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Abstract
In this paper, we are studying the problem of recognizing
attribute-object pairs that do not appear in the training dataset,
which is called unseen attribute-object pair recognition. Ex-
isting methods mainly learn a discriminative classifier or
compose multiple classifiers to tackle this problem, which
exhibit poor performance for unseen pairs. The key reason-
s for this failure are 1) they have not learned an intrinsic
attribute-object representation, and 2) the attribute and object
are processed either separately or equally so that the inner re-
lation between the attribute and object has not been explored.
To explore the inner relation of attribute and object as well
as the intrinsic attribute-object representation, we propose a
generative model with the encoder-decoder mechanism that
bridges visual and linguistic information in a unified end-to-
end network. The encoder-decoder mechanism presents the
impressive potential to find an intrinsic attribute-object fea-
ture representation. In addition, combining visual and linguis-
tic features in a unified model allows to mine the relation of
attribute and object. We conducted extensive experiments to
compare our method with several state-of-the-art methods on
two challenging datasets. The results show that our method
outperforms all other methods.

Introduction
Attributes are the description of ‘objects’. To reach a high-
er level of vision understanding, a computer should under-
stand not only object categories but also their attributes.
As a result, recognizing objects with their attributes have
been widely studied in various problems such as person re-
identification (Su et al. 2016), scene understanding (Laffont
et al. 2014), image caption (Wu et al. 2017), image search
(Kumar, Belhumeur, and Nayar 2008), and image genera-
tion (Yan et al. 2016).

Encouraged by the success of discriminative models im-
plemented with deep neural networks for object classifi-
cation (Simonyan and Zisserman 2014; He et al. 2016;
Huang et al. 2017), some studies like (Misra, Gupta, and
Hebert 2017) have tried to recognize attribute-object pairs
by composing the discriminative models that are separately
trained for the object and attribute. Factually, the discrimina-
tive models are trying to learn the attribute visual ‘prototype’
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Figure 1: The upper row shows the same object ‘dog’ with
the different attributes. Though dogs can be small, big, wet,
or wrinkled, they present similar visual properties. The low-
er row shows the same attribute ‘old’ with the different ob-
jects, we can observe that the visual properties significantly
differ from each other.

and object visual ‘prototype’. It is true that an object always
has a visual ‘prototype’. For example, when we ask people
to draw a dog, different people may draw beagles, collies,
dalmatians or poodles, but the ‘dogs’ they draw always have
two ears and four legs. However, if we ask people to draw
‘old’, people may find difficulties to do because the ‘old’ is
nonobjective and does not present clear visual ‘prototype’.
As illustrated in the upper row of Fig. 1, the dogs with d-
ifferent attributes present the similar visual feature. On the
contrary, as shown in the lower row, the visual feature of at-
tribute ‘old’ varies dramatically for different object classes.
As a result, the discriminative model is not such success-
ful for attribute recognition as that for object recognition,
which further results in the low accuracy of attribute-object
pair recognition. In fact, attribute is highly dependent on ob-
ject. For example, when we teach a baby to recognize the
attribute ‘old’, we often use instances like ‘old book’, ‘old
bike’, and ‘old dog’ to show how ‘old’ looks like. Therefore,
to better recognize attribute-object pair, we should explore
the inner relation of the attribute and object instead of com-
posing the discriminative models that are separately trained
for the object and attribute.



Realizing this issue, some works like (Chen and Grau-
man 2014) have tried to process the attribute and object as
a whole to explore their inner relations. However, many of
them still employ discriminative models to tackle the prob-
lem, resulting in poor performance for recognizing unseen
attribute-object pairs. The major reason is that the individ-
ual property of the attribute and object are not learned. For
example, there are pairs like ‘old book’ and ‘small dog’ in
the training set, so the model are well fitted to these pairs.
However, the model fails to learn the concept of individu-
al attribute and object like ‘old’, ‘book’, ‘small’, and ‘dog’,
thus can hardly generalize to unseen pairs like ‘old dog’ or
‘small book’.

