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Abstract— This paper presents an incremental learning
framework for mobile robots localizing the human sound source
using a microphone array in a complex indoor environment
consisting of multiple rooms. In contrast to conventional ap-
proaches that leverage direction-of-arrival (DOA) estimation,
the framework allows a robot to accumulate training data
and improve the performance of the prediction model over
time using an incremental learning scheme. Specifically, we
use implicit acoustic features obtained from an auto-encoder
together with the geometry features from the map for training.
A self-supervision process is developed such that the model
ranks the priority of rooms to explore and assigns the ground
truth label to the collected data, updating the learned model
on-the-fly. The framework does not require pre-collected data
and can be directly applied to real-world scenarios without
any human supervisions or interventions. In experiments, we
demonstrate that the prediction accuracy reaches 67% using
about 20 training samples and eventually achieves 90% accu-
racy within 120 samples, surpassing prior classification-based
methods with explicit GCC-PHAT features.

I. INTRODUCTION

The Sound Source Localization (SSL) problem in
robotics [1], [2] tackles the issue of obtaining the position of
the sound source by determining its direction and distance us-
ing audio signals. Typical setup involves using a microphone
array [3] or binaural microphones [4] to collect multi-channel
acoustic signals for calculating direction-of-arrival (DOA) or
spectral cues from the raw audio signals. Such information
is further processed to estimate the sound source position.

However, the majority of the field in SSL is currently
restricted to localizing sound source inside a single room [3],
[4], [5], [6], [7], or in simple non-line-of-sight (NLOS)
scenarios, i.e., behind a corner [8], [9], or blocked by
objects [10]. Such setup is insufficient for a domestic robot
or service robot to react rapidly from users across multiple
rooms, hindering the practical uses of SSL in large-scale.

Take a typical multi-room setup (see Figure 1) as an
example, where the mobile robot (highlighted with black
bounding box) stations in the hallway. The explicit acoustic
features (e.g., time-difference-of-arrival (TDOA) or inter-
microphone intensity difference (IID)) are incapable of pro-
viding adequate information, especially for the non-field-
of-view (NFOV) region in the far distance, e.g., the user
(highlighted with a blue skeleton) in one of the three rooms.
Moreover, the acoustic signal is polluted due to the high
noise-to-signal ratio, reverberation, etc. As a result, any
explicit features extracted from the polluted signals become
deficient in such large-scale, unstructured, and noisy setup,
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Fig. 1: A typical indoor environment consisting of multiple rooms.
Given a verbal command from a user, the proposed incremental
learning framework ranks the priority of the rooms to be explored,
indicated by the height of the blue bars. In this example, the
robot initially explores the wrong room following the red path,
which serves as a negative sample. Following the ranking order,
it continues to explore the second room with the green path. A
detection of the user leads to a positive labeled sample of the
training data. All the positive and negative data is labeled on-the-fly
to adapt to new users in unknown complex indoor environments,
and is accumulated to refine the current model to improve future
prediction accuracy.

demanding more modern approaches to incorporate the fea-
tures of both the sound source and the environment.

The recent advancements of Deep Neural Networks
(DNNs) [11] allow machine learning methods reach a re-
markable level in some specific tasks, even arguably better
than human, e.g., control [12], [13], grasping [14], [15], ob-
ject recognition [16], [17], learning from demonstration [18].
It is proven to be an effective way to extract implicit features
that are robust against noises and interference. Although
DNNs-based methods have been applied to SSL problems
and demonstrated decent performance [19], [20], [21], [22],
[7], prior methods suffer from two major issues that prevent
them from being applied in larger scale: (i) difficult to collect
a vast amount of training data, and (ii) too cumbersome to
adapt the trained model to recognize the acoustic signals
from untrained sources in unknown indoor environments.
Such drawbacks result in poor performance, prohibiting the
practical uses in complex, large-scale indoor environments.

