Inferring Naval Tactical Context through Scene Understanding

Michael Walton and Doug Lange, Ph.D.
SPAWAR

Song-Chun Zhu, Ph.D.
UCLA

Abstract
In this work we explore the application of scene understanding methods to the problem of learning and representing computational context. Modern machine learning models often treat their input space as a statistical ‘bag of features’; that is, inference is accomplished by taking a weighted (possibly non-linear) aggregation of features which may be engineered or learned. A representational limitation of the conventional approach is that many models disregard the spatial, temporal and fluent context of objects and events. In this work, we relate the problem of capturing computational context to the notion of scene parsing. We then propose a method of representing and learning contextual relationships from data using And-Or Graphs with applications to the Naval Tactical C2 Domain.

Introduction
Command and Control (C2) systems must effectively represent information to a mission commander, leading to rapid and correct decisions. Key goals of such systems include providing an interface to force \{projection, readiness, employment\}, intelligence, and situational awareness. Often, the approach to these interfaces is to present information in a manner that is natural for humans to interpret, that is, visual displays of information (Bemis, Leeds, and Winer 1988) (John et al. 2004) (Smallman et al. 2001). Such displays apply across a variety of domains, from mission planning to tactical command and control, because not only are they intuitive for a human to understand but also because such displays easily represent contextual relationships among objects (Smallman et al. 2001). The challenge moving forward is the increasing complexity of the battle space increases the difficulty of creating effective windows to the required information for a commander (John et al. 2004). Because the information density is increasing, important information and relationships hide from human view and integrating information for planning becomes difficult. The question is, can we augment or replace human capability with computer systems that can discover the relevant contextual relationships and information that a commander requires?

Scene understanding is a sub-field of computer vision which is concerned with the extraction of entities, actions and events from imagery and video. In many ways, scene understanding may be seen as a holistic or gestalt approach to computer vision which incorporates multiple vision tasks into a common pipeline. Traditional computer vision challenges include low-level feature extraction 1, image segmentation 2 and object classification 3. Additionally, scene understanding is concerned with the semantic relations between visual objects. Each of these objectives shares direct analogs to the Naval tactical domain and may be extended far beyond the domain of images and video. We posit the idea that many of challenges faced in scene understanding are shared with the problem of efficient contextual inference and representation in C2. Therefore, we propose that adaptations of the same algorithms and data structures which have been proven effective for scene understanding applied to imagery may be similarly applied to representing Naval tactical context.

Methods
Scene Parsing
A particularly well-studied approach to the problem of natural scene understanding is scene parsing (Yao et al. 2010). This area of research strives to encode the semantic information of an image as a parse tree, or more generally a parse graph. Associated algorithms for manipulating and traversing these structures enable sophisticated capabilities such as causal inference (Fire and Zhu 2015) (Pei, Jia, and Zhu 2011), natural language text generation (NTG) and answering queries about the content of an image or video (Tu et al. 2013). Working from the analogy to natural language processing initially drawn in (Yao et al. 2010), image parsing computes a parse graph which represents the most probable

1The representation of raw, high dimensional input images in a feature space via either learned or engineered features. Common engineered methods include SIFT descriptors, various color and gradient histograms. Feature learning has been broadly explored in diverse research domains and a fair discussion is beyond the scope of this proposal

2For example, partitioning the set of pixels which comprise an image of a bicyclist into two unlabeled groups

3In which a segmented object in a scene is mapped to some high-level semantic concept. For example consider the labeling of pixels which compose a bicycle and cyclist with distinct classifications
interpretation of an image. Extending this analogy into the naval tactical domain, tactical scene parsing computes the most probable interpretation of the available Intelligence, Surveillance, Reconnaissance (ISR) information. Notationally, a tactical parse tree is a structured decomposition of the totality of a ship or battlegroup’s ISR datasources such that all input feeds are explained. A “tactical parse graph” is subsequently augmented with lateral edges allowed at all levels of the hierarchy which specify spatial and functional relations between nodes.