Summing up the above, to recognize unseen attribute-
object pairs, we should design a model that should consider
not only the individual property of the attribute and objec-
t but also the inner relation between them. To this end, in
this paper, we propose an encoder-decoder generative mod-
el bridging visual and linguistic features in a unified end-
to-end network. We first obtain the visual feature of images
using state-of-the-art deep neural network, and the linguistic
feature by extracting the semantic word embedding vectors
of object and attribute label. To explore the inner relation of
the attribute and object, inspired by the idea of ZSL (Zero-
Shot Learning), we project the visual feature and the linguis-
tic feature into a latent space where the attribute and object
are processed as a whole. During the projection, to preserve
the individual property of the attribute and object, the orig-
inal visual and linguistic features of the attribute and object
are projected by different functions. In the latent space, in
order to minimize the ‘distance’ between the visual feature
and linguistic feature, we have exploited several loss func-
tions to penalize the dissimilarity between them. In addition,
we propose the decoding loss which has been proved crucial
to generalize better to unseen pairs because it can find the
natural and intrinsic feature representations.

In the experiments, we have compared with four state-
of-the-art methods on two challenging datasets, MIT-States
(Isola, Lim, and Adelson 2015) and UT-Zappos50K (Yu and
Grauman 2014). The experiments show that our method out-
performs other methods significantly. We also performed
some ablation experiments to study the effect of individu-
al loss function, the influence of visual feature extractor, and
the interdependence of the attribute and object, from which
we draw some important conclusions.

our contributions in this paper are as follows:
• We propose a generative model to recognize unseen

attribute-object pairs instead of composing multiple clas-
sifiers.

• Our model combines the visual and linguistic information
in the same latent space, which is significant for exploring
the inner relation of the attribute and object.

• We apply the encoder-decoder mechanism to the problem
of attribute-object pair recognition.

Related Work
Object and attribute In recent years, object, attribute,
and attribute-object composition recognition have been in-

tensively studied in both image and video domains (Laffont
et al. 2014; Isola, Lim, and Adelson 2015; Su et al. 2016;
Wu et al. 2017; Misra, Gupta, and Hebert 2017; Liu, Wei,
and Zhu 2017). Attribute recognition is a basic problem,
the typical method for attribute recognition is similar to that
for object classification, training discriminative models us-
ing attribute-labeled samples (Parikh and Grauman 2011;
Patterson and Hays 2012; Scheirer et al. 2012; Singh and
Lee 2016; Lu et al. 2017). Attribute-object pair recognition
is a more challenging problem. Some conventional meth-
ods often use a classifier or compose multiple classifiers to
tackle the problem (Chen and Grauman 2014; Misra, Gup-
ta, and Hebert 2017). Some other studies assume object-
attribute relationship is known and datasets are simple that
only contain one or few dominant object categories (Wang
and Mori 2010; Mahajan, Sellamanickam, and Nair 2011;
Wang and Ji 2013). To make the model applicable to com-
plex datasets that cover various object and attribute class-
es, some good models are proposed (Wang et al. 2013;
Kulkarni et al. 2013). However, they are suffering from ‘do-
main shift’ problem - the test data distribution differs from
that estimated by the training data, leading to the low per-
formance on testing data. To overcome this problem, the
work (Nagarajan and Grauman 2018) proposes to take the
attributer as the operator and attribute-object pair as a vector
that is transformed by this operator, then this transformed
vector is compared with CNN visual feature to recognize
unseen pairs. In this paper, we propose a generative mod-
el with encoder-decoder mechanism which is significant for
exploring the intrinsic feature representation, thus can better
transfer the concept of object and attribute from training set
to the testing set.

Zero-shot learning The goal of zero-shot learning (ZS-
L) is to recognize unseen/new objects by utilizing their
auxiliary information such as attribute or text description.
One major method for zero-shot learning is first mapping
the input into a semantic space where the auxiliary infor-
mation like attributes of unseen objects are known, then
finding the object whose auxiliary feature is ‘closest’ to
the input feature (Lampert, Nickisch, and Harmeling 2014;
Akata et al. 2015). Another major method learns a latent s-
pace that the input and the auxiliary feature of unseen object-
s are simultaneously projected into (Changpinyo et al. 2016;
Wang et al. 2016), and the most likely unseen object is
recognized by measuring the ‘distance’ between input fea-
ture and auxiliary feature in the latent space. Some other
methods predict unseen objects using the classifier that is
composed by seen object classifiers (Norouzi et al. 2013;
Changpinyo et al. 2016). Recently, semantic autoencoder
(SAE) has been proposed for zero-shot learning, consider-
ing both projection from input space to semantic space and
the reverse, which demonstrates to be a simple but effective
approach (Kodirov, Xiang, and Gong 2017). Several other
works like (Wang et al. 2018) have explored more gener-
al generative methods using highly nonlinear model instead
of linear regression from the latent space to the input space
(Verma et al. 2018). Inspired by these works, in this paper,
we project both visual and linguistic features into the same



latent space where the most likely attribute-object pair is se-
lected with the least loss calculated by our self-defined loss
function.

