) ∈ [−2, 2]2, where we discretize both z1 and z2 into
9 equally spaced values. The left panel of Figure 3 displays
the synthesized images on the 9× 9 panel.

In the second experiment, we learn a model with d = 100
from 1000 face images randomly selected from the CelebA
dataset (Liu et al. 2015). The left panel of Figure 4 displays
the images generated by the learned model. The middle panel
displays the interpolation results. The images at the four cor-
ners are generated by the Z vectors of four images randomly
selected from the training set. The images in the middle are
obtained by first interpolating the Z’s of the four corner im-
ages using the sphere interpolation (Dinh, Sohl-Dickstein,
and Bengio 2016) and then generating the images by the
learned ConvNet.

We also provide qualitative comparison with Deep Con-
volutional Generative Adversarial Net (DCGAN) (Goodfel-
low et al. 2014; Radford, Metz, and Chintala 2016). The
right panel of Figure 3 shows the generated results for the



lion-tiger dataset using 2-dimensional Z. The right panel
of Figure 4 displays the generated results trained on 1000
aligned faces from celebA dataset, with d = 100. We
use the code from https://github.com/carpedm20/
DCGAN-tensorflow, with the tuning parameters as in (Rad-
ford, Metz, and Chintala 2016). We run T = 600 iterations
as in our method.

Experiment 4. Modeling dynamic patterns. We model a
textured motion (Wang and Zhu 2003) or a dynamic tex-
ture (Doretto et al. 2003) by a non-linear dynamic system
Yt = f(Zt;W ) + εt, and Zt+1 = AZt + ηt, where we as-
sume the latent factors follow a vector auto-regressive model,
whereA is a d×dmatrix, and ηt ∼ N(0, Q) is the innovation.
This model is a direct generalization of the linear dynamic
system of (Doretto et al. 2003), where Yt is reduced to Zt
by principal component analysis (PCA) via singular value
decomposition (SVD). We learn the model in two steps. (1)
Treat {Yt} as independent examples and learn W and infer
{Zt} as before. (2) Treat {Zt} as the training data, learn A
and Q as in (Doretto et al. 2003). After that, we can synthe-
size a new dynamic texture. We start from Z0 ∼ N(0, Id),
and then generate the sequence according to the learned
model (we discard a burn-in period of 15 frames). Figure
5 shows some experiments, where we set d = 20. The first
row is a segment of the sequence generated by our model,
and the second row is generated by the method of (Doretto et
al. 2003), with the same dimensionality of Z. It is possible to
generalize the auto-regressive model of Zt to recurrent net-
work. We may also treat the video sequences as 3D images,
and learn generator networks with 3D spatial-temporal filters
or basis functions.

Figure 5: Modeling dynamic textures. Row 1: a segment of
the synthesized sequence by our method. Row 2: a sequence
by the method of (Doretto et al. 2003). Rows 3 and 4: two
more sequences by our method.

4.2 Quantitative experiments
Experiment 5. Learning from incomplete data. Our method

can learn from images with occluded pixels. This task is
inspired by the fact that most of the images contain occluded
objects. It can be considered a non-linear generalization of
matrix completion in recommender system.

Our method can be adapted to this task with minimal mod-
ification. The only modification involves the computation
of ‖Y − f(Z;W )‖2. For a fully observed image, it is com-

puted by summing over all the pixels. For a partially observed
image, we compute it by summing over only the observed
pixels. Then we can continue to use the alternating back-
propagation algorithm to infer Z and learn W . With inferred
Z and learned W , the image can be automatically recovered
by f(Z;W ). In the end, we will be able to accomplish the
following tasks: (T1) Recover the occluded pixels of training
images. (T2) Synthesize new images from the learned model.
(T3) Recover the occluded pixels of testing images using the
learned model.

experiment P.5 P.7 P.9 M20 M30
error .0571 .0662 .0771 .0773 .1035

Table 1: Recovery errors in 5 experiments of learning from
occluded images.

Figure 6: Learning from incomplete data. The 10 columns
belong to experiments P.5, P.7, P.9, P.9, P.9, P.9, P.9, M20,
M30, M30 respectively. Row 1: original images, not observed
in learning. Row 2: training images. Row 3: recovered images
during learning.