To handle these difficulties, we propose a three-step
self-supervised incremental learning framework for mobile
robot’s SSL in indoor environments, summarized in Figure 2:
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Fig. 2: The proposed approach using a self-supervised incremental learning scheme. (a) The multi-channel signals from the user’s wake-up
word are picked up by VAD. Each signal is transferred to the amplitude spectrum and normalized to [0, 1], from which (b) an auto-encoder
is trained to extract implicit features. Each block represents a 2D convolution with stride s[·, ·], kernel size k[·, ·] and the number of
channels. In addition, (c) an occupancy map obtained from the reconstructed point cloud is down-sampled by pooling (d). (b)(d) together
form the feature for learning. (e) Individual rooms are segmented from the point cloud. (f) The HARAM model is adopted to predict the
priority rank of rooms the robot should visit. (g) The robot self-supervises the learning by exploring the rooms. (h) The exploration will
be labeled as the positive sample if the robot detects the user, which will update the HARAM model incrementally.

1) Localization model. We apply a room segmentation
algorithm to obtain candidate regions (e.g., rooms) from
an occupancy map. A prediction model ranks the regions
by the likelihood of location of the sound source (e.g.,
labels of the rooms) from high to low.

2) Incremental learning. In contrast to batch learning meth-
ods, we use an incremental learning scheme that allows
the system to accumulate the training data over time and
refine the prediction model once a new sample arrives.
Hence, no pre-collected data is required.

3) Self-supervised data labeling via active exploration.
We design a self-supervised process to label each new
sample received on-the-fly. Specifically, the robot ex-
plores each room following the predicted ranking order.
The room will be labeled negative if no sound source
detected; otherwise positive.

In summary, we argue that the proposed method is by
far the closest setting to real-world scenarios compared to
the prior work. Such a method can be directly applied to
indoor mobile robots equipped with acoustic sensors (e.g., a
microphone array) for SSL, alleviating the needs of human
supervisions or intervention after the deployment.

A. Related Work

In the field of SSL, prior work mainly adopts a wide range
of signal processing methods [1], [2], which usually calculate
the DOA and perform a distance estimation to localize the
sound source. Some typical algorithms include beamform-
ing, Generalized Cross-Correlation with Phase Transform
(GCC-PHAT), Multiple Signal Classification (MUSIC), etc.
Masking is also applied to improve the performance [23],
[24]. They are, however, limited to the single room scenario.

SSL for the NFOV target has been attempted. For
instance, [8], [25] incorporates optical and acoustic ob-
servations to enhance the estimation of the sound source
using a pre-built acoustic observation database. Leveraging
environment geometry cues and the DOA, [9] combines
diffraction and reflection directions to localize the target

around a corner in an anechoic chamber. Similarly, [10]
tracks a moving sound source in an open room using direct
and reflection acoustic rays, where the NFOV was created
by a wall. However, these methods would have difficulties
in multi-room setups with untrained sound sources inside
unknown environments.

DNNs are widely used in natural language processing and
speech recognition [26], which are orthogonal to the SSL
problem. There are recent efforts in using DNNs for SSL,
only limited to estimating the DOA [19], [20], [21], [22], [7].
They are also limited to the single room scenario, requiring
training data of sound sources inside every new environment.

Active sensing that changes acoustic sensors’ configu-
ration has also been studied in SSL. Using the binaural
microphone with pinnae setting, the platform can change its
pinnae configuration [27] actively based on the data received
to improve performance. However, it lacks the capability of
exploration in the environment. By contrast, mobile robots
with sound source mapping actively navigate in large space
to localize sound sources [5], [6]. [28] also utilized a mobile
robot to collect ground truth acoustic data. However, they do
not leverage the observed new data to improve the model.

B. Contribution

This paper makes the following three contributions:

1) We introduce an incremental learning scheme for SSL
in the indoor setting with multiple rooms that allows the
system to accumulate the training data on-the-fly.

2) We incorporate a self-supervision method that combines
with the robot’s active exploration. Once a sample is
received, the robot will explore the rooms based on the
rank, thereby labeling the sample in a self-supervised
fashion according to the detection of the sound source.

3) We provide a Robot Operating System (ROS) package
that integrates all modules of the proposed framework,
including the acoustic signal processing, room segmenta-
tion, and the learning and inference, which allows a robot
to perform SSL task without any human supervisions or
interventions. The code will be made publicly available.
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C. Overview

The remainder of the paper is organized as follows. Sec-
tion II describes how to extract both acoustic signal features
and environmental geometry features from the received raw
signals. Based on the extracted features, Section III details
the localization model adopted to predict sound sources in a
multi-room setup. In Section IV, we explain how the robot
explores multiple rooms in a self-supervised fashion using
an incremental learning scheme. Section V showcases the
experiment results. We discuss the results and conclude the
paper in Section VI.

