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Abstract

This paper proposes a learning strategy that extracts object-
part concepts from a pre-trained convolutional neural network
(CNN), in an attempt to 1) explore explicit semantics hid-
den in CNN units and 2) gradually grow a semantically inter-
pretable graphical model on the pre-trained CNN for hierar-
chical object understanding. Given part annotations on very
few (e.g. 3—12) objects, our method mines certain latent pat-
terns from the pre-trained CNN and associates them with d-
ifferent semantic parts. We use a four-layer And-Or graph to
organize the mined latent patterns, so as to clarify their inter-
nal semantic hierarchy. Our method is guided by a small num-
ber of part annotations, and it achieves superior performance
(about 13%—107% improvement) in part center prediction on
the PASCAL VOC and ImageNet datasets'.

Introduction

Convolutional neural networks (LeCun et al. 1998;
Krizhevsky, Sutskever, and Hinton 2012; He et al. 2016) (C-
NNis) have achieved near human-level performance in object
classification on some datasets. However, in real-world ap-
plications, we are still facing the following two important
issues.

Firstly, given a CNN that is pre-trained for object classi-
fication, it is desirable to derive an interpretable graphical
model to explain explicit semantics hidden inside the CN-
N. Based on the interpretable model, we can go beyond the
detection of object bounding boxes, and discover an objec-
t’s latent structures with different part components from the
pre-trained CNN representations.

Secondly, it is also desirable to learn from very few an-
notations. Unlike data-rich applications (e.g. pedestrian and
vehicle detection), many visual tasks demand for modeling
certain objects or certain object parts on the fly. For exam-
ple, when people teach a robot to grasp the handle of a cup,
they may not have enough time to annotate sufficient train-
ing samples of cup handles before the task. It is better to
mine common knowledge of cup handles from a few exam-
ples on the fly.

Motivated by the above observations, in this paper, giv-
en a pre-trained CNN, we use very few (3—12) annotations
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Figure 1: Comparison of three learning strategies. (a) Indi-
vidually learning/fine-tuning each part without sharing pat-
terns between parts has large information redundancy in
model representation. (b) Jointly learning/fine-tuning part-
s requires all parts to be simultaneously learned. (c) Giv-
en a small number (e.g. 3—12) of part annotations based on
demands on the fly, we incrementally grow new semantic
graphs on a pre-trained CNN, which associate certain CNN
units with new parts.

to model a semantic part for the task of part localization.
When a CNN is pre-trained using object-level annotations,
we believe that its conv-layers have contained implicit rep-
resentations of the objects. We call the implicit representa-
tions latent patterns, each corresponding to a component of
the semantic part (namely a sub-part) or a contextual region
w.r.t. the semantic part. For each semantic part, our goal is to
mine latent patterns from the conv-layers related to this part.
We use an And-Or graph (AOG) to organize the mined latent
patterns to represent the semantic hierarchy of the part.

Input and output: Given a pre-trained CNN and a num-
ber of images for a certain category, we only annotate the se-
mantic parts on a few images as input. We develop a method
to grow a semantic And-or Graph (AOG) on the pre-trained
CNN, which associates certain CNN units with the semantic
part. Our method does not require massive annotations for
learning, and can work with even a single part annotation.
We can use the learned AOG to parse/localize object parts
and their sub-parts for hierarchical object parsing.

Fig. 2 shows that the AOG has four layers. In the AOG,
each OR node encodes its alternative representations as
children, and each AND node is decomposed into its con-
stituents.

e Layer 1: the top OR node for semantic part describes the
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Figure 2: Semantic And-Or graph grown on the pre-trained CNN. The AOG associates CNN units with certain semantic parts
(head, here). Red lines in the AOG indicate a parse graph for concept association. To visualize these latent patterns, we show
the heat map (left) at the 5-th conv-layers in the VGG-16 network, which sums up the associated units (red squares) throughout
all conv-slices. In Fig. 4, we reconstructed the dog head using the learned AOG to show its interpretability.

head of a sheep in Fig. 2. It lists a number of part tem-
plates as children.

e Layer 2: AND nodes for part templates correspond to dif-
ferent poses or local appearances for the part, e.g. a black
sheep head from a front view and a white sheep head from
side view.

e Layer 3: OR nodes for latent patterns describe sub-parts
of the sheep head (e.g. a corner of the nose) or a contextual
region (e.g. the neck region).

e Layer 4: terminal nodes are CNN units. A latent pattern
naturally corresponds to a certain range of units within
a conv-slice. It selects a CNN unit within this range to
account for local shape deformation of this pattern.

Learning method and key benefits: The basic idea for
growing AOG is to define a metric to distinguish reliable
latent patterns from noisy neural activations in the conv-
layers. We expect latent patterns with high reliability to 1)
consistently represent certain sub-parts on the annotated ob-
ject samples, 2) frequently appear in unannotated objects,
and 3) keep stable spatial relationship with other latent pat-
terns. We mine reliable latent patterns to construct the AOG.
This learning method is related to previous studies of pursu-
ing AOGs, which mined hierarchical object structures from
Gabor wavelets on edges (Si and Zhu 2013) and HOG fea-
tures (Zhang, Wu, and Zhu 2015). We extend such ideas to
feature maps of neural networks.