Vision and language combination With the rapid devel-
opment of vision and language, vision and language com-
bination has been studied to tackle many problems. For ex-
ample, as mentioned above, many ZSL models take linguis-
tic text description (Lei Ba et al. 2015; Elhoseiny, Sale-
h, and Elgammal 2013) as auxiliary information for un-
seen object recognition. However, text description annota-
tion is ‘expensive’, especially for large scale datasets. There-
fore, it is intuitive to utilize linguistic word embedding as
auxiliary information because all words can be encoded
as vectors with the pre-trained model (Socher et al. 2013;
Frome et al. 2013). In this paper, we represent object and at-
tribute as linguistic word embedding vectors. Different from
one-hot vectors, word embedding vectors imply the seman-
tic similarity of their corresponding words. In another word,
semantically similar attribute and object will create similar
word embedding vectors, which is significant for learning
the inner relation of the attribute and object.

Approach
In this paper, we are studying the problem of identifying the
attribute-object pair of the given image. For example, giv-
en an image as shown in Fig. 2, our task is to output the
attribute-object pair ‘wrinkled dog’. It is challenging for t-
wo reasons: 1) we are recognizing unseen attribute-object
pairs that are not included in training data, and 2) this is
fine-grained recognition problem and the number of possi-
ble attribute-object pairs is large.

Overview
Given an image I with the attribute label ya and object la-
bel yo, our goal is to correctly choose its attribute-object la-
bel from the set Z = {zLi }Ni=1 that contains all possible N
attribute-object pairs. To realize this goal, the intuitive idea
is combining the classifiers that are separately trained for
the attribute and object. For example, to recognize unseen
attribute-object pair ‘small dog’, some studies first learn
the concept of ‘small’ from images like ‘small cat’, ‘smal-
l horse’, and other small objects as well as the concept of
‘dog’ from images like ‘wrinkled dog’, ‘big dog’ and oth-
er dogs using training set, and then combine the separate
classifiers to recognize unseen attribute-object pair ‘smal-
l dog’. However, as we have discussed previously that the
attribute does not have clear visual ‘prototype’ and is high-
ly dependent on the object. Therefore, we propose a gen-
erative model that combine the visual and linguistic infor-
mation in the same latent space where the attribute and ob-
ject are processed as a whole. As shown in Fig. 2, We first
use deep neural networks (Simonyan and Zisserman 2014;
He et al. 2016) to extract the visual feature of I in visual
space V and denote it as xV , which is then projected into
latent space L as xL. For all possible pairs, we extract their
attribute vector aS and object vector oS , and then project
them into latent space L where they are merged as linguistic
attribute-object pair feature zL. In the training stage, we are

trying to learn the projection from V and S to L by mini-
mizing the ‘distance’ between the visual feature xL and its
corresponding linguistic feature zL in the latent space. In the
testing stage, we predict the attribute-object label of zL that
is the closest to the xL. To this end, we need to consider t-
wo crucial problems: 1) how is original visual and linguistic
data transitioned between different spaces to obtain xL and
zL, and 2) how to design the loss functions to minimize their
‘distance’. We will tackle these two problems in the follow-
ing sub-sections.

Data transitions
Fig. 2 signals the data transition process of our method. In
the figure, the red circles represent the visual data flow, while
green and blue waves represent the linguistic data flow. For
visual data flow, the visual feature xV in visual space V is
projected into latent space L as two flows representing visu-
al attribute feature xLa and visual object feature xLo respec-
tively. xLa and xLo are then merged as visual attribute-object
pair feature xL. To obtain reconstruction of the original vi-
sual feature, xL is re-mapped back to visual space V , the
re-mapped feature is denoted as x̂V . For linguistic data flow,
the linguistic attribute feature aS and linguistic object fea-
ture oS in word embedding space S are projected into the
latent space as zLa and zLo , respectively. Then zLa and zLo are
merged as linguistic attribute-object pair feature zL.

