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Abstract: We uncouple three components of autonomous behavior (utilitarian
value, causal reasoning, and fine motion control) to design an interpretable model
of tasks from video demonstrations. Utilitarian value is learned from aggregating
human preferences to understand the implicit goal of a task, explaining why an
action sequence was performed. Causal reasoning is seeded from observations
and grows from robot experiences to explain how to deductively accomplish sub-
goals. And lastly, fine motion control describes what actuators to move. In our
experiments, a robot learns how to fold t-shirts from visual demonstrations, and
proposes a plan (by answering why, how, and what) when folding never-before-
seen articles of clothing.
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1 Introduction

Explicitly programming service robots to accomplish new tasks in uncontrolled environments is
time-consuming, error-prone, and sometimes even infeasible. In Learning from Demonstration
(LfD), many statistical models have been proposed that maximize the likelihood of observations
[1]. For example, Bayesian formulations [2] assume a prior model of the goal, and use Bayes’ The-
orem to explain the relationship between the posterior and likelihood. These Bayesian formulations
learn a model of the demonstrated task most consistent with training data. Such approaches are often
referred to as inductive learning [3].

In contrast, robot autonomy was originally studied as a rule-based deductive learning system [4, 5].
There is a paradigm shift in applying inductive models to deduction based inference. In this paper,
we explore a middle-ground, where deductive rules are learned through statistical techniques.

Specifically, we teach a robot how to fold shirts through human demonstrations, and have it re-
produce the skill under both different articles of clothing and different sets of available actions.
Our experimental results show good performance on a two-armed industrial robot following causal
chains that maximize a learned latent utility function. Most importantly, the robot’s decisions are
interpretable, facilitating immediate natural language description of plans [6].

Human preferences are modeled by a latent utility function over the states of the world. To rank
preferences, we pursue relevant fluents of a task, and then learn a utility function based on these
fluents. For example, Figure 1 shows the utility landscape for a cloth-folding task, obtained through
45 visual demonstrations.

The utility landscape shows a global perspective of candidate goal states. To close the loop with
autonomous behaviour, we further design a dynamics equation to connect high-level reasoning to
low-level motion control. The primary contributions of our work include:

1. Learning an interpretable utility of continuous states, independent of system dynamics.
2. Deductively exploring goal-reachability under different available actions.
3. Proposing “Fluent Dynamics” to bridge low-level motion trajectory with high-level utility.
4. Teaching a robot to fold t-shirts, and have it generalize to arbitrary articles of clothing.
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Figure 1: The utility landscape identifies desired states. This one, in particular, is trained from
45 cloth-folding video demonstrations. For visualization purposes, we reduce the state-space to two
dimensions through multidimensional scaling (MDS). The canyons in this landscape represent wrin-
kled clothes, whereas the peaks represent well-folded clothes. Given this learned utility function, a
robot chooses from an available set of actions to craft a motion trajectory that maximizes its utility.

2 Related Work

Modeling and Learning Human Utility: Building computational models for human utilities could
be traced back to the English philosopher, Jeremy Bentham, in his works on ethics known as utili-
tarianism [7]. Utilities, or values, are also used in planning schemes like Markov decision process
(MDP) [8], and are often associated with states of a task. However, in the literature of MDP, the
“value” is not a reflection of true human preference and, inconveniently, is tightly dependent on the
agent’s actions.

Zhu et al. [9] first modeled human utilities over physical forces on tools, and proposed effective
algorithms to learn utilities from videos. Our work differs in 4 ways: 1) we generalize the linear
SVM separator (“rankSVM”) so that the utility of each individual fluent is dictated not by a “weight”
but instead a non-linear utility function; 2) relevant fluents are pursued one-by-one from a large
dictionary; 3) we learn from external fluents, such as states of the world, instead of internal fluents,
such as states of the agent; 4) the utility function drives robot motion.