Our method has the following three key benefits:

e CNN semanticization: We semanticize the pre-trained C-
NN by connecting its units to an interpretable AOG. In re-
cent years, people have shown a special interest in opening
the black-box representation of the CNN. In this paper, we
retrieve “implicit” patterns from the CNN, and use the AOG
to associate each pattern with a certain “explicit” semantic
part. We can regard the AOG as an interpretable represen-
tation of CNN patterns, which may contribute to the under-
standing of black-box knowledge organization in the CNN.
e Multi-shot learning: The idea of pattern mining also en-
ables multi-shot learning from small data. Conventional end-
to-end learning usually requires a large number of annota-
tions to learn/finetune networks. In contrast, in our learning

scenario, all patterns in the CNN have been well pre-trained
using object-level annotations. We only use very few (3—12)
part annotations to retrieve certain latent patterns, instead of
finetuning CNN parameters. For example, we use the anno-
tation of a specific tiger head to mine latent patterns. The
mined patterns are not over-fitted to the head annotation, but
represent common head appearance among different tigers.
Therefore, we can greatly reduce the number of part annota-
tions for training.
o Incremental learning: we can incrementally enrich the
knowledge of semantic parts. Given a pre-trained CNN, we
can incrementally grow new neural connections from CNN
units to a new AOG, in order to represent a new semantic
part. It is important to maintain the generality of the pre-
trained CNN during the learning procedure. I.e. we do not
change/fine-tune the original convolutional weights within
the CNN, when we grow new AOGs. This allows us to con-
tinuously add new semantic parts to the same CNN, without
worrying about the model drift problem.

Contributions of this paper are summarized as follows.
1) From the perspective of model learning, given a few part
annotations, we propose a method to incrementally grow in-
terpretable AOGs on a pre-trained CNN to gradually model
semantic parts of the object.
2) From the perspective of knowledge transferring, our
method semanticizes a CNN by mining reliable latent pat-
terns from noisy neural responses of the CNN and associat-
ing the implicit patterns with explicit semantic parts.
3) To the best of our knowledge, we can regard our method
as the first study to achieve weakly supervised (e.g. 3—12 an-
notations) learning for part localization. Our method exhibit-
s superior localization performance in experiments (about
13%-107% improvement in part center prediction).

Related work

Long-term learning & short-term learning: As reported
in (Kumaran, Hassabis, and McClelland 2016), there are “t-
wo learning systems instantiated in mammalians:” 1) the
neocortex gradually acquires sophisticated knowledge rep-
resentation, and 2) the hippocampus quickly learns specifics
of individual experiences. CNNs are typically trained using



big data, and contain rich appearance patterns of objects. If
one compares CNNs to the neocortex, then the fast retrieval
of latent patterns related to a semantic part can be compared
to the short-term learning in hippocampus.

Semantics in the CNN: In order to explore the hidden se-
mantics in the CNN, many studies have focused on the visu-
alization of CNN units (Zeiler and Fergus 2014; Mahendran
and Vedaldi 2015; Simonyan, Vedaldi, and Zisserman 2013;
Dosovitskiy and Brox 2015; Aubry and Russell 2015) and
analyzed their statistical features (Dosovitskiy et al. 2014;
Szegedy et al. 2014; Yosinski et al. 2014; Lu 2015). Liu et
al. (Liu, Shen, and van den Hengel 2015) extracted and vi-
sualized a subspace of CNN features.

Going beyond “passive” visualization, some studies “ac-
tively” extracted CNN units with certain semantics for dif-
ferent applications. Zhou et al. (Zhou et al. 2015; 2016) dis-
covered latent “scene” semantics from CNN feature maps.
Simon et al. discovered objects (Simon and Rodner 2015)
in an unsupervised manner from CNN feature maps, and
learned semantic parts in a supervised fashion (Simon, Rod-
ner, and Denzler 2014). In our study, given very few part
annotations, we mine CNN patterns that are related to the
semantic part. Obtaining clear semantics makes it easier to
transfer CNN patterns to other part-based tasks.

AOG for knowledge transfer: Transferring hidden pat-
terns in the CNN to other tasks is important for neural
networks. Typical research includes end-to-end fine-tuning
and transferring CNN knowledge between different cate-
gories (Yosinski et al. 2014; Gallagher, Tang, and Tu 2015)
and/or datasets (Ganin and Lempitsky 2015). In contrast,
we believe that a good explanation and transparent repre-
sentation of part knowledge will creates a new possibili-
ty of transferring part knowledge. As in (Zhu et al. 2008;
Si and Zhu 2013), the AOG is suitable to represent the se-
mantic hierarchy, which enables semantic-level interactions
between human and neural networks.

Modeling ‘“‘objects” vs. modeling ‘“parts” in un-
/weakly-supervised learning: Generally speaking, in terms
of un-/weakly-supervised learning, modeling parts is usu-
ally more challenging than modeling entire objects. Given
image-level labels (without object bounding boxes), objec-
t discovery (Oquab et al. 2015; Simon and Rodner 2015;
Pathak, Kr ahenb uhl, and Darrell 2015) can be achieved by
identifying common foreground patterns from noisy back-
ground. Closed boundaries and common object structure are
also strong prior knowledge for object discovery.