We want to emphasize that in our experiments, all the
training images are partially occluded. Our experiments are
different from (1) de-noising auto-encoder (Vincent et al.
2008), where the training images are fully observed, and
noises are added as a matter of regularization, (2) in-painting
or de-noising, where the prior model or regularization has al-
ready been learned or given. (2) is about task (T3) mentioned
above, but not about tasks (T1) and (T2).

Learning from incomplete data can be difficult for GAN
and VAE, because the occluded pixels are different for differ-
ent training images.

We evaluate our method on 10,000 images randomly se-
lected from CelebA dataset. We design 5 experiments, with
two types of occlusions: (1) 3 experiments are about salt and
pepper occlusion, where we randomly place 3× 3 masks on
the 64× 64 image domain to cover roughly 50%, 70% and
90% of pixels respectively. These 3 experiments are denoted
P.5, P.7, and P.9 respectively (P for pepper). (2) 2 experiments
are about single region mask occlusion, where we randomly
place a 20×20 or 30×30 mask on the 64×64 image domain.
These 2 experiments are denoted M20 and M30 respectively
(M for mask). We set d = 100. Table 1 displays the recovery
errors of the 5 experiments, where the error is defined as
per pixel difference (relative to the range of the pixel values)
between the original image and the recovered image on the
occluded pixels. We emphasize that the recovery errors are
not training errors, because the intensities of the occluded



pixels are not observed in training. Figure 6 displays recovery
results. In experiment P.9, 90% of pixels are occluded, but
we can still learn the model and recover the original images.

experiment d = 20 d = 60 d = 100
error .0795 .0617 .0625

Table 2: Recovery errors in 3 experiments of learning from
compressively sensed images.

Figure 7: Learning from indirect data. Row 1: the original
64 × 64 × 3 images, which are projected onto 1,000 white
noise images. Row 2: the recovered images during learning.

Experiment 6. Learning from indirect data. We can learn
the model from the compressively sensed data (Candès,
Romberg, and Tao 2006). We generate a set of white noise
images as random projections. We then project the train-
ing images on these white noise images. We can learn the
model from the random projections instead of the origi-
nal images. We only need to replace ‖Y − f(Z;W )‖2 by
‖SY − Sf(Z;W )‖2, where S is the given white noise sens-
ing matrix, and SY is the observation. We can treat S as a
fully connected layer of known filters below f(Z;W ), so that
we can continue to use alternating back-propagation to infer
Z and learn W , thus recovering the image by f(Z;W ). In
the end, we will be able to (T1) Recover the original images
from their projections during learning. (T2) Synthesize new
images from the learned model. (T3) Recover testing images
from their projections based on the learned model. Our ex-
periments are different from traditional compressed sensing,
which is task (T3), but not tasks (T1) and (T2). Moreover, the
image recovery in our work is based on non-linear dimension
reduction instead of linear sparsity.

We evaluate our method on 1000 face images randomly
selected from CelebA dataset. These images are projected
ontoK = 1000 white noise images with each pixel randomly
sampled from N(0, .52). After this random projection, each
image of size 64× 64× 3 becomes a K-dimensional vector.
We show the recovery errors for different latent dimensions d
in Table 2, where the recovery error is defined as the per pixel
difference (relative to the range of the pixel values) between
the original image and the recovered image. Figure 7 shows
some recovery results.

Experiment 7. Model evaluation by reconstruction error
on testing data. After learning the model from the training
images (now assumed to be fully observed), we can evaluate
the model by the reconstruction error on the testing images.
We randomly select 1000 face images for training and 300
images for testing from CelebA dataset. After learning, we
infer the latent factors Z for each testing image using inferen-
tial back-propagation, and then reconstruct the testing image

experiment d = 20 d = 60 d = 100 d = 200
ABP .0810 .0617 .0549 .0523
PCA .1038 .0820 .0722 .0621

Table 3: Reconstruction errors on testing images, after learn-
ing from training images using our method (ABP) and PCA.