Inverse Reinforcement Learning: Inverse reinforcement learning (IRL) aims to determine the
reward function being locally optimized from observed behaviors of the actors [10]. In the IRL
framework, we are satisfied when a robot mimics observed action sequences, maximizing the likeli-
hood. Hadfieldmenell et al. [11] defined cooperative inverse reinforcement learning (CIRL), which
allows reward learning when the observed behaviors could be sub-optimal, based on human-robot
interactions. In contrast to IRL or CIRL, our method does not aim to reproduce action sequences,
nor is our approach dependent on the set of possible actions. It avoids the correspondence prob-
lem in human-robot knowledge transfer by learning the global utility function over observed states,
rather than learning the local reward function from actions directly. Furthermore, our work avoids
the troublesome limitations of subscribing to a Markov assumption [12, 13].

Robot Learning from Demonstrations: Learning how to perform a task from human demonstra-
tions has been a challenging problem for artificial intelligence and robotics, and various methods
were developed trying to solve the problem [14]. Learning the task of cloth-folding from human
demonstrations, in particular, has been studied before by Xiong et al. [15]. While most of the ex-
isting approaches focus on reproducing the demonstrator’s action sequence, our work tries to model
human utilities from observations, and generates task plans deductively from utilities.

3 Model

Definition 1. Environment: The world (or environment) is defined by a generative composition
model of objects, actions, and changes in conditions [16]. Specifically, we use the stochastic context-
free And-Or graph (AOG), which explicitly models variations and compositions of spatial (S), tem-
poral (T ), and causal (C) concepts, called the STC-AOG [15].
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The atomic (terminal) units of this composition grammar are tuples of the form (Fstart, u[1:t], Fend),
where Fstart and Fend are pre- and post-fluents of a sequence of interactions u[1:t]. Concretely, the
sequence of interactions u[1:t] is implemented by spatial and temporal features of human-object
interactions (4D HOI) [17]. See definition 9.

Definition 2. State: A state is a configuration of the believed model of the world. In our case, a
state is a parse-graph (pg) of the And-Or graph, representing a selection of parameters (ΘOR) for
each Or-node. The set of all parse-graphs is denoted Ωpg .

Definition 3. Fluent: A fluent is a condition of a state that can change over time [18]. It is repre-
sented as a real-valued function on the state (indexed by i ∈ N): fi : Ωpg → R.

Definition 4. Fluent-vector: A fluent-vector F is a column-vector of fluents: F = (f1, f2, ..., fk)ᵀ.

Definition 5. Goal: The goal of a task is characterized by a fluent-change 4F . The purpose of
learning the utility function is to identify reasonable goals.

3.1 Utility Model

We assume human preferences are derived from a utilitarian model, in which a latent utility function
assigns a real-number to each configuration of the world. For example, if a state pg1 has a higher
utility than another state pg2, then the corresponding ranking is denoted pg1 � pg2, implying the
utility of pg1 is greater than the utility of pg2.

Each video demonstration contains a sequence of n states pg0, pg1, ..., pgn, which offers
(
n
2

)
=

n(n− 1)/2 possible ordered pairs (ranking constraints). Given some ranking constraints, we define
an energy function by how consistent a utility function is with the constraints.

The energy function described above is used to design its corresponding Gibbs distribution. In the
case of Zhu and Mumford [19], a maximum entropy model reproduces the marginal distributions
of fluents. Instead of matching statistics of observations, our work attempts to model human pref-
erences. We instead use a maximum margin formulation, and select relevant fluents by minimizing
the ranking violations of the model. The specific details of this preference model is described below.

3.2 Minimum Violations

Let D = {f (1), f (2), ...} be a dictionary of fluents, each with a latent utility function λ : R →
R. Using a sparse coding model, the utility of a parse-graph pg is estimated by a small subset of
relevant fluents F = {f (1), f (2), ..., f (K)} ⊂ D. Denote Λ = {λ(1)(), λ(2)(), ..., λ(K)()} as the
corresponding set of utility functions for each fluent in F . For example, 12 utility functions learned
from human preferences are shown in Figure 2, approximated by piecewise linear functions. The
total utility function is thus,

U(pg; Λ, F ) =

K∑
α=1

λ(α)(f (α)(pg)) (1)

Of all selection of parameters (Λ) and fluent-vectors (F ) that satisfy the ranking constraints, we
choose the model with minimum ranking violations. In order to learn each utility function in Λ,
we treat the space of fluents as a set of alternatives [20]. Let R denote the set of rankings over the
alternatives. Each human demonstration is seen as a ranking σi ∈ R over the alternatives. We say
a �σi b if person i prefers alternative a to alternative b. The collection of a person’s rankings is
called their preference profile, denoted ~σ.