In contrast to objects, semantic parts are hardly distin-
guishable from other common foreground patterns in an
unsupervised manner. Some parts (e.g. the abdomen) do
not have shape boundaries to determine their shape exten-
t. Inspired by graph mining (Zhang, Wu, and Zhu 2015;
Zhang et al. 2016; 2014), we mine common patterns from
CNN activation maps in conv-layers to explain the part.

Part localization/detection vs. semanticizing CNN pat-
terns: Part localization/detection is an important task in
computer vision (Azizpour and Laptev 2012; Simon, Rod-
ner, and Denzler 2014; Li et al. 2013; Chen et al. 2014).
There are two key points to differentiate our study from con-
ventional part-detection approaches. First, most methods for

detection, such as the CNN and the DPM (LeCun et al. 1998;
Felzenszwalb, Girshick, and McAllester 2010; Tsogkas et
al. 2015), limit their attention to the classification problem.
In contrast, our effort is to clarify semantic meanings of im-
plicit CNN patterns. Second, instead of summarizing knowl-
edge from massive annotations, our method mines CNN se-
mantics with very limited supervision.

And-Or graph for part parsing

In this section, we introduce the structure of the AOG and
part parsing/localization based on the AOG. The AOG struc-
ture is suitable for clearly representing semantic hierarchy
of a part. The method for mining latent patterns and build-
ing the AOG will be introduced in the next section. An AOG
represents the semantic structure of a part at four layers.

Layer | Name Node type Notation
1 semantic part OR node e
2 part template AND node V'™ Q"™
3 latent pattern OR node Ve ot
4 CNN unit Terminal node V"™ e Q"™

Each OR node in the AOG represents a list of alternative
appearance (or deformation) candidates. Each AND node is
composed of a number of latent patterns to describe its sub-
regions.

In Fig. 2, given CNN activation maps on an image I°,
we can use the AOG for part parsing. From a top-down per-
spective, the parsing procedure 1) identifies a part template
for the semantic part; 2) parses an image region for the se-
lected part template; 3) for each latent pattern under the part
template, it selects a CNN unit within a certain deformation
range to represent this pattern.

In this way, we select certain AOG nodes in a parse graph
to explain sub-parts of the object (shown as red lines in
Fig. 2). For each node V in the parse graph, we parse an
image region Ay, within image I°. We use S7(V) to denote
an inference/parsing score, which measures the fitness be-
tween the parsed region Ay and V' (as well as the sub-AOG
under V).

Given an image I> and an AOG, the actual parsing pro-
cedure is solved by dynamic programming in a bottom-up
manner, as follows.

Terminal nodes (CNN units): We first focus on parsing
configurations of terminal nodes. Terminal nodes under a la-
tent pattern are displaced in location candidates of this latent
pattern. Each terminal node V'™ has a fixed image region
Ayun: we propagate V'""’s receptive field back to the image
plane as Ayue. We compute V""’s inference score Sy(V'™)

*Because the CNN has demonstrated its superior performance
in object detection, we assume that the target object can be well
detected by the pre-trained CNN. Thus, to simplify the learning
scenario, we crop I to only contain the object, resize it to the image
size for CNN inputs, and only focus on the part localization task.

*Image regions of OR nodes are propagated from their chil-
dren. Each terminal node has a fixed image region, and each part
template (AND node) has a fixed region scale (will be introduced
later). Thus, we only need infer the center position of each part
template in (2) during part parsing.



based on both its neural response value and its displacement
w.r.t. its parent (see appendix for details*).

Latent patterns: Then, we propagate parsing configu-
rations from terminal nodes to latent patterns. Each laten-
t pattern V' is an OR node. V'* naturally corresponds to
a square within a certain conv-slice in the output of a cer-
tain CNN conv-layer as its deformation range’. V'* con-
nects all the CNN units within the deformation range as chil-
dren, which represent different deformation candidates. Giv-
en parsing configurations of its children CNN units as input,
V'at selects the child V" with the highest score as the true
deformation configuration:

Sp(viaty = max

St(V*™), Ay =Apu (1
Vunte Child(V'at) I( )7 % v (1)

Part templates: Each part template V'™ is an AND n-
ode, which uses its children (latent patterns) to represent its
sub-part/contextual regions. Based on the relationship be-
tween V'™ and its children, V'"™P uses its children’s parsing
configurations to parse its own image region Ayw. Given
parsing scores of children, V'™ computes the image region

Ay that maximizes its inference score.