Figure 8: Comparison between our method and PCA. Row
1: original testing images. Row 2: reconstructions by PCA
eigenvectors learned from training images. Row 3: recon-
structions by the generator learned from training images.
d = 20 for both methods.

by f(Z;W ) using the inferred Z and the learned W . In the
inferential back-propagation for inferring Z, we initialize
Z ∼ N(0, Id), and run 300 Langevin steps with step size .05.
Table 3 shows the reconstruction errors of alternating back-
propagation learning (ABP) as compared to PCA learning
for different latent dimensions d. Figure 8 shows some recon-
structed testing images. For PCA, we learn the d eigenvectors
from the training images, and then project the testing images
on the learned eigenvectors for reconstruction.

Experiments 5-7 may be used to evaluate generative mod-
els in general. Experiments 5 and 6 appear new, and we have
not found comparable methods that can accomplish all three
tasks (T1), (T2), and (T3) simultaneously.

5 Conclusion
This paper proposes an alternating back-propagation algo-
rithm for training the generator network. We recognize that
the generator network is a non-linear generalization of the
factor analysis model, and develop the alternating back-
propagation algorithm as the non-linear generalization of
the alternating regression scheme of the Rubin-Thayer EM
algorithm for fitting the factor analysis model. The alternat-
ing back-propagation algorithm iterates the inferential back-
propagation for inferring the latent factors and the learning
back-propagation for updating the parameters. Both back-
propagation steps share most of their computing steps in the
chain rule calculations.

Our learning algorithm is perhaps the most canonical al-
gorithm for training the generator network. It is based on
maximum likelihood, which is theoretically the most accu-
rate estimator. The maximum likelihood learning seeks to
explain and charge the whole dataset uniformly, so that there
is little concern of under-fitting or biased fitting.

As an unsupervised learning algorithm, the alternating
back-propagation algorithm is a natural generalization of
the original back-propagation algorithm for supervised learn-
ing. It adds an inferential back-propagation step to the learn-



ing back-propagation step, with minimal overhead in cod-
ing and affordable overhead in computing. The inferential
back-propagation seeks to perform accurate explaining-away
inference of the latent factors. It can be worthwhile for tasks
such as learning from incomplete or indirect data, or learning
models where the latent factors themselves follow sophisti-
cated prior models with unknown parameters. The inferential
back-propagation may also be used to evaluate the generators
learned by other methods on tasks such as reconstructing or
completing testing data.

Our method or its variants can be applied to non-linear
matrix factorization and completion. It can also be applied to
problems where some components or aspects of the factors
are supervised.

Code, images, sounds, and videos
http://www.stat.ucla.edu/~ywu/ABP/main.html
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6 Appendix
6.1 ReLU and piecewise factor analysis
The generator network is Y = f(Z;W ) + ε, Z(l−1) =
fl(WlZ

(l) + bl), l = 1, ..., L, with Z(0) = f(Z;W ), and
Z(L) = Z. The element-wise non-linearity fl in modern
ConvNet is usually the two-piece linearity, such as recti-
fied linear unit (ReLU) (Krizhevsky, Sutskever, and Hinton
2012) or the leaky ReLU (Maas, Hannun, and Ng 2013;
Xu et al. 2015). Each ReLU unit corresponds to a binary
switch. For the case of non-leaky ReLU, following the analy-
sis of (Pascanu, Montufar, and Bengio 2013), we can write
Z(l−1) = δl(WlZ

(l)+bl),where δl = diag(1(WlZ
(l)+bl >

0)) is a diagonal matrix, 1() is an element-wise indicator
function. For the case of leaky ReLU, the 0 values on the
diagonal are replaced by a leaking factor (e.g., .2).
δ = (δl, l = 1, ..., L) forms a classification of Z ac-

cording to the network W . Specifically, the factor space
of Z is divided into a large number of pieces by the hy-
perplanes WlZ

(l) + bl = 0, and each piece is indexed by
an instantiation of δ. We can write δ = δ(Z;W ) to make
explicit its dependence on Z and W . On the piece indexed
by δ, f(Z;W ) = WδZ + bδ. Assuming bl = 0,∀l, for
simplicity, we have Wδ = δ1W1...δLWL. Thus each piece
defined by δ = δ(Z;W ) corresponds to a linear factor
analysis Y = WδZ + ε, whose basis Wδ is a multiplica-
tive recomposition of the basis functions at multiple layers
(Wl, l = 1, ..., L), and the recomposition is controlled by
the binary switches at multiple layers δ = (δl, l = 1, ..., L).
Hence the top-down ConvNet amounts to a reconfigurable
basis Wδ for representing Y , and the model is a piecewise
linear factor analysis. If we retain the bias term, we will have

Y = WδZ + bδ + ε, for an overall bias term that depends on
δ. So the distribution of Y is essentially piecewise Gaussian.