For the projections of linguistic attribute and object fea-
tures from S to L, we define two projection functions
F a
S→L(·) and F o

S→L(·) as linguistic encoders:

zLa = F a
S→L(a

S) (1)

zLo = F o
S→L(o

S) (2)

Here, we define different projection functions for the at-
tribute and object because object (a noun in most cases) and
attribute (an adjective to describe the noun in most cases) are
two different kinds of instances and should be processed dif-
ferently to explore their potential properties. The experiment
results validate the effectiveness of this separate processing,
the details can be found in the experiment section.

Based on the above two transitions, we can get the at-
tribute feature and object feature individually. To explore
their inner relation, we add them together:

zL = zLa + zLo (3)

For visual feature in V , we define two project function-
s F a
V→L(·) and F o

V→L(·) which project xV to its attribute
feature xLa and object feature xLo .

xLa = F a
V→L(x

V) (4)

xLo = F o
V→L(x

V) (5)

With the same manner as we combine latent attribute fea-
ture and object feature from language. We get xL by:

xL = xLa + xLo (6)

Our decoder to re-map the visual feature from latent space
L to original visual space V is defined as:

x̂V = F pair
L→V(x

L) (7)
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Figure 2: Given an image with the attribute-object pair label ‘wrinkled dog’, our goal is to correctly recognize this label. The
challenge is that there are many possible pairs. As shown in the black ellipse in latent space L, the pair may be ‘young tiger’,
‘small dog’, or others. To find the correct one, we first extract the visual feature xV of the given image in visual space V and
project xV into latent space L. After some processing, we finally obtain xL that represents the visual feature of the given image
in L. At the same time, for all possible pairs, we extract their linguistic representations Z = {zLi }Ni=1 in latent space L. Each
element zLi in Z corresponds to one possible pair, which is obtained by mapping the corresponding word embedding vectors
aS and oS from semantic linguistic space S to latent space L. Finally, we take the label of zLi with closest distance to xL as
recognition result.

Loss functions
Encoding loss The goal of encoding loss is to minimize
the ‘distance’ between visual attribute-object pair feature xL
and linguistic attribute-object pair feature zL. There are mul-
tiple ways to define the distance in the latent space. The most
intuitive and common one is L2 distance. However, when us-
ing L2 distance, the value of visual and linguistic features in
latent space tend to be extremely small during optimization
which leads to poor performance. Therefore, we define the
encoding loss as cosine similarity between xL and zL:

Len = dist(xL, zL) = 1− < xL, zL >

‖xL‖2‖zL‖2
, (8)

From geometrical aspect, we measure the angle between two
vectors, and encourage them to have the same direction. The
reason we do not consider the cosine similarity between xLo
and zLo as well as the similarity between xLa and zLa is that
individual attribute or object feature includes limited infor-
mation for attribute-object pair estimation. In another word,
we treat the attribute and object in the latent space as a whole
to explore their inner relation.

Triplet loss The encoding loss defined in the Eq. 8 encour-
ages the visual feature to be close to the linguistic feature of
the indexed attribute-object pair, but doesn’t consider that
the visual feature should be far from the linguistic feature

of other attribute-object pairs. Therefore, we add an extra
loss called triplet loss, which impels the distance between
xL and zL to be smaller than the distance between xL and
other linguistic attribute-object features z̃L by a margin K:

Ltri = max

(
0,
dis(xL, zL)

dist(xL, z̃L)
−K

)
(9)

Decoding loss Inspired by recent zero-shot learning works
using autoencoder (Kodirov, Xiang, and Gong 2017; Wang
et al. 2018), to explore the intrinsic representation of the in-
put image, we introduce the decoding loss which is defined
as the L2 distance between original visual feature xV and
reconstructed visual feature x̂V :

Lde = ‖xV − x̂V‖2 (10)

The decoding loss encourages x̂V to be same with xV

rather than minimizing the angle between x̂V and xV . There-
fore, we utilize the L2 loss instead of cosine similarity. We
did not apply the decoding loss to linguistic features. The
reason is that one attribute-object class only corresponds to
one linguistic vector, the number of attribute-object class-
es is too small to learn a reprojection function with a huge
number of parameters.

Discriminative loss In the above, we have introduced the
encoding loss to encourage the visual attribute-object pair



feature to be close to the indexed linguistic attribute-object
pair feature. However, this may lead to that the dominance
effect of attribute or object. In another word, either attribute
or object tends to represent the whole pair. To avoid this im-
balance case, we define the discriminative loss to encourage
to preserve the information for attributes and objects. The
discriminative loss consists of attribute discriminative loss
and object discriminative loss:

Ldis = Ldis,a + Ldis,o (11)

Ldis,a and Ldis,o are defined as

Ldis,a = h(xLa , ya), Ldis,o = h(xLo , yo)

where h(·) is a one fully connected layer network with cross-
entropy loss.