Sp(Vi™P) = max Y [Sy(VH) + S (Aywe|Ayu)] )
V[mPV]a[EChild(Vm‘p)

Just like typical part models (e.g. DPMs), the AND node us-
es each child’s region V' to infer its own region. Sy (V)
measures the score of each child, and S™ (A |A ) mea-
sures spatial compatibility between V™ and each child V&
in region parsing (see the appendix for formulations).
Semantic part: Finally, we propagate parsing configura-
tions to the top node V™. V™ is an OR node. It contains
a list of alternative templates for the part. Just like OR n-

odes of latent patterns, V5™ selects the child VP with the
highest score as the true parsing configuration:

S Vsem — S Vtmp A sem — A {7 tm 3
I( ) Vl‘“PEéI}l%};(VSC‘n) I( ), v v ( )

Learning: growing an And-Or graph
The basic idea of AOG growing is to distinguish reliable
latent patterns from noisy neural responses in conv-layers
and use reliable latent patterns to construct the AOG.
Training data: Let I denote an image set for a tar-
get category. Among all objects in I, we label bounding
boxes of the semantic part in a small number of images,
I ={I,I5,...,Iy} C I Inaddition, we manually define
a number of templates for the part. Thus, for each I € T,
we annotate (Ajem, V™), where Aj «n denotes the ground-
truth bounding box of the part in I, and V'™P* specifies the
ground-truth template ID for the part.
Which AOG parameters to learn: We can use human
annotations to define the first two layers of the AOG. If peo-
ple specify a total of m different part templates during the

“Please see the section of appendix for details.

>We set a constant deformation range for each latent pattern,
which potentially covers 75 x 75 pxls on the image. Deformation
ranges of different patterns in the same conv-slice may overlap.

annotation process, correspondingly, we can directly con-
nect the top node with m part templates {V™P*} as children.
For each part template V'™, we fix a constant scale for its re-
gion Ay . Le. if there are n ground-truth part boxes that are
labeled for V'™, we compute the average scale among the n
part boxes as the constant scale for Ay up.

Thus, the key to AOG construction is to mine children
latent patterns for each part template. We need to mine la-
tent patterns from a total of K conv-layers. We select ny
latent patterns from the k-th (k = 1,2,..., K) conv-layer,
where K and {nj} are hyper-parameters. Let each laten-
t pattern V' in the k-th conv-layer correspond to a square
deformation range5 , which is located in the Dy-th conv-
slice of the conv-layer. P denotes the center of the range.
As analyzed in the appendix, we only need to estimate the
parameters of Dy, Py for V',

How to learn: We mine the latent patterns by estimat-
ing their best locations Dy, Py € @ that maximize the
following objective function.

gen dis unsup lat
mgx{rnean[L (1,0)+L (1,0)] +rlllleealn ZSI, % )} 4)

Terant
Viat

annotated images R
unannotated images

where 0 is the set of AOG parameters. First, let us focus on

the first half of the equation, which learns from part anno-
tations. L&(7,0) and L (I, @) are the generative inference
score and discriminative score of part parsing, respectively,
on I. Given annotations (A} wn, V™*) on I, we define

Lgen(I’ 0) — SI (Vsem) ~ SI(Vlmp*)
Ldis(I, 0) - —>\V{mp* ||vaem - P»{/scm ||

where the discriminative score measures the localization
error between the parsed part region Py«n and the ground
truth Pj,.n. We ignore the small probability of the AOG as-
signing an annotated image with an incorrect part template
to simplify the computation of generative scores.
The second half of (4) learns from objects without part
annotations.

S;r{lsup(vlat) _ Aunsupﬁ;@[p(Vunt) +SIIOIC(Vunt) _ )\CIOSCHA]?‘/]al HZ] (6)

where latent pattern V' selects CNN unit V'™ as its defor-
mation configuration on I’. The first term S77 (V™) denotes
the neural response of the CNN unit V™. The second term
Sloe (V) = — || Py — Py | measures the deformation
level of the latent pattern. The third term measures the spa-
tial closeness between the latent pattern and its parent V"™,
We assume that 1) latent patterns that frequently appear a-
mong unannotated objects may potentially represent stable
sub-parts and should have higher priorities; and that 2) laten-
t patterns spatially closer to V'™ are usually more reliable.
Please see the appendix for details of S?,"(V“"‘) and scalar
weights of \U1SUP, \elose and \loc,

When we set Ay to a constant A" S 5, we can
transform the learning objective in (4) as follows.

YV e Q™ maxL, L= Z Score(V™)  (7)

Ovm Ve Child(Vimp)
where Score(V'™) =meansecr, o, [S1(V™) 4+ S™(Adrem |Ayi)]
Ul

+meanp 1Sy P (V™). Oywe C 0 denotes the parameters for

(&)

ymp [



Table 1: Average number of children
AOG Layer #1 semantic #2 part #3 latent
part  template pattern
3 4575.8 136.4

Children number

the sub-AOG of V'™P, We use I,wm C I*™ to denote the sub-
set of images that are annotated with V'™ as the ground-
truth part template.

Learning the sub-AOG for each part template: Based
on (7), we can mine the sub-AOG for each part template
V'™ which uses this template’s own annotations on images
I € Iy C I?™ as follows.

1) We first enumerate all possible latent patterns correspond-
ing to the k-th CNN conv-layer (k = 1, ..., K), by sampling
all pattern locations w.z.t. Dy and Py

2) Then, we sequentially compute Ay and Score(V'™) for
each latent pattern.

3) Finally, we sequentially select a total of ny, latent patterns.
In each step, we select V' = argmax . AL. Le. we select la-
tent patterns with top-ranked values of Score(V'™) as V™’s
children.