Each video v provides a preference profile ~σv . For example, we assume at least the following
ranking: pg∗ �σv pg

0, where pg0 is the initial state and pg∗ is the final state. The learned utility
functions try to satisfy U(pg∗) > U(pg0).

U is treated as a ranking score: higher values correspond to more favorable states. We want to model
the goal of a task using rankings obtained from visual demonstrations. The goal model, or preference
model, of a parse-graph pg takes the Gibbs distribution of the form, p(pg; Λ, F ) = 1

Z e
U(pg;Λ,F ),
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Figure 2: (a) The 12 curves represent the negative utility function (−λ) corresponding to each fluent.
The functions are negated to draw parallels with the concept of potential energy. Red marks indicate
fluent values of pg0, which the learned model appears to avoid, and the green marks indicate fluent
values of the goal pg∗, which the learned model appears to favor. Notice how the y-symmetry
potential energy decreases as the cloth becomes more and more symmetric. By tracing the change
in utilities of each individual fluent, the robot can more clearly explain why it favors one state over
another. (b) The ranking pursuit algorithm extracts fluents greedily to minimize ranking violations.
As shown in the chart, the top 3 most important fluents for the task of cloth-folding are height, width,
and y-symmetry.

where U( · ; Λ, F ) is the total utility function that minimizes ranking violations:

min

K∑
α=1

∫
x

λ′′(α)dx+ C
∑
v

ξv

s.t.
∑
α

(
λ(α)(f (α)(pg∗v))− λ(α)(f (α)(pg0

v))
)

> 1− ξv,
ξv ≥ 0.

(2)

Here, ξv is a non-negative slack variable analogous to margin maximization. C is a hyper-parameter
that balances the violations against smoothness of the utility functions [21]. Of all utility functions,
we select the one which minimizes the ranking violations. The next section explains how to select
the optimal subset of fluents.

3.3 Ranking pursuit

The empirical rankings of states pg∗ � pg0 in the observations must match the predicted ranking.
We start with an empty set of fluents F = {}, and select from the elements of D that result in the
least number of ranking violations.

This process continues greedily until the amount of violations can no longer be substantially re-
duced. Figure 2 shows empirical results of pursuing relevant fluents for the cloth-folding task. The
dictionary of initial fluents may be hand-designed or automatically learned through statistical means,
such as from hidden layers of a convolutonal neural network.

3.4 Ranking Sparsity

The number of ranking pairs we can extract from the training dataset is not immediately obvious.
For example, each video demonstration supplies ordered pairs of states that we can use to learn a
utility function. A sequence of n states (pg0, pg1, ..., pgn) allows

(
n
2

)
= n(n− 1)/2 ordered pairs.
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Figure 3: The sparse and dense ranking models are evaluated by how quickly they converge and how
strongly they match human preferences. The x-axis on each plot indicates the number of unique
videos shown to the learning algorithm. The y-axis indicates two alternatives (1 vs. -1) for 7
decisions (A, B, C, D, E, F, and G) of varying difficulty. The horizontal bar-charts below each plot
show comparisons between human and robot preferences. As more videos are made available, both
models improve performance in convergence as well as alignment to human preferences (from 330
survey results).

On one end of the spectrum, which we call sparse ranking, we know at the very least that pgn � pg0

for each demonstration. This is a safe bet since each video demonstration is assumed to successfully
accomplish the goal. However, the utility model throws out useful information when ignoring the
intermediate states.

On the other end, in dense ranking, all
(
n
2

)
are used. Despite using all information available, this

approach may be prone to introducing many ranking violations.

Figure 3 visualizes performance of both approaches as we increment the number of available video
demonstrations.

4 Utility-Driven Task Planning

The learned utility function is used to drive robot behavior. In order to perform low-level motion
control in the real world, the robot needs a concept of what actions are possible in the observed state.
First, we explicitly define the concept of relevant fluents, and then use it to describe the preconditions
of an action.