II. FEATURE EXTRACTION

This section introduces the feature extraction process.
The features consist of both the acoustic features based on
the collected signals from the microphone array and the
geometry feature extracted from the SLAM results, which
encode both the geometry structure of the environment and
the robot’s current position.

A. Acoustic Features

Voice Activity Detection (VAD): To recognize the
acoustic signal from the human’s wake-up word and distill
the data of interest out of the background noise, we utilize
the state-of-the-art Google WebRTC VAD [29] with a frame
size 20 ms in duration. Figure 2a shows one example of
the detected segment, consisting of multi-channel acoustic
signals. Each channel of the detected audio segment is
transformed to its amplitude spectrum using the log-scale
Short-Time Fourier Transform (STFT) with an FFT size
1024, normalized to [0, 1]. Figure 3a shows one example
of the normalized spectrum with a dimension 255×255.

Signal Low-dimensional Embedding: The dimensions
of the normalized spectrum are still large, and the data
contains certain levels of noises. To address these issues, we
use an auto-encoder to extract a low-dimensional embedding
from the spectrum per channel. Figure 2b depicts the encoder
structure that contains multiple convolutional layers; each
layer is followed by a Leaky-ReLU activation layer and
the batch normalization. The decoder is symmetrical to
the encoder. Such structure results in a 256-dimensional
embedding by minimizing the weighted Mean Square Error
(MSE) between the original spectrum and the reconstructed
spectrum by the decoder:

L(θ; s)=
1

N

N
∑

i=1

ℓ(si, ψ(si; θ)), (1)

where si denotes the ith original amplitude spectrum,
ψ(si; θ) the corresponding reconstructed spectrum, and ℓ the
weighted MSE between the two spectrum, where the weights
decrease from 10 to 1 linearly as the frequency increase
from 0Hz to 6000Hz and above [30]. Such embedding
contains implicit features of one spectrum, denoted as f(si).
Figure 3b shows an example of the reconstructed spectrum
with the reconstruction error shown in Figure 3c.

There are three advantages using such an auto-encoder
method to encode the acoustic signals: (i) The dimension
reduction process reduces the noise contained in the raw
signal, such as the background noise and reverberation. (ii)
Reducing the dimension shrinks the memory required in
the proposed incremental learning framework. (iii) Since the
auto-encoder is designed to minimize reconstruction loss, the
encoding process still preserves meaningful information in
the signal as implicit features.

Fig. 3: (a) The original spectrum normalized to [0, 1]. (b) The re-
constructed spectrum using an auto-encoder. (c) The reconstruction
error as a binary image, in which the black pixel indicates the
relative error larger than 5%.

B. Environment Geometry Features

To obtain richer environmental information through
SLAM, we use a Kinect v2 sensor to construct the 3D
structure of the environment using RTAB-Map [31]. Figure 1
depicts the reconstructed environment in the form of the
registered point cloud, which can be easily converted to a 2D
occupancy map. We apply a pooling strategy to down-sample
the occupancy map to reduce its dimension. A diffusion
is applied based on the robot’s position. Figure 2c shows
the original map (m) that spans about 15.5m×13.5m is
compressed to a 12×11 matrix (g(m)), where each element
is normalized to [0, 1]: the closer the element to the robot’s
current position, the whiter the element is in Figure 2d.

The resulting matrix obtained from map pooling is flatted
and concatenated to the embedding vector of the acoustic
signals. The resulting vectors, φ= [f(s), g(m)], accommo-
date the features extracted from both the acoustic signal and
the environment geometry. The produced feature vectors are
used for the later incremental learning process.

III. LOCALIZATION MODEL BY RANKING

We adopt the Hierarchical Adaptive Resonance Associa-
tive Map (HARAM) algorithm [32], [33] to rank individual
room where the sound source could potentially be from.
HARAM is a neural architecture, able to real-time perform
supervised learning of pattern pairs (i.e., given a feature
vector and the ground truth of the room label) in an in-
cremental manner. The rest of this section briefly describes
the HARAM model under our SSL setting; we refer readers
to the original papers [32], [33] for in-depth details.