Experiments
Implementation details

We chose the 16-layer VGG network (VGG-16) (Simonyan
and Zisserman 2015) that was pre-trained using the 1.3M
images in the ImageNet ILSVRC 2012 dataset (Deng et al.
2009) for object classification. Then, given a target catego-
ry, we used images in this category to fine-tune the original
VGG-16 (based on the loss for classifying target objects and
background). VGG-16 has 13 conv-layers and 3 fully con-
nected layers. We chose the last 9 (from the 5-th to the 13-th)
conv-layers as valid conv-layers, from which we selected u-
nits to build the AOG.

Note that during the learning process, we applied the fol-
lowing two techniques to further refine the AOG model.
First, multiple latent patterns in the same conv-slice may
have similar positions Py, and their deformation ranges
may highly overlap with each other. Thus, we selected the
latent pattern with the highest Score(V'®) within each s-
mall range of € X € in this conv-slice, and removed other
nearby patterns to obtain a spare AOG structure. Second,
for each V"™, we estimated ny, i.e. the best number of la-
tent patterns in conv-layer k. We assumed that scores of all
the latent patterns in the k-th conv-layer follow the distribu-
tion of Score(V™) ~ aexp[—(Brank)®®] + ~, where rank
denotes the score rank of V'®. We found that when we set
n, = [0.5/5], the AOG usually had reliable performance.

Datasets

We tested our method on three benchmark datasets: the PAS-
CAL VOC Part Dataset (Chen et al. 2014), the CUB200-
2011 dataset (Wah et al. 2011), and the ILSVRC 2013 DET
dataset (Deng et al. 2009). Just like in most part-localization
studies (Chen et al. 2014), we also selected six animal

categories—bird, cat, cow, dog, horse, and sheep—from
the PASCAL Part Dataset for evaluation, which prevalent-
ly contain non-rigid shape deformation. The CUB200-2011
dataset contains 11.8K images of 200 bird species. As in
(Branson, Perona, and Belongie 2011; Simon, Rodner, and
Denzler 2014), we regarded these images as a single bird
category by ignoring the species labels. All the above sev-
en categories have ground-truth annotations of the head (it
is the forehead part in the CUB200-2011 dataset) and ror-
so/back. Thus, for each category, we learned two AOGs to
model its head and torso/back, respectively.

In order to provide a more comprehensive evaluation of
part localization, we built a larger object-part dataset based
on the off-the-shelf ILSVRC 2013 DET dataset. We used
30 animal categories among all the 200 categories in the
ILSVRC 2013 DET dataset. We annotated bounding box-
es for the heads and front legs/feet in these animals as two
common semantic parts for evaluation. In Experiments, we
annotated 3—12 boxes for each part to build the AOG, and
we used the rest images in the dataset as testing images.

Two experiments on multi-shot learning

We applied our method to all animal categories in the above
three benchmark datasets. We designed two experiments to
test our method in the scenarios of (1 x 3)-shot learning and
(4 x 3)-shot learning, respectively. We applied the learned
AOGs to part localization for evaluation.

Exp. 1, three-shot AOG construction: For each se-
mantic part of an object category, we learn three different
part templates. We annotated a single bounding box for each
part template. Thus, we used a total of three annotations to
build the AOG for this part.

Exp. 2, AOG construction with more annotation-
s:  We continuously added more part annotations to check
the performance changes. Just as in Experiment 1, each part
contains the same three part templates. For each part tem-
plate, we annotated four parts in four different object images
to build the corresponding AOG.

Baselines

We compared our method with the following nine base-
lines. The first baseline was the fast-RCNN (Girshick 2015).
We directly used the fast-RCNN to detect the target part-
s on objects. To enable a fair comparison, we learned the
fast-RCNN by first fine-tuning the VGG-16 network of the
fast-RCNN using all object images in the target category
and then training the fast-RCNN using the part annotation-
s. The second baseline was the strongly supervised DPM
(SS-DPM) (Azizpour and Laptev 2012), which was trained
with part annotations for part localization. The third base-
line was proposed in (Li et al. 2013), which trained a DP-
M component for each object pose to localize object parts
(namely, PL-DPM). We used the graphical model proposed
in (Chen et al. 2014) as the fourth baseline for part local-
ization (PL-Graph). The fifth baseline, namely CNN-PDD,
was proposed by (Simon, Rodner, and Denzler 2014), which
selected certain conv-slices (channels) of the CNN to repre-
sent the target object part. The sixth baseline (VGG-PDD-
finetuned) was an extension of CNN-PDD, which was con-



Table 2: Part localization performance

Table 4: Part center prediction accuracy on the PASCAL

Exp. 1: 3-shot learning Exp. 2: 12-shot learning VOC Part Dataset
Dataset Pascal ImageNet Pascal ImageNet bird cat cow dog horse sheep | Avg.
Semantic part | Head Torso| Head F-legs | Head Torso Head z SS-DPM 9.0 394 39.0 494 380 36.8 | 353
SS-DPM 1.5 78 7.0 5.1 34 108 18.8 o | PL-DPM 18.6 28.0 335 325 208 0 222
PL-DPM 1.1 21 39 1.2 | 3.1 42 6.5 = PL-Graph 119 53.6 346 564 20.1 0 29.4
PL-Graph 86 198 159 63 | 7.0 235 25.1 FasttRCNN | 21.2 364 40.1 343 240 405 | 327
Fast-RCNN 155 400 319 109 | 313 529 53.6 Ours 645 850 654 818 771 64.1 | 73.0
Ours 29.2 507 401 232 | 34.6 595 55.0 bird cat cow dog horse sheep | Avg.