The generator model can be considered an explicit imple-
mentation of the local linear embedding (Roweis and Saul
2000), where Z is the embedding of Y . In local linear em-
bedding, the mapping between Z and Y is implicit. In the
generator model, the mapping from Z to Y is explicit. With
ReLU ConvNet, the mapping is piecewise linear, which is
consistent with local linear embedding, except that the parti-
tion of the linear pieces by δ(Z;W ) in the generator model
is learned automatically.

The inferential back-propagation is a Langevin dynamics
on the energy function ‖Y − f(Z;W )‖2/(2σ2) + ‖Z‖2/2.
With f(Z;W ) = WδZ, ∂f(Z;W )/∂Z = Wδ. If Z be-
longs to the piece defined by δ, then the inferential back-
propagation seeks to approximate Y by the basis Wδ via
a ridge regression. Because Z keeps changing during the
Langevin dynamics, δ(Z;W ) may also be changing, and the
algorithm searches for the optimal reconfigurable basis Wδ

to approximate Y . We may solve Z by second-order methods
such as iterated ridge regression, which can be computation-
ally more expensive than the simple gradient descent.

6.2 EM, density mapping, and density shifting
Suppose the training data {Yi, i = 1, ..., n} come from a
data distribution Pdata(Y ). To understand how the alternat-
ing back-propagation algorithm or its EM idealization maps
the prior distribution of the latent factors p(Z) to the data
distribution Pdata(Y ) by the learned g(Z;W ), we define

Pdata(Z, Y ;W ) = Pdata(Y )p(Z|Y,W )

= Pdata(Z;W )Pdata(Y |Z,W ), (7)

where Pdata(Z;W ) =
∫
p(Z|Y,W )Pdata(Y )dY is ob-

tained by averaging the posteriors p(Z|Y ;W ) over the ob-
served data Y ∼ Pdata. That is, Pdata(Z;W ) can be consid-
ered the data prior. The data prior Pdata(Z;W ) is close to
the true prior p(Z) in the sense that

KL(Pdata(Z;W )|p(Z)) ≤ KL(Pdata(Y )|p(Y ;W )) (8)
= KL(Pdata(Z, Y ;W )|p(Z, Y ;W )).

The right hand side of (8) is minimized at the maximum
likelihood estimate Ŵ , hence the data prior Pdata(Z; Ŵ ) at
Ŵ should be especially close to the true prior p(Z). In other
words, at Ŵ , the posteriors p(Z|Y, Ŵ ) of all the data points
Y ∼ Pdata tend to pave the true prior p(Z).

From Rubin’s multiple imputation point of view (Ru-
bin 2004) of the EM algorithm, the E-step of EM infers
Z

(m)
i ∼ p(Zi|Yi,Wt) for m = 1, ...,M , where M is the

number of multiple imputations or multiple guesses of Zi.
The multiple guesses account for the uncertainty in infer-
ring Zi from Yi. The M-step of EM maximizes Q(W ) =∑n
i=1

∑M
m=1 log p(Yi, Z

(m)
i ;W ) to obtain Wt+1. For each

data point Yi,Wt+1 seeks to reconstruct Yi by g(Z;W ) from
the inferred latent factors {Z(m)

i ,m = 1, ...,M}. In other
words, the M-step seeks to map {Z(m)

i } to Yi. Pooling over
all i = 1, ..., n, {Z(m)

i ,∀i,m} ∼ Pdata(Z;Wt), hence the



M-step seeks to map Pdata(Z;Wt) to the data distribution
Pdata(Y ). Of course the mapping from {Z(m)

i } to Yi cannot
be exact. In fact, g(Z;W ) maps {Z(m)

i } to a d-dimensional
patch around the D-dimensional Yi. The local patches for all
{Yi,∀i} patch up the d-dimensional manifold form by the
D-dimensional observed examples and their interpolations.
The EM algorithm is a process of density shifting, so that
Pdata(Z;W ) shifts towards p(Z), thus g(Z;W ) maps p(Z)
to Pdata(Y ).
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