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Abstract

We present CoCoX (short for Conceptual and Counterfac-
tual Explanations), a model for explaining decisions made
by a deep convolutional neural network (CNN). In Cogni-
tive Psychology, the factors (or semantic-level features) that
humans zoom in on when they imagine an alternative to a
model prediction are often referred to as fault-lines. Moti-
vated by this, our CoCoX model explains decisions made by
a CNN using fault-lines. Specifically, given an input image
I for which a CNN classification model M predicts class
cpred, our fault-line based explanation identifies the minimal
semantic-level features (e.g., stripes on zebra, pointed ears
of dog), referred to as explainable concepts, that need to be
added to or deleted from I in order to alter the classification
category of I by M to another specified class calt. We ar-
gue that, due to the conceptual and counterfactual nature of
fault-lines, our CoCoX explanations are practical and more
natural for both expert and non-expert users to understand the
internal workings of complex deep learning models. Extensive
quantitative and qualitative experiments verify our hypotheses,
showing that CoCoX significantly outperforms the state-of-
the-art explainable AI models. Our implementation is available
at https://github.com/arjunakula/CoCoX

Introduction
Artificial Intelligence (AI) systems are becoming increasingly
ubiquitous from low-risk environments such as movie recom-
mendation systems and chatbots to high-risk environments
such as self-driving cars, drones, military applications, and
medical-diagnosis and treatment. However, understanding
the behavior of these systems remains a significant challenge
as they cannot explain why they reach a specific recommen-
dation or a decision. This is especially problematic in high
risk environments such as banking, healthcare, and insurance,
where AI decisions can have significant consequences. There-
fore, we need explainable AI (XAI) models as tools to under-
stand the decisions made by these AI systems (Miller 2018;
Sundararajan, Taly, and Yan 2017; Ramprasaath et al. 2016;
Zeiler and Fergus 2014; Smilkov et al. 2017).

XAI models, through explanations, aim at making the
underlying inference mechanism of AI systems transpar-
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Figure 1: CoCoX Explanations using Fault-Lines: Posi-
tive fault-line explanation (Ψ+

I1
) suggests adding stripes to

the animal in the input image (I1) to alter the model M ’s
prediction from Dog class to Thylacine class, i.e., the con-
cept of stripedness is critical for M to decide between Dog
and Thylacine in I1. Similarly, negative fault-line Ψ−I2
suggests removing bumps from I2 to alter the classification
category from Toad to Frog. Changing the classification
result of I3 from Goat to Sheep requires adding wool and
removing beard and horns from I3, i.e., it needs both positive
and negative fault-lines.

ent and interpretable to expert users (system developers)
and non-expert users (end-users) (Lipton 2016; Ribeiro,
Singh, and Guestrin 2016; Hoffman 2017). In this work,
we focus mainly on increasing justified human trust (JT)
in AI systems, through explanations (Hoffman et al. 2018;
Akula et al. 2019b; 2019a). Justified trust is computed based
on human judgments of AI system’s prediction (more details
on this are described in the Experiments section). Despite
an increasing amount of work on XAI (Smilkov et al. 2017;
Sundararajan, Taly, and Yan 2017; Zeiler and Fergus 2014;
Kim, Rudin, and Shah 2014; Zhang, Nian Wu, and Zhu 2018;
R Akula et al. 2019), providing explanations that can in-



crease justified human trust remains an important research
problem (Jain and Wallace 2019). To address this problem,
we present a new XAI model CoCoX which explains deci-
sions made by a deep convolutional neural network (CNN)
using fault-lines (Kahneman and Tversky 1981).