Because object parts may not have clear boundaries, many
studies (Oquab et al. 2015; Simon, Rodner, and Denzler
2014) did not consider part scales in evaluation. Similarly,
our method mainly localizes part center, and does not dis-
criminatively learn a model for the regression of part bound-
ing boxes, which is different from fast-RCNN methods. In-
stead, we simply fix a constant bounding-box scale for each
part template, i.e. the average scale of part annotations for
this part template. Nevertheless, our method still exhibits su-
perior performance.

Table 3: Normalized distance of part localization. The per-
formance was evaluated using the CUB200-2011 dataset.

Exp. 1: 3-shot learning | Exp. 2: 12-shot learning
Semantic part Head Torso Head Torso
SS-DPM 0.3469 0.2604 0.2925 0.2427
PL-DPM 0.3412 0.2329 0.3056 0.1998
PL-Graph 0.4889 0.4015 0.6093 0.3961
fc7+linearSVM 0.3120 0.2721 0.2906 0.2481
fc7+RBF-SVM 0.3666 0.2994 0.3351 0.2617
fc7+NearestNeighbor | 0.4195 0.3337 0.4159 0.3319
CNN-PDD 0.2333 0.2205 0.3401 0.2188
VGG-PDD-finetune | 0.3269 0.2251 0.3198 0.2090
Fast-RCNN 0.4131 0.3227 0.2245 0.2810
Ours 0.1115 0.1388 0.0758 0.1368

ducted based the VGG-16 network that was pre-fine-tuned
using object images in the target category. Because in the
scope of weakly supervised learning, “simple” methods are
usually insensitive to the over-fitting problem, we designed
the last three baselines as follows. Given the pre-trained
VGG-16 network that was used in our method, we directly
used this network to extract fc7 features from image patches
of the annotated parts, and learned a linear SVM and a RBF
SVM to classify target parts and background. Then, given a
testing image, the three baselines brutely searched part can-
didates from the image, and used the linear SVM, the RBF
SVM, and the nearest-neighbor strategy, respectively, to de-
tect the best part. All the baselines were conducted using the
same set of annotations for a fair comparison.

Evaluation metric

As mentioned in (Chen et al. 2014), a fair evaluation of part
localization requires to remove the factors of object detec-
tion. Therefore, we used object bounding boxes to crop ob-
jects from the original images as the testing samples. Note
that detection-based baselines (e.g. fast-RCNN, PL-Graph)
may produce several bounding boxes for the part. Just as
in (Chen et al. 2014; Oquab et al. 2015), we took the most
confident bounding box per image as the localization result.

SS-DPM 460 49.6 71.0 566 279 829 | 557

]
£ | PL-DPM 68.0 380 782 202 755 928 | 62.1
& | PL-Graph 612 529 824 586 641 924 | 68.6
Fast-RCNN | 522 703 86.5 438 57.6 913 | 66.9
Ours 89.2 792 89.6 832 931 916 | 877

3-shot learning

bird cat cow dog horse sheep | Avg.
< | SS-DPM 135 478 308 51.8 38.0 302 | 353
% PL-DPM 233 545 313 537 165 28.1 | 346
PL-Graph 21.0 342 253 556 258 223 | 307
Fast-RCNN | 440 613 533 608 48.0 595 | 545
Ours 68.7 855 670 786 799 711 | 751
bird cat cow dog horse sheep | Avg.
o | SS-DPM 540 515 668 33.7 507 88.6 | 575
é PL-DPM 68.7 650 772 298 772 89.0 | 67.8

PL-Graph 26.6 65.1 850 651 793 89.0 | 684

Fast-RCNN | 70.5 763 90.7 689 70.7 935 | 78.4

Ours 87.3 843 89.1 846 914 943 | 885
12-shot learning

c 5 60
=28 e
5 ‘g 5 50 — o

= O _— .

L % 40; o Number of annotations

3 6 9 12

Figure 3: Performance with different numbers of annotation-
s. We annotate 1-4 parts for each of the 3 part templates.

Given localization results of a part in a certain category,
we used three evaluation metrics. 1) Part detection: a true
part detection was identified based on the widely used “IOU
> 0.5” criterion (Girshick 2015); the part detection rate of
this category was computed. 2) Center prediction: as in (O-
quab et al. 2015), if the predicted part center was localized
inside the true part bounding box, we considered it a correct
center prediction; otherwise not. The average center predic-
tion rate was computed among all objects in the category for
evaluation. 3) The normalized distance in (Simon, Rodner,
and Denzler 2014) is a standard metric to evaluate localiza-
tion accuracy on the CUB200-2011 dataset. Because object
parts may not have clear boundaries (e.g. the forehead of the
bird), center prediction and normalized distance are more
often used for evaluation of part localization.