Learning: Formally, given the concatenated features
φ and the list of candidate rooms r, the input vector
Φ of HARAM is a 2M -dimensional vector Φ=(φ, φc),
where M is the dimension of the feature φ. The candidate
vector R is a 2R-dimensional vector R=(r, rc), where R
is the number of rooms in the environment. Complement
coding φci and rci are defined as φci ≡ 1−φi and rci ≡ 1−ri,
representing both on-responses and off-responses of the input

vector. The weight vectors ω
φ
k and ωr

k, k=1, . . . , R are
initialized to unity, and will be updated incrementally during
the learning process. Once receiving a feature φ, the neural
activation function for each room Tk is calculated as

Tk(Φ,R)= γ
|Φ∧ω

φ
k |

αφ+ |ωφ
k |

+(1−γ)
|R∧ωr

k|

αr+ |ωr
k|
, (2)

where αφ> 0, αr > 0, and γ ∈ [0, 1] are the learning parame-
ters set by the cross-validation, ∧ is the fuzzy AND operation
defined as (p∧q)i ≡min(pi, qi), and the norm | · | is defined
as |p| ≡

∑

i pi. The system will make choices by selecting
the neural activation functions with the largest magnitude

T∗ =max{Tk : k=1, . . . , R}. (3)
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Fig. 4: (Top) Examples of the human pose detection. (Bottom) Non-
detection examples.

A matching criterion is defined to confirm the choice of T∗
or creating a new neural activation function. The parameters
ρφ and ρr are user-defined to measure the minimum accepted
similarity and the overall model complexity, respectively

|Φ∧ω
φ
∗ |

|Φ|
> ρφ,

|R∧ωr
∗
|

|R|
> ρr. (4)

Specifically, if the above inequalities are violated, a new
neural activation function is created to include the new
sample, and the corresponding T∗ is set to 0. If the above
criterion is satisfied, the weight vectors are adjusted incre-
mentally during the learning

{

ω
φ(new)
∗ =λφ(Φ∧ω

φ(old)
∗ )+(1−λφ)ω

φ(old)
∗

ω
r(new)
∗ =λr(R∧ω

r(old)
∗ )+(1−λr)ω

r(old)
∗

(5a)

(5b)

where λφ and λr ∈ [0, 1] are the learning rates. Take an
example shown in Figure 2f, the hyperbox of cluster r1
expands (see the dash box) to include the new sample.

Ranking: By sorting {Tk} in Equation 3 based on
their relative magnitudes, the order of Tk implies the rank-
ing of the candidate rooms based on the current sample
received, illustrated in Figure 2f. The hyperbox of each
cluster has been constructed based on prior samples. When
a new sample (black dot in the center) arrives, the activation
function calculates the distance between the received data
and each hyperbox. The higher the magnitude. The smaller
the distance between the received data and each hyperbox.
The smaller the distance is, the higher the priority of a room
will be explored with. In this example, since the magnitude
T1>T2>T3 (i.e., dist(T1)< dist(T2)< dist(T3)), the robot
will explore in the order of room 1, room 2, and room 3.

IV. SELF-SUPERVISION VIA ACTIVE EXPLORATION

This section describes the self-supervision process built
on top of the HARAM algorithm, enabling a mobile robot
to acquire the ground truth label of a sample without any
human supervisions or interventions.

Room Segmentation: In order to obtain the number of
candidate rooms in the environment, the robot is required
to segment each room from the entire occupancy map.
This step is equivalent to finding the number of labels
for the learning process. We utilize the room segmentation
algorithm described in [34] (see Figure 2e). Specifically, we
use the Distance Transform-based Segmentation: given an 8-
bit single channel image obtained from the occupancy map
where accessible areas are white and inaccessible black, the
algorithm applies different thresholds to merge accessible
areas iteratively, and the most valid segments will be chosen.

(a) (b)

Fig. 5: (a) Eddiebot robot setup. A Kinect v2 RGB-D sensor
is mounted in the front. A uniform circular microphone array
containing 16 microphones is placed on the top. The robot and
all the sensors are connected to an on-board laptop that runs the
learning algorithm in real-time. (b) A multi-room environment used
in experiments. The robot stations in the hallway and the sound
sources are in room 1, 2, and 3 with an increasing room complexity.

Exploration: The HARAM model produces the dis-
tance (see Equation 2) between the feature of a newly
received sample φ and each of the cluster, i.e., rooms.
The lower the distance, the more likely the φ is from the
corresponding room (cluster). Therefore, the rank of rooms
is determined by ranking the distance from low to high.