Fault-lines are the high-level semantic aspects of reality
that humans zoom in on when they imagine an alternative to
it. More concretely, given an input image I for which a CNN
model M predicts class cpred, our fault-line based explana-
tion identifies a minimal set of semantic features, referred to
as explainable concepts (xconcepts), that need to be added to
or deleted from I in order to alter the classification category
of I by M to another specified class calt. For example, let
us consider a training dataset for an image classification task
shown in Figure 1 containing the classes Dog, Thylacine,
Frog, Toad, Goat and Sheep, and a CNN based classifi-
cation model M which is trained on this dataset. In order to
alter the model’s prediction of input image I1 from Dog to
Thylacine, the fault-line (Ψ+

I1,cpred,calt
) suggests adding

stripes to the Dog. We call this a positive fault-line (PFT) as it
involves adding a new xconcept, i.e., stripedness, to the input
image. Similarly, to change the model prediction of I2 from
Toad to Frog, the fault-line (Ψ−I2,cpred,calt

) suggests remov-
ing bumps from the Toad. We call this a negative fault-line
(NFT) as it involves subtracting xconcept, i.e., bumpedness,
from the input image. In most cases, both PFT and NFT are
needed to successfully alter the model prediction.

For example, in Figure 1, in order to change the model
prediction of I3 from Goat to Sheep, we need to add an
xconcept wool (PFT) to I3 and also remove xconcepts beard
and horns (NFT) from I3. As we can see, these fault-lines
can be directly used to make the internal decision making
criteria of deep neural network transparent to both expert and
non-expert users. For instance, we answer the question “Why
does the machine classify the image I3 as Goat instead of
Sheep?” by using PFT Ψ+

I3,cpred,calt
and NFT Ψ−I3,cpred,calt

as follows: “Machine thinks the input image is Goat and not
Sheep mainly because Sheep’s feature woolly is absent
in I3 and Goat’s features beard and horns are present
in I3”. It may be noted that there could be several other
features of Sheep and Goat that might have influenced
the model’s prediction. However, fault-lines only capture the
most critical (minimal) features that highly influenced the
model’s prediction.

What makes fault-lines a good visual explanation? We
chose fault-lines as an explanation for the following two
important reasons:
1. Firstly, unlike current methods in XAI which mainly fo-

cus on pixel-level explanations (viz. saliency maps), fault-
line based explanations are concept-level explanations.
Pixel-level explanations are not effective at human scale,
whereas concept level explanations are effective, less am-
biguous, and more natural for both expert and non-expert
users in building a mental model of a vision system (Kim
et al. 2018). Moreover, with conceptual explanations, hu-
mans can easily generalize their understanding to new
unseen instances/tasks. In our work, as shown in Figure 1,
we represent xconcepts (e.g., stripedness) using a set of

example images (similar to (Kim et al. 2018)).
2. Secondly, fault-lines are counter-factual in nature, i.e.,

they provide a minimal amount of information capable
of altering a decision. This makes them easily digestible
and practically useful for understanding the reasons for a
model’s decision (Wachter, Mittelstadt, and Russell 2017).
For example, consider the fault-line explanation for image
I3 in Figure 1. The explanation provides only the most
critical changes (i.e., adding wool and removing beard
and horns) required to alter the model’s prediction from
Goat to Sheep, though several other changes may be
necessary.
While there are recent works on generating pixel-level

counter-factual and contrastive explanations (Hendricks et al.
2018; Dhurandhar et al. 2018; Goyal et al. 2019), to the best
of our knowledge, this is the first work to propose a method
for generating explanations that are counter-factual as well
as conceptual.

We identify two main challenges in generating a fault-line
explanation, namely: (a) How to identify the set of xconcepts;
and (b) How to select the most critical xconcepts that alter
the model prediction from cpred to calt. In this work, we
first propose a novel method to mine all the plausible xcon-
cepts from the given dataset automatically. We then identify
class-specific xconcepts by using directional derivatives (Kim
et al. 2018). Finally, we pose the derivation of a fault-line
as an optimization problem which selects a minimal set of
these xconcepts to alter the model’s prediction. We perform
extensive human study experiments to demonstrate the effec-
tiveness of our approach in improving human understanding
of the underlying classification model.