Results and quantitative analysis

Table 1 lists the average children number of an AOG node
at different layers. Fig. 4 shows the positions of the extract-
ed latent pattern nodes, and part-localization results based
on the AOGs. Given an image, we also used latent patterns
in the AOG to reconstruct the corresponding semantic part
based on the technique of (Dosovitskiy and Brox 2016), in
order to show the interpretability of the AOG.

In Tables 2, 3, 4, 5, and 6, we compared the performance



Table 5: Part center prediction accuracy of 3-shot learning on the ILSVRC 2013 DET Animal-Part dataset.

bird frog turt. liza. koala lobs. dog fox cat lion tiger bear rabb. hams. squi. horse

SS-DPM (Azizpour and Laptev 2012) | 244 31.8 247 20.7 544 255 512 327 430 510 765 460 388 763 274 347
PL-DPM (Li et al. 2013) 264 194 13.6 148 460 255 540 0 632 526 755 290 56.8 805 209 353
PL-Graph (Chen et al. 2014) 254 435 188 163 56.7 27.0 569 374 523 67.0 77.0 480 639 847 456 395

g Fast-RCNN (Girshick 2015) 244 112 247 59 795 92 213 621 63.7 753 699 495 60.1 71.6 572 163
& Ours 88.6 84.7 57.8 84.4 958 41.1 90.5 943 813 87.6 923 840 962 96.7 90.2 74.2
zebra swine hippo catt. sheep ante. camel otter arma. monk. elep. red pa. gia.pa. gold. Avg.

SS-DPM (Azizpour and Laptev 2012) | 42.9 56.7 644 508 52.1 488 353 369 283 570 73.0 509 77.7 29.0 454
PL-DPM (Li et al. 2013) 30.5 482 532 470 74 17.1 395 321 212 597 612 496 1.8 18.0 36.7
PL-Graph (Chen et al. 2014) 36.2 433 42.6 389 472 465 38.6 48.7 263 59.7 599 425 841 17.0 46.4
Fast-RCNN (Girshick 2015) 254 537 585 56.8 59.5 645 414 439 31.8 522 776 566 650 185 46.9
Ours 80.8 732 79.3 80.0 88.3 93.1 92.6 88.8 429 941 855 80.7 93.6 83.0 83.2
bird frog turt. liza. koala lobs. dog fox cat lion tiger bear rabb. hams. squi. horse

SS-DPM (Azizpour and Laptev 2012) 154 418 519 33.0 51.1 63.1 312 357 285 386 51.8 522 253 438 27.1 338
PL-DPM (Li et al. 2013) 10.5 31.6 468 83 478 641 246 147 13.1 346 184 377 27 258 18.8 338

| PL-Graph (Chen et al. 2014) 0 143 544 147 38.0 573 232 210 238 27.6 326 326 173 352 27.1 271
2 Fast-RCNN (Girshick 2015) 302 29.6 43.0 73 62.0 60.2 21.7 23.8 246 283 468 572 160 242 82 346
g Ours 58.6 77.6 67.1 37.6 82.6 77.7 855 734 623 803 77.3 783 66.7 609 63.8 70.7
42 zebra swine hippo catt. sheep ante. camel otter arma. monk. elep. red pa. gia.pa. gold. Avg.
SS-DPM (Azizpour and Laptev 2012) | 39.1 28.8 42.8 42.6 479 59.6 422 389 63 548 581 403 504 - 40.6
PL-DPM (Li et al. 2013) 185 161 210 O 0 331 336 105 1.0 487 315 145 260 - 23.7
PL-Graph (Chen et al. 2014) 179 271 232 165 542 349 336 274 125 548 548 145 382 - 29.5
Fast-RCNN (Girshick 2015) 37.1 40.7 18.1 39.1 17.7 29.5 457 179 125 296 710 258 672 - 323
Ours 834 695 594 765 77.1 89.8 879 432 615 757 84.7 613 748 - 71.2

Table 6: Part center prediction accuracy of 12-shot learning on the ILSVRC 2013 DET Animal-Part dataset.

bird frog turt. liza. koala lobs. dog fox cat lion tiger bear rabb. hams. squi. horse

SS-DPM (Azizpour and Laptev 2012) | 29.9 51.8 26.0 289 72.6 27.7 53.1 664 642 763 821 680 66.1 819 377 279
PL-DPM (Li et al. 2013) 119 324 240 17.8 553 220 379 469 534 629 679 530 672 763 223 353
PL-Graph (Chen et al. 2014) 373 27.1 104 215 558 5.0 687 389 756 773 633 555 672 69.8 36.7 284
g Fast-RCNN (Girshick 2015) 5577 37.6 584 63.7 851 92 545 73.0 642 902 847 580 852 828 78.1 44.7
£ Ours 87.1 86.5 59.1 80.0 949 44.7 88.2 88.6 839 902 89.8 915 90.7 97.7 944 72.6
zebra swine hippo catt. sheep ante. camel otter arma. monk. elep. red pa. gia.pa. gold. Avg.