Before the very first sample arrives, the model can only
generate uniform predictions. In this case, the robot explores
the rooms based on a random guess. After receiving the very
first sample, the exploration is based on the ranking described
in Section III, and the performance is expected to improve
with the increasing number of the sample received.

Labeling by Detection: The robot can subsequently
navigate to each room following the rank (see Figure 2g)
and use its optical sensor to verify the correctness of the
prediction. Specifically, we adopt the state-of-the-art human
pose detection method, OpenPose [35], to detect the human
as the sound source in a room. Figure 4 shows various
detection and non-detection examples. Once a successful
detection is triggered in a room (note it is not necessarily
the room on the top of the rank), a labeled data pair 〈φ, r∗〉
is obtained. The model then updates according to Equation 5.

V. EXPERIMENT

A. Robot Platform and Experimental Setup

Our system allows real-time data acquisition, processing,
and learning. We evaluate the proposed method using a
system on a Parallax Eddie Robot Platform (see Figure 5a).
A uniform circular microphone array with an 18cm diameter
is equipped, consisting of 16 microphones. The microphones
are connected to a sound card with a multi-channel ADC
for satisfactory signal synchronization. A Kinect v2 RGB-
D sensor is used to capture environmental 3D structure
information as well as to detect human poses. The entire
system runs online in ROS with an onboard laptop.

We test the proposed method in a physical world with
a multi-room setup; see Figure 5b for the corresponding
visualization in the simulator. The robot stations in the
hallway, and the sound source is located at one of the rooms,
which are mostly in the robot’s NFOV. Additionally, these
rooms have an increasing room complexity, containing vari-
ous cluttered objects and obstacles. Such setup is especially
difficult for acoustic experiments, as the background noise
is not negligible, and the reverberation is intractable using
prior methods. A total of 155 sound samples are collected
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(a) Simulation environment (b) Localization performance improves as the amount of samples increases

Fig. 6: An illustration of the incremental learning process in simulation. The sound source is visualized at the location in the corresponding
real world. The robot visits the room subsequently following the rank predicted by the model. The red, green, and blue trajectories indicate
the first, second, and third rooms the robot visits. The number of lines depicts the number of trails used to find the sound source location.

in 13 different locations distributed in all rooms. Out of the
155 samples, 35 are randomly selected to train the auto-
encoder for acoustic feature extraction. The rest 120 samples
are used in the learning and testing process. In a real-
world application, the auto-encoder can be pre-trained using
general acoustic data.

B. Incremental Learning with Active Exploration

All samples are collected in a physical multi-room setup,
and the evaluation is also performed in a physical environ-
ment. We further reconstruct and visualize the process in
the Gazebo simulator to illustrate the incremental learning
process (see Figure 6a): the robot stations in the hallway
and the sound source is placed in other rooms according
to the locations where the samples are collected. The robot
will visit the rooms sequentially following the predicted rank.
Once the robot detects the sound source, it labels the sample,
updates the HARAM model, and returns to the hallway,
waiting for the next sample.

Figure 6b illustrates several keyframes of the incremental
learning process. The red, blue, and green trajectory indicate
the first, the second and the third room the robot visits,
respectively. While the robot can eventually find the locations
by visiting all three rooms, we define the evaluation of the
performance as the first hit rate and the second hit rate: how
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Fig. 7: The number of incorrect visits before finding the correct
sound source locations in every 10 samples over 100 trails. The
horizontal lines indicate median mistakes, and the bottom and top
edges of the blue boxes indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data points
that are not considered outliers, whereas the red cross marks are
the outliers. The number of mistakes decreases rapidly.

many times the robot could find the sound sources within one
and two visits, respectively. The model performs poorly in
the first 5 samples and gradually improves as the number of
received samples increases. After about 40 samples, the robot
can find the sound source correctly in one visit frequently.

To further validate the robustness of the proposed method,
we run 100 repeated trails by feeding the collected samples
in random orders to eliminate the randomness in the learning
process. Figure 7 shows the boxplot of how many incorrect
visits a robot needs to find the correct sound source locations
with an increment of 10 samples. After receiving 40 samples,
the median number of the incorrect visits before finding the
correct sound source locations decreases to < 2 mistakes in
every 10 samples. The performance further improves with
only 1 mistake per 10 samples after receiving 60 samples.
Note that the expectation of the incorrect visits per 10
samples using a random guess is 10. Figure 1 shows a test
running in a physical environment, in which the robot finds
the user in its second visit. Figure 8 shows another example
using only the first visit.