The purpose of the discriminative loss is to stress the indi-
vidual property of the attribute and object in visual domain.
The experiments validate the effectiveness of the discrimina-
tive loss, the details can be found the in experiment section.

Learning and Inference
The purpose of learning is to estimate the parameters of data
transition functions defined in Eq. 1-7. Let W be all param-
eters of functions involved in Eq. 1-7. Given a set of images
with the attribute and object labels, the estimation of W is
equal to minimize the losses defined in Eq. 8-11 where κ,α,
β, γ are the weights for different losses:

W ∗ = argmin
W

(κLen + αLtri + βLde + γLdis) (12)

During inference, when a new image arrives, the visual
feature is extracted and then projected to latent space, pro-
ducing the visual representation xL in latent space. At the
same time, the linguistic features of all N possible attribute-
object pairs are also computed to obtain a set of linguis-
tic representations Z = {zLi }Ni=1. We compute the cosine
similarity between xL and every zLi , and select the indexed
attribute-object pair label of the most similar zLi as recogni-
tion result. In another word, we predict the attribute-object
pair label by choosing the zLi with the least encoding loss.

Experiments
Setup
Datasets Two datasets, MIT-States (Isola, Lim, and Adel-
son 2015) and UT-Zappos50K (Yu and Grauman 2014), are
used for evaluation. The MIT-States is a big dataset with
63,440 images. Each image is annotated with an attribute-
object pair such as ‘small bus’. It covers 245 object class-
es and 115 attribute classes. However, it does not have
245×115 attribute-object pairs as labels because not all pairs
are meaningful in real world. Following the same setting
as in (Misra, Gupta, and Hebert 2017) and (Nagarajan and
Grauman 2018), 1,262 attribute-object pairs are used for
training and 700 pairs for test. The training pairs and testing
pairs are non-overlapping. UT-Zappos50k is a fine-grained
shoe dataset with 50,025 images. Following the same setting
as in (Nagarajan and Grauman 2018) We use 83 attribute-
object pairs for training and 33 pairs for testing. The training
pairs and testing pairs are also non-overlapping.

Baselines and metric We widely compare with four base-
line methods, three of them are recently proposed state-of-
the-art methods. ANALOG (Chen and Grauman 2014) pre-
dicts unseen attribute-object pairs using a sparse set of seen
object-specific attribute classifiers. SAE (Kodirov, Xiang,
and Gong 2017) predicts unseen pairs by projecting the in-
put feature in a semantic space where the auxiliary infor-
mation of unseen pairs is known. REDWINE (Misra, Gup-
ta, and Hebert 2017) predicts unseen attribute-object pairs
by composing existing attribute and object classifiers. ATT-
OPERATOR (Nagarajan and Grauman 2018) represents the
attribute-object pair as the object vector transformed by at-
tribute operator, the transformed vector is compared with C-
NN visual feature for unseen pair recognition. We use the
top-1 accuracy on testing images as evaluation metric.

Implementation details We extract 512 dimension visu-
al feature of the image using ResNet-18 (He et al. 2016)
pre-trained on ImageNet (Russakovsky et al. 2015). The
network is not fine-tuned on MIT-States or UT-Zappos50K
dataset. We extract 300 dimension linguistic feature for ob-
ject and attribute using pre-trained word vectors (Penning-
ton, Socher, and Manning 2014), some not-included words
are substituted by synonyms. All these features are mapped
into a 1024 dimension latent space.K in Eq. 9 is a parameter
that controls the margin, and is set to 0.9 in our experiment.
κ,α, β, γ in Eq. 12 are with the ratio of 1 : 0.2 : 2 : 2 for
Mit-States dataset and 1 : 0.2 : 0.5 : 2 for UT-Zappos50K
dataset. We implement our end to end neural network with
MXNet (Chen et al. 2015). For all the projection function-
s, we implement each as one fully connected layer. For the
projections from visual space to latent space, to resolve over-
fitting problem, we add dropout layers after each fully con-
nected layer with dropout ratio as 0.3. We use ADAM as our
optimizer with the initial learning rate as 0.0001, which de-
cays by 0.9 every two epochs. At every iteration we feed the
mini-batch to the network with the batch size as 128.