AOG Knowledge Representation In statistical natural language processing (NLP), a stochastic grammar is a linguistic framework with a probabilistic notion of grammatical wellformedness and validity (Manning and Schtte 1999). In general, a grammar is a collection of structural rules which may generate a very large set of possible configurations from a relatively small vocabulary. AOG is a compact yet expressive datastructure for implementing stochastic grammars. It is observed in (Zhu and Mumford 2006) that a stochastic grammar in the form of an AOG is particularly well suited to scene parsing tasks. An AOG is constructed by nodes where each Or node has child nodes corresponding to alternative sub-configurations and the children of an And node correspond to a decomposition into constituent components. Intuitively, this recursive definition allows one to merge AOGs representing a multitude of entities and objects into larger and increasingly complex scene graphs. Theoretically, all possible scene configurations could be represented by composition of all observed parse graphs in a dataset. Therefore, the AOG is a compact formalization of the set of all valid parse graph configurations that may be produced by the corresponding grammar.

The lateral edges in an AOG correspond to relations which allow the graph to encode contextual information between entities at all levels of the hierarchy and-or tree subgraph. These edges form subject predicate object (SPO) triples that would be suitable for extraction from, or decomposition to RDF triplestores. The relations may be distance based, geometric or semantic. Distance based relations may be of the form A near B; similarly geometric relations may span large distances but encode complex relationships regarding the arrangement of entities in a scene (for instance C collinear with D, E concentric to F). Semantic or functional relations encode abstract information about entities in the scene. Examples from the imagery domain include “boat carrying covered cargo” or “person holding firearms”; in the tactical domain these could represent essential details that could be easily lost in the face of overwhelming information density such as “ship traffics drugs” or “agent is hostile”. As previously mentioned, the extraction, storage and retrieval of such SPO relations from unstructured ISR data is a requirement currently being implemented by various DCGSN performers. However, development of efficient means of

4For now, the reader may conceive of these data as the extracted entities and relations that may be rendered in some form of C2 display which directly interfaces with an operator or analyst. Further discussion of the proposed input sources can be found in Section 1.2.1

5The generalization of these methods to Naval data is an essential research question.

![Figure 1: (a.) Example of an And-Or Graph expressing a stochastic grammar for boats (Yao et al. 2010). The And nodes in the graph specify the feature dependencies to satisfy a particular sub-grammar; for example a two handed clock must have cargo in the Forward and aft sections of the boat. The Or nodes indicate alternate sub-configurations for a particular attribute, for example a boat may have a round hull or a shallow vee hull.](image-url)
sponding S-AOGs applied to imagery and have deliberately discussed generalizations to this model in notional terms. In more recent literature, Zhu and colleagues have begun to pioneer extensions to this framework to incorporate multiple datasources as well as forming augmentations to their models for representing temporal relations as well. The Temporal And-Or Graph (T-AOG) represents a stochastic event grammar in which the terminal nodes are atomic actions and the vocabulary consists of a set of grounded spatial relations such as positions of agents and interactions with the environment. The associated algorithms have been used to successfully detect actions and fluent transitions (Pei, Jia, and Zhu 2011) as well as infer causal relationships as suggested in (Fire and Zhu 2015).

Causal Inference & Intent Prediction Learning perceptual causality is a crucial capability of humans which enables us to infer hidden information from sensory inputs as well as make predictions of future events in the environment. This is further compounded in the tactical domain in which a commander must make correct, efficient C2 decisions from the estimated tactical scene. As a motivating example, consider the case of an agent looking in a box and can’t see what’s in the box. An agent may not be able to directly observe the what the person grabbed from the box (due to occlusion or low resolution) however the system may observe the agent with a drink in hand afterwards. Independently, a spatial parse of this scene may draw conclusions regarding ‘person’ ‘box’ ‘drink’ similarly, a temporal parse may detect the action ‘opening box’. However from the causal joint of these perspectives, far richer inferences may be made (eg. ‘person has drink’ ‘person is thirsty’). Further, this Pei et. al (Pei, Jia, and Zhu 2011) demonstrate that parses of this form also enable the inference of the entirely un-observable intent governing an agents’ actions.

Spatial AOGs (S-AOG) (Zhao and Chun Zhu 2011) and temporal AOGs (T-AOG) model the spatial decomposition of scenes and the temporal decomposition of events into atomic actions respectively. Similarly, a causal AOG (Fire and Zhu 2015) (C-AOG) models the causal decomposition of events and fluent changes. Correspondingly, a STC-AOG jointly models all three perspectives in an interconnected graph. In much of Zhu and collaborators work on STC-AOGs a taxonomy is formed with a universal node type as the root and all considered objects, events and fluents defined by their respective ontologies as subtrees. This shared structure is crucial for computing semantic similarity between concepts in the case of joint inference.