According to a report from IFTTT [36], a web-based
service with 11 million users, 60% of users use their voice
assistance devices more than 4 times a day. Therefore, the
performance reported herein indicates that a domestic robot
could correctly localize the sound sources across multiple
rooms merely based on the wake-up word (four times a day)
reliably (< 1 mistake per 10 calls) in two weeks, without any
human supervisions or interventions.

Fig. 8: Testing in a physical environment, in which the robot locates
the correct sound source with only one visit. (Top) Key frames from
the robot view for navigation with human pose detection. (Bottom)
The corresponding third-person views.
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Fig. 9: The mean accuracy of (blue) the proposed method and (green
and red) two baselines. The first and the second hit rates indicate the
robot finds the correct sound source locations within one and two
visits, respectively. The color strips indicate the 95% confidence
interval over 100 trails.

C. Comparison

We compared the proposed method with three baselines:

1) HARAM + GCC. We combine the HARAM algorithm
with GCC-PHAT feature and geometry feature, a popular
acoustic feature that can be extracted explicitly for SSL.

2) HARAM + GCCFB. We add a mel-scale filter bank
on top of the GCC-PHAT [7], designed specifically for
human voices.

3) MLP + AE. We choose an incremental learning version
of the classic multi-layer perceptron (MLP) classification
method instead of HARAM and learn from the encoded
implicit acoustic feature.

Note that some popular machine learning methods, such
as SVM, are not comparable in our setting, because they
cannot be trained incrementally—a retrain over all samples
is required for each new sample arrives.

Figure 9 shows the comparison results. Learning with
explicit GCC-based features do not lead to satisfactory results

Fig. 10: The mean accuracy of the proposed method using four
different microphone array configurations. The color strips indicates
the 95% confidence interval over 100 trails.

as the performance saturates quickly, which validates the
conjecture that explicit acoustic features underperform in
a complex indoor environment. Similarly, MLP combined
with the same implicit acoustic feature obtained from the
auto-encoder does not perform as well as the one using the
HARAM algorithm. The proposed method surpass all three
baselines after receiving 15 samples.

The performances using different microphone array con-
figurations are also investigated, which profiles the trade-
off between the cost of the setup and the performance. By
maintaining uniform microphone placements, we compare
current 16-microphone setup with 2, 4, and 8-microphone
setups (see Figure 10). Overall, more microphones lead to
better performance with minor fluctuations in the early stage.

VI. DISCUSSION AND CONCLUSION

A. Discussion

How to allow localization in higher resolution? Typical
SSL approaches aim to obtain the exact positions. Although
the present setup and results only showcase the resolution at
the room level, which is sufficient enough to enable most of
the services as a domestic robot, the proposed method could
provide localizations in a grid world with higher resolution.
However, more samples are likely needed.

Flexibility of the framework. Other popular methods
can replace some of the modules in our framework. For
example, by treating the received features as states, the
rank of a room as actions, and assigning rewards when a
correct detection occurs, one can use reinforcement learning
to replace HARAM. Other incremental learning models or
other features (e.g., GCC-related) can be used; some of
which have demonstrated in the baselines.

How to scale up to scenarios with multiple sound

sources? Current framework does not distinguish multiple
sound sources. To address this issue, we need to incorporate
an extra module of voiceprint recognition. However, the
overall pipeline is still sufficient to handle such scenarios.

B. Conclusion

This paper has proposed a self-supervised incremental
learning method for SSL in a complex indoor environment
consisting of multiple rooms. Specifically, the method lo-
calizes the human sound source to one of the rooms. We
designed an auto-encoder to extracted implicit acoustic fea-
tures from the signals collected from a uniform circular mi-
crophone array with 16 microphones. These features are con-
catenated with the environment geometry features obtained
from pooling the occupancy map of the 3D environment.
A HARAM model is adopted to learn the rank of rooms
to explore with a probability from high to low. The self-
supervision is achieved through robot actively exploring the
rooms according to the predicted rank and detecting sound
sources by human poses, which improves model performance
incrementally. In the experiment, we demonstrate that the
proposed method has first and second hit rates of 67% and
84% after 20 samples, and of 90% and 96% after 120
samples, which significantly outperform three baselines.
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