Quantitative results

As shown in Tab 1, our method outperform all recently pro-
posed methods, achieving 25.4% and 4.5% improvemen-
t over the second best methods respectively on MIT-States
and UT-Zappos50k datasets. Our method outperforms others
for two reasons: 1) we introduce the encoder-decoder mech-
anism that enables to learn the general and intrinsic repre-
sentation of attributes-object pair, and 2) our model consid-
ers not only the individual property of the attribute and ob-
ject but also the inner relation between them.

The average accuracy on UT-Zappos50k is higher than
that on MIT-States. This mainly results from the difference
of data complexity. Images in UT-Zappos50k have single
white background as shown in Fig. 3, and few attribute and
object classes, while images in MIT-States cover a variety
of backgrounds, object classes, and attribute classes. In ad-
dition, only 33 attribute-object pairs are used for testing in
UT-Zappos50k, while 700 pairs are used in MIT-States.



Methods MIT-States(%) UT-Zappos(%)
CHANCE 0.14 3.0

ANALOG(Chen and Grauman 2014) 1.4 18.3
SAE (Kodirov, Xiang, and Gong 2017) 14.0 31.0

REDWINE (Misra, Gupta, and Hebert 2017) 12.5 40.3
ATTOPERATOR (Nagarajan and Grauman 2018) 14.2 46.2

Ours 17.8 48.3

Table 1: Top-1 accuracy of methods tested on the MIT-States dataset and UT-Zappos50k dataset. For fair comparison, all
methods use the same visual feature extracted with ResNet-18.
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Figure 3: Qualitative results on two datasets. For each
dataset, the fifth column shows some false recognitions and
other columns show the true recognitions.

Qualitative results
Fig. 3 shows some qualitative results on MIT-States dataset
and UT-Zappos50K dataset. Columns with the green mark
show some true recognitions. We can observe that some
samples with extremely abstract attribute-object pairs are
correctly recognized. For example, some images like ‘wet
forest’ and ‘dry forest’ are correctly recognized. However,
the accuracy is low. On one hand, forest is an abstract ob-
ject sharing similar properties with objects like tree, bush,
plant, and jungle. On the other hand, wet and dry are ab-
stract attributes sharing the similar properties with attributes
like damp, verdant, mossy, and barren. Factually for some
‘wet forest’ testing images, our model has recognized them
as ‘damp bush’, ‘mossy jungle’, ‘verdant plant’ and other
similar compositions. This demonstrates that our model has
learned some macro concepts for attribute-object pairs, but
some micro concepts have not been precisely distinguished.

Columns with the red mark shows some false recogni-
tions. We can observe that some images with the label of
‘scratched phone’ and ‘broken camera’ are wrongly recog-
nized as ‘broken phone’, and pairs like ‘synthetic ankle-
boot’ are wrongly recognized as ‘rubber ankle-boot’. One
main reason is that some attributes are similar and some ob-
jects present similar appearance. For example, the attribute
of ‘scratched’ is similar with ‘broken’, the appearance of
some cameras is similar to that of phone, and some ‘syn-
thetic’ boots also present the attribute of ‘rubber’.

Item MIT-States UT-Zappos
Top1 (%) Top5(%) Top1 (%) Top5(%)

Att 15.1 38.9 18.4 76.8
Att (pair) 25.1 55.3 52.0 92.7

Obj 27.7 56.4 68.1 96.7
Obj (pair) 29.9 51.6 77.3 93.9

Table 2: ‘Att’ and ‘Obj’ correspond to the accuracies that are
trained using the original visual feature, while ‘Att (pair)’
and ‘Obj (pair)’ correspond to the accuracies that are ex-
tracted from our attribute-object pair recognition results.

Attribute and object relation
To validate the relation of the attribute and object we have
learned, we designed an experiment that measures the at-
tribute and object recognition accuracy under two condition-
s: 1) not considering the relation of the attribute and object,
as ‘Att’ and ‘Obj’ shown in Tab. 2, and 2) considering the
relation of the attribute and object in both visual and lin-
guistic domains, as ‘Att (pair)’ and ‘Obj (pair)’ shown in
Tab. 2. Actually, ‘Att (pair)’ and ‘Obj (pair)’ correspond to
the accuracy that are extracted from our attribute-object pair
recognition results. While for ‘Att’ and ‘Obj’, we have sep-
arately trained a 2-layer MLP model to recognize attribute
and object category. We can observe from Tab. 2 that at-
tribute recognition accuracy of our model is always higher
than that does not consider relation of the attribute and ob-
ject, which validates our claim that attribute is highly depen-
dent on object.