Definition 6. Relevant fluent: A fluent-vector might contain irrelevant fluents for an action. The
relevant fluents of an action are a subset of a fluent-vector, described using an element-wise multi-
plication of a binary vector w by the fluent-vector, w ◦ F = WF , where W is a diagonal matrix.
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Definition 7. Action: An action sequence u[1:t] causes a change in fluents given a precondition. The
precondition of an action depends on relevant fluents Wu as well as a representative example pgu.
Let θ = (Wu, pgu) denote these parameters. The precondition is a probability P (X = pg | u; θu)
over a random variable X ∈ Ωpg .

A tuple of (Fstart, u[1:t] , Fend) is used to construct the compositional model of the environment.
The energy of a pg is computed by comparing the difference between the relevant fluents of the
observationWpg to the relevant fluents of the actionWpgu, Cost(pg; Wu, pgu) = ||Wu(pg−pgu)||.

4.1 Representing what, how, and why

Fluents provide information on the utility of the state. Therefore, a robot can identify a fluent-change
4F to maximize its utility, explaining why it acts. Figuring out how to achieve the fluent-change
requires the robot to accomplish a sequence of interactions between itself and the environment,
which we call the union space. Interacting with the environment requires the robot to be aware of
the span of its own actuators, called the actuator space, where it identifies what joints move.

The three spaces are tightly coupled, and can be used to perform real-time robot executions. We
explain each space separately, and then provide a unified dynamics formulation for robot task plan-
ning.

Definition 8. Actuator Space: We characterize a robot actuator by its η degrees-of-freedom. The
actuator space ΩA is a set of all valid η-dimensional vectors. At any point in time, a robot can be
represented as a point in this space, a ∈ ΩA ⊂ Rη .

For example, our robot platform is represented by a 16-dimensional vector, since each arm has 7
joints and an open/close grasp-status for each hand. As the robot moves in the real-world, this
16-dimensional point drifts in the actuator space.

Definition 9. Union Space: The interactions between an agent and object are jointly interpreted in
what we call the union space ΩU . The distance between an agent’s end-effector and the midpoint
of an object is one such example. These computed values depend of the current actuator position,
u(a) ∈ ΩU . The table below shows a possible 12-dimensional vector in the union space.

# Feature Agent Object
1 distance left end-effector cloth
2-5 θx, θy , θz , θw left end-effector cloth
6 grasp status left end-effector N/A
7 distance right end-effector cloth
8-11 θx, θy , θz , θw right end-effector cloth
12 grasp status right end-effector N/A

Examples of rows in this table include, but are not limited to, distance and orientation between an
end-effector and an object. Clearly, a robot adjusting its position in the actuator space affects its
position in the union space. A sequence of such vectors in the union space causes a fluent change.
Inferring how fluents change from a trajectory in the union space is given as a hierarchical task
plan (see Definition 1) by the domain expert. Further causal relationships are gathered through
exploration, but a deeper investigation in learning causality is beyond the scope of this paper.

Definition 10. Fluent Space: A fluent space ΩF is the set of all possible fluent vectors F . A
sequence of vectors from the union space u[1:t] causes the value of the fluent vector to change,
F (u[1:t]) ∈ ΩF .

4.2 Fluent Dynamics

Influenced by previous work [22] in specifying robot behavior independently of its actuators, this
paper proposes a control formulation to unify low-level mechanics with high-level preference. In
deductive planning, the optimal selection of actions achieves a goal with minimum cost. We
define the cost of a sequence of actions V (a[1:t]) by the utility of the resulting fluent-vector.
With that in mind, the robot must use its available actionable information to maximize utility,
a∗[1:t] = arg maxa[1:t] V (a[1:t]). Optimal action sequences will satisfy ∂V/∂a[1:t] = 0. The gra-
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Figure 4: After clustering fluent-changes from the training videos, 11 actions are automatically
captured. Each action is shown by 2 matrices: Finit and 4F . The rows of the matrix correspond
to a concrete example. The columns of the matrix correspond to the various fluents. The robot can
understand the relevant fluents associated per each action.

dient of V with respect to a[1:t] can be computed using the chain rule,

∂V

∂a[1:t]
=
∂V

∂F

∂F

∂u[1:t]

∂u[1:t]

∂a[1:t]
(3)

The first factor ∂V/∂F comes immediately from the utility learning section of this paper. The
second factor ∂F/∂u[1:t] is solved using the assumed And-Or compositional model of the world, as
explain in Definition 1. And lastly, inverse kinematics and optimal control methods directly solve
∂u[1:t]/∂a[1:t] [22].