SS-DPM (Azizpour and Laptev 2012) | 46.3 67.1 61.7 524 663 604 414 492 424 629 783 71.1 877 315 56.0
PL-DPM (Li et al. 2013) 345 51.8 543 427 35.6 309 33.0 465 157 489 605 452 745 19.0 42.7
PL-Graph (Chen et al. 2014) 48.0 433 723 36.8 503 415 544 604 343 667 572 68.0 864 185 49.2
Fast-RCNN (Girshick 2015) 62.1 677 88.8 762 76.1 839 70.7 663 652 73.1 83.6 833 79.1 86.5 69.6
Ours 514 81.7 824 824 87.1 87.1 912 925 747 93.7 90.1 921 932 95.0 84.5

of different baselines. Our method exhibited much better
performance than other baselines that suffered from over-
fitting problems. In Fig. 3, we showed the performance curve
when we increased the annotation number from 3 to 12. Note
that the 12-shot learning only improved about 0.9%—-2.9% of
center prediction over the 3-shot learning. This demonstrat-
ed that our method was efficient in mining CNN semantics,
and the CNN units related to each part template had been
roughly mined using just three annotations. In fact, we can
further improve the performance by defining more part tem-
plates, rather than by annotating more part boxes for existing
part templates.

Conclusions and discussion

In this paper, we have presented a method for incremental-
ly growing new neural connections on a pre-trained CNN to
encode new semantic parts in a four-layer AOG. Given an
demand for modeling a semantic part on the fly, our method

can be conducted with a small number of part annotation-
s (even a single box annotation for each part template). In
addition, our method semanticizes CNN units by associat-
ing them with certain semantic parts, and builds an AOG as
a interpretable model to explain the semantic hierarchy of
CNN units.

Because we reduce high-dimensional CNN activation-
s to low-dimensional representation of parts/sub-parts, our
method has high robustness and efficiency in multi-shot
learning, and has exhibited superior performance to other
baselines.
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Figure 4: Image reconstruction based on the AOG (top left), heat maps corresponding to latent patterns at the 5-th conv-layers
in the VGG-16 network (top right), and part localization performance to demonstrate the AOG interpretability (bottom).

Appendix
Parameters for latent patterns

In general, we use the notation of Py, to denote the central
position of an image region Ay as follows.

Py center of Ay

Py center of Avlal obtained during part parsing
Pyu a constant center position of Ay u
Py an AOG parameter, the center of the square

deformation range of V', i.e. V12s “ideal”
position without any deformation.

an AOG parameter, average displacemen-
t from V' to the parent V'™P

Each latent pattern V'™ is defined by its location param-
eters {Lyu, Dy, Py, APy} C 0, where 0 is the set
of AOG parameters. It means that a latent pattern V'* us-
es a square’ within the Dywu-th conv-slice/channel in the
output of the Lyu-th CNN conv-layer as its deformation
range. Each V2 in the k-th conv-layer has a fixed value of
Lyw = k. AP is used to compute S™ (A yywp| Ay ). Given
parameter Py, the displacement APy can be estimated
as APy = P}y — Py, where Py, denotes the average
position among all ground-truth parts that are annotated for
V'™, As a result, for each latent pattern V™, we only need to
learn its conv-slice Dy € 6 and central position P € 6.

AP Viat

Scores of terminal nodes

The inference score for each terminal node V'™ under a la-
tent pattern V'3 is formulated as

SI (Vum) _ SrIsp(Vum) 4 SlIoc(Vunt) 4 S}I)air(vunt)

» )\rSpX(Vunl) X(vunt) > 0

P unty\ __ )

SI (V ) - { )\rspsnone’ X(vunt) S 0
S?air(vum) = _/\pair mean || [Pvunl _PV:!]SEJGI] — [7‘@3&‘—?‘/1;1(] ||

Vull‘;;)cr ENeighbor(V1at)
The score of S; (V") consists of the following three terms:
1) S7P(V"™) denotes the response value of the unit V'™, when
we input image I into the CNN. X (V") denotes the nor-
malized response value of V'"™; S, ,,. = —3 is set for non-
activated units. 2) When the parent V' selects V™ as its lo-
cation inference (i.e. Ay < Ayw), S¥(V'™) measures the
deformation level between V*"’s location Py and V*s
ideal location P . 3) S (V') indicates the spatial com-
patibility between neighboring latent patterns: we model the
pairwise spatial relationship between latent patterns in the
upper conv-layer and those in the current conv-layer. For
each V" (with its parent V%) in conv-layer Ly, we se-
lect 15 nearest latent patterns in conv-layer Ly + 1, w.rt.
1Py — ?VJSLHH’ as the neighboring latent patterns. We set

constant weights A\ = 1.5, \l°¢ = 1/3 \Par = 10.0,
Aumsup — 5.0 apd \°lose = 0.4 for all categories. Based on
the above design, we first infer latent patterns corresponding
to high conv-layers, and use the inference results to select
units in low conv-layers.

Scores of AND nodes
S™(Aymp ]| A i) = = A" min{ | Py + APy — Py, d°}

where we set d=37 pxls and A" = 5.0.
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