Ablation study
We design two experiments. One is to study the importance
of different loss functions, the other is to study the effect of
different visual features.

For the detail analysis of different loss functions, we
report the accuracy corresponding to different kinds of
loss function compositions on both MIT-States and UT-
Zappos50K datasets as shown in Tab. 3. If only encoding
loss is used, the accuracy is 3.6% on the MIT-States and
37.8% on the UT-Zappos50K. If we add triplet loss (+tri) to
encoding loss, we obtain significant performance improve-
ment on both datasets, which validate our claim that we
should not only encourage the visual feature to be close to
the linguistic feature of its indexed attribute-object pair but
also should let it to be away from the linguistic features of
the other attribute-object pairs. If we add discriminative loss



Loss MIT-States(%) UT-Zappos(%)
en 3.6 37.8

+tri 11.2 45.5
+dis 15.3 37.9
+de 17.2 41.3

+tri+dis 15.7 41.4
+tri+de 17.4 46.7
+dis+de 17.5 43.5

+de+dis+tri* 16.5 47.5
+de+dis+tri 17.8 48.3

Table 3: Accuracy for loss function ablation study. ‘en’, ‘tri’,
‘dis’, and ‘de’ represent the encoding loss, triplet loss, dis-
criminative loss, and decoding loss, respectively. *means
sharing parameters for F a

S→L(·) and F o
S→L(·)

(+dis) to encoding loss, we obtain significant performance
improvement on MIT-States but slight improvement on UT-
Zappos50K. On one hand, we can conclude that the discrim-
inative loss allows to learn better visual attribute-object rep-
resentation by stressing individual attribute and object prop-
erty. On the other hand, it is based on certain condition. The
MIT-States dataset is complex and has many object and at-
tribute classes, while the UT-Zappos50K is relatively simple
that the visual features already have good representations,
so adding discriminative loss only contributes slightly. If we
add decoding loss (+de), we obtain impressive performance
improvement on the MIT-States, even better than adding
both triplet loss and discriminative loss (+tri+dis), which
demonstrates that encoder-decoder mechanism can mine the
essential representation for attribute-object pair. On the UT-
Zappos50K, the decoding loss is also helpful.

From the Tab. 3 we can observe that the performance
is basically increasing when adding more loss functions.
Though in some cases adding more losses lead to worse re-
sults, the best performance is achieved when using all loss
functions (+de+dis+tri), from which we can conclude that
the four loss functions are complementary to each other. In
the Tab. 3, (+de+dis+tri*) corresponds to the accuracy when
we impose the constraint that the attribute and object are
processed by the same projection function (sharing the pa-
rameters in Eq. 1 and Eq. 2). We can observe that the accu-
racy of (+de+dis+tri*) is lower than that of (+de+dis+tri) on
both datasets, from which we can draw another important
conclusion that object and attribute are two different kind-
s of instances and should be processed differently to better
explore their individual properties. .

In Tab. 4, we report the accuracy corresponding to differ-
ent kinds of visual feature extractors. We tested two kinds
of network architectures, VGG (Simonyan and Zisserman
2014) and ResNet (He et al. 2016). We can observe from
table that the visual feature significantly affects the final
performance. VGG-19 presents similar performance with
VGG-16. ResNet behaves better than VGG, and basically
achieves higher accuracy with deeper architectures.

Network MIT-States(%) UT-Zappos(%)
VGG-16 15.4 40.7
VGG-19 15.3 40.8

ResNet-18 17.8 48.3
ResNet-50 19.7 52.0

ResNet-101 20.0 51.9

Table 4: Accuracy of our method with different visual fea-
ture extractors.

Conclusion
In this paper, to recognize the unseen attribute-object pair of
a given image, we propose an encoder-decoder generative
model to bridge visual and linguistic features in a unified
end-to-end network. By comparing our method with sev-
eral state-of-the-art methods on two datasets, we reach the
conclusion that 1) the generative model is more competitive
than discriminative models to recognize unseen classes, 2)
the encoder-decoder mechanism is crucial for learning in-
trinsic feature representations, and 3) an appropriate model
should consider not only the individual property of the at-
tribute and object but also the inner relation between them.
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