The trajectory Γ between two robot states is arg mina[1:t]
∑
a[1:t]
|V (a[1:t]) · 4a[1:t]| [23].

The optimal trajectory of actions to achieve the highest value is estimated using beam-search and dy-
namic programming. Sub-goal reachability is automatically solved through the Confident Execution
algorithm in [24] as shown in Figure 4.

5 Implementation and Experimental Results

We learn our utility function from 45 RGB-D (pointcloud) video demonstrations of t-shirt folding.
This dataset splits into 30 for training and 15 for testing. The videos were recorded on a separate
Kinect camera at a different orientation in a separate setting by different people.

At each frame, the vision processing step segments the cloth using graph-based techniques on the
2D RGB image [25, 26], and then the extracted 3D cloth pointcloud is aligned to its principal axis.
Next, we extract fluents from the pointcloud being tracked. Examples of a couple fluents include
width, height, thickness, x-symmetry, y-symmetry, and the 7 moment invariants [27]. Width, height,
and thickness are calculated in meters, after aligning the segmented pointcloud to its principal axis.
X-, and y-symmetry scores are calculated by measuring the symmetric difference of folding the
segmented pointcloud on the first two principle axes. The Hu-moments are calculated on the binary
mask of the cloth.

We extract both automatic and hand-designed fluents to obtain a training datasetX to pursue relevant
fluents and obtain an optimal ranking. Each utility function is approximated by a piecewise linear
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Figure 5: Robot task execution is evaluated in two ways. First, we measure how well the robot can
predict the increase in utility through deductive reasoning compared to ground truth by having a
human perform the same action. Second, we compare the prediction to actual utility gain after ex-
ecuting the action sequence using Fluent Dynamics. Our experiments show strong generalizability
to other articles of clothing, even though the training videos only contained t-shirt folding demon-
strations. As shown above, the robot can detect execution failure when folding shorts by detection
an anomaly in actual vs. predicted utility gain.

function. The vision processing code, ranking pursuit algorithm, and the RGB-D dataset of cloth-
folding are open-sourced on the author’s website 1.

We cross-validate the fitting of the learned utility model to ensure generalizability to the other train-
ing videos. Furthermore, we perform external evaluations on 330 individuals to compare how well
the learned preference model matches human judgement. In this survey, each human was asked
to make a decision on 7 choices after being told, “A robot attempts to fold your clothes. Of each
outcome, which do you prefer?”

The qualitative comparisons between human and robot preferences is shown in figure 3. Overall,
our model quickly converges to human preferences (within 27 videos in the sparse ranking model
and just 5 videos in the dense ranking model).

To further evaluate how effectively the learned utility function assists in deductive planning, we
conduct a series of experiments on a robot platform. We solve the three factors in the dynamics
equation independently. The learned utility function gives us the first factor ∂V/∂F , the STC-AOG
units provide the second factor ∂F/∂au[1:t]

, and an off-the-shelf inverse kinematics library solves
∂u[1:t]/∂a[1:t].

In the experiments, the robot is presented with a never-before-seen article of clothing, and asked to
identify a goal, plan an action sequence to achieve that goal, predict the utility gain, and then perform
the plan to compare against actual utility gain. Figure 5 shows how well the robot’s performance
matches both its own predictions as well as the ground truth.

6 Conclusions and Future Work

The learned utility model strongly matches preferences of 330 human decisions, capturing the com-
monsense goal. The inferred action plan is not only interpretable (why, how, and what), but also
performable on a robot platform to complete the learned task in a completely new situation. In
future work, we would like to incorporate social choice theory [28], understand inconsistencies be-
tween human preferences [29], and learn fluents automatically using neural techniques [30].

1https://github.com/BinRoot/Fluent-Extractor
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