Joint Parse Graphs & Inference In joint parsing tasks across parse graphs generated from multiple data sources, three types of challenges arise and criteria must be derived for resolving: coreference, deduction and rejection (Tu et al. 2013). Coreference refers to the procedure by which multiple references to a singular entity are associated across multiple parse graphs. In the case of an identified smuggler_ship and a separate identification of recreational_vessel, both of these should be associated with references to the higher-level classification ships. Related semantics for singular entities are detected and resolved by their ontological similarity. For example, the Ship type is a parent of Smuggler_ship and recreational_vessel and entities of these types should possess strong semantic similarity; weighted similarity measures may be defined for each edge in the ontology. For real world scenarios, in which multiple text, video, and picture inputs must be incorporated, the treatment of coreference is done post parsing of the inputs and involves finding nearest common parent nodes.

As we have discussed, events and actions may be inferred from a scene, further we would like our models to be capable of predicting fluent changes and future agent actions based on our observations. Scene parsing methods make the open world assumption (Russell and Norvig) and are not constrained to inference based solely on the current state of the environment, rather these models enable complex deduction by incorporating a probabilistic notion of actions and outcomes. Concretely, deduction is accomplished by inserting candidate subgraphs into the joint parse graph created by the STC-AOG. We only consider inserting subgraphs that increase the prior probability of the joint parse graphs’ occurrence. Inserting subgraphs also increases the energy of the joint parse graph, by applying an energy threshold that can be added from a given deduction constrains the amount of deduction that can be performed. At times, several possible deduced parse graphs will fall within our energy threshold, in this case we need to limit the number of deductions performed by limiting the total entropy change of the parse graph deduced given an initial parse graph energy. Equation 1. forms the basis for constraining the iterative process of deduction.

\[
H(p_{de} | p_{jnt}) = - \sum_{i=1}^{N} P(p_{de} | p_{jnt}) \log P(p_{de} | p_{jnt}) > \frac{\log N}{c}
\]

Here, the entropy of a particular deduction \(p_{de}\) given a joint parse graph \(p_{jnt}\) represents the parse graph before the insertion of the deduced subgraph is bounded by the number of candidate subgraphs \(N\) and a hyperparameter \(c\). Scene parsing algorithms will continue inserting low energy deductions until this threshold is satisfied.

Information received by an operator may also be conflicting, for instance when initially classified smugglers boats adjust course and speed toward the strike group. Revision is performed to resolve conflicts in the STC-AOG. In this example, multiple reports may place the same object as neutral in some parse graphs and foes in others. This violation of their tactical AOG renders this an impossible occurrence necessitating revision of one or more sub parse graphs. Changes to each parse graph will increase its associated energy, therefore scene parsing methods typically enforce minimal revisions by setting a threshold.
Probabilistic Modeling The prior probability of a parse graph is inversely proportional to the energy present in that parse graph. In the following discussion, we will freely change between probability and energy to simplify the mathematical expressions, but equation 2 shows us that the probability of a parse graph and its energy can be easily interchanged using the relation:

$$P(pg) = \frac{1}{Z} e^{-E_{STC}(pg)} \tag{2}$$

Where Z is the normalization factor, and $E_{STC}(pg)$ is the energy of that parse graph in the STC-AOG. To calculate the energy of a parse graph for an STC-AOG we sum up the energy of each individual graph and the energy incurred by joint interactions.

$$E_{STC}(pg) = E_S(pg) + E_T(pg) + E_C(pg) + \sum_{r \in R^c(pg)} E_R(r) \tag{3}$$

Here the terms $E_S(pg)$, $E_T(pg)$ and $E_C(pg)$ are the energy terms defined by the spatial, temporal and causal AOGs respectively. In Zhu’s notation R^c is the set of relations across the spatial, temporal and causal domains. Each AOG has a parse graph energy defined by the sum of the energy associated with the configuration selected at the or node $E_{or}(v)$ and the energy associated with a relation between and nodes $E_R(r)$.

$$E(pg) = \sum_{v \in V^{or}(pg)} E_{or}(v) + \sum_{r \in R^c(pg)} E_R(r) \tag{4}$$

From this general definition of total energy for a parse, we may specialize these models by defining the energy of their constituent nodes uniquely for the in the spatial (Zhu and Mumford 2006)(Tu et al. 2005), temporal (Pei, Jia, and Zhu 2011), and causal domains (Fire and Zhu 2013).

Answering Questions A joint parse graph is a structured, semantic representation of the objects, events and fluents present in a data set. These joint parse graphs can be used in semantic queries in order to answer natural language questions about the state of the tactical scene. These questions may vary in complexity and include dependencies on scene parsing algorithms’ unique capabilities for entity resolution, joint inference of partially observable information, deduction and prediction. The joint parsing methods developed in (Pei, Jia, and Zhu 2011) are capable of generating multiple parses of a single scene. The multiple parse graphs correspond to different interpretations of the same scene; therefore to answer a question accurately, multiple interpretations may be combined to determine the probability of a particular interpretation $P(a)$ by summing the posterior probability $P(pg)$ of each parse graph where pg implies interpretation a; here this is denoted with an indicator function $\mathbb{1}(pg \models a)$

$$P(a) = \sum_{pg} P(pg) \mathbb{1}(pg \models a) \tag{5}$$

In (Pei, Jia, and Zhu 2011) Pei et al. propose and demonstrate a user-facing query engine for interacting with and extracting critical information from parse graphs. A natural language query is composed by the user and entered into a web-application GUI front-end. Text input is parsed into SPARQL queries which are compared against RDF decompositions of joint parse graphs. Responses to the queries are then presented to the user in the GUI with the associated marginal probability, interpretable as a confidence, of the response.

Quantitative metrics such as ROC (Receiver Operating Characteristic), and associated precision and recall measures are suitable and commonly used in measuring performance in prediction or query answering problems. Precision is proportional to the number of relevant objects and relations indicated by the scene parse with respect to ground truth. This quantity degrades when superfluous information is included in the graph. Recall is proportional to the number of objects and relations present in both the ground truth and the scene parse. Questions may be of the form of ‘Who When Where or Why’ and answers may be boolean valued or return the empty set or elements of the STC-AOG ontology dependent on the query.

Generating Text Summaries In (Yao et al. 2010), (Tu et al. 2005) scene parsing methods are used to summarize and annotate natural images using natural language text generation. In this scenario, a parse graph is mapped to natural language sentences that maximally explain the input. This differs from question answering scenario in that the models’ outputs are non-interactive and express the full content of the parse graph. Such human readable summaries may be appropriate for rendering directly in C2 displays, or for reporting and automated brief generation. Evaluation of these text summaries may proceed similarly to the metrics proposed for evaluating query responses. Tu et al. (Tu et al. 2005) collected a set of human annotations and used the most frequently occurring relations as ground truth. Similarly, we may generate experimental ground truth parses of tactical inputs where suitable. This methodology will enable the possibility for incorporating human expert generated context annotations as ground truth.

Tactical Scene Classification It is readily apparent the a traversal of an AOG from the leaves to the root correlate well with a high-level notion of semantic abstraction. An open question for more fundamental investigation is how higher-level information may be incorporated as indications and warnings into C2 interfaces. For example, it may be possible to deduce agent intent, threat assessment or other entirely un-observable information from joint parse graphs. Deductive reasoning capabilities enabled by scene parsing plays a key role in these use cases, for instance:

- **Parses of text reports may indicate the exchange of funds for weapons and explosives with an individual**
- **This individual may be an owner of, or in some way associated with a small boat located nearby**
- **Various electronic intelligence may indicate the same vessel is inbound**
- **Imagery may indicate this vessel has large containers onboard**
In isolation, none of this information is particularly useful. However, jointly parsing across these otherwise disjoint analytic pipelines could produce a very clear indication which could be displayed directly to the operator without explicit queries. By selecting and incorporating the contextual information surrounding a particular ship, one may infer its intent and deduce likely future behaviors. Furthermore, using the scene parsing methods we propose, all logical premises leading to a conclusion would, by design and technical necessity, be associated with a conditional likelihood.

Conclusion

Methods of inferring the context of events and objects from sensor measurements are critical in the Naval tactical command and control domain. In the field today, much of this inference is left to human operators which is largely dependent on their training, experience and intuition. In future systems, we hope to provide a means of assisting and automating this process to inform operators’ assessment of increasingly complex and rapidly changing battlespace. Scene parsing using And-Or graphs provides a promising and efficient means of representing, querying and summarizing complex contextual relationships from ISR inputs.

References