Through our human studies, we show that our fault-line
based explanations significantly outperform the baselines
(i.e., attribution techniques and pixel-level counterfactual
explanations) in terms of qualitative and quantitative metrics
such as Justified Trust and Explanation Satisfaction (Hoffman
et al. 2018).

Concurrent to our work, recent work by (Ghorbani, Wexler,
and Kim 2019) also seeks to automatically identify human-
friendly xconcepts. However, they use segmentation methods
to identify xconcepts, whereas we use Grad-CAM (Selvaraju
et al. 2017) based localization maps. Moreover, their expla-
nations are not counter-factual unlike our fault-line based
explanations.

The contributions of this work are threefold: (i) we intro-
duce a new XAI framework based on fault-lines to generate
conceptual and counterfactual explanations; (ii) we present a
new method to mine xconcepts from a given training dataset
automatically and derive the fault-lines; (iii) we show that
our fault-line explanations qualitatively and quantitatively
outperform baselines in improving human understanding of
the classification model.

Approach
In this section, we detail our ideas and methods for generating
fault-line explanations. Without loss of generality, we con-
sider a pre-trained CNN (M ) for image classification. Given
an input image I , the CNN predicts a log-probability output
logP (Y|I) over the output classes Y. Let χ denote a dataset



Figure 2: We consider feature maps from the last convolutional layer as instances of xconcepts and obtain their localization
maps (i.e., superpixels) by computing the gradients of the output with respect to the feature maps. We select highly influential
superpixels and then apply K-means clustering with outlier removal to group these superpixels into clusters where each cluster
represents an xconcept.

of training images, where χc ⊂ χ represents the subset that
belongs to category c ∈ Y, (c = 1, 2, . . . , C). We denote the
score (logit) for class c (before the softmax) as yc and the
predicted class label as cpred. Our high-level goal is to find
a fault-line explanation (Ψ) that alters the CNN prediction
from cpred to another specified class calt using a minimal
number of xconcepts. We follow (Kim et al. 2018) in defining
the notion of xconcepts where each xconcept is represented
using a set of example images. This representation of xcon-
cepts provides great flexibility and portability as it will not
be constrained to input features or a training dataset, and one
can utilize the generated xconcepts across multiple datasets
and tasks.

We represent the quadruple <I , cpred, calt> as a human’s
query Q that will be answered by showing a fault-line ex-
planation Ψ. We use Σ to represent all the xconcepts mined
from χ. The xconcepts specific to the class cpred and calt are
represented as Σpred and Σalt respectively. Our strategy will
be to first identify the xconcepts Σpred and Σalt and then
generate a fault-line explanation by finding a minimal set of
xconcepts from Σpred and Σalt. Formally, the objective is to
find a fault-line that maximizes the posterior probability:

arg max
Ψ

P
(
Ψ,Σpred,Σalt,Σ

∣∣Q) (1)

Mining Xconcepts
We first compute P (Σ |χ,M) by identifying a set of
semantically meaningful superpixels from every image
and then perform clustering such that all the superpix-
els in a cluster are semantically similar. Each of these
clusters represent an xconcept. We then identify class
specific xconcepts i.e., P

(
Σpred

∣∣Σ, χ, I, cpred,M) and
P (Σalt |Σ, χ, I, calt,M).

A. Finding Semantically Meaningful Super-pixels as
Xconcepts Figure 2 shows the overall algorithm for com-
puting P (Σ |χ,M). As deeper layers of the CNN capture
richer semantic aspects of the image, we construct the xcon-
cepts by making use of feature maps from the last convolution
layer. Let f denote the feature extractor component of the
CNN and g denote the classifier component of the CNN that
takes the output of f and predicts log-probabilities over out-
put classes Y. We denote the m feature maps produced at
layer L of the CNN as Am,L = {aL|aL = f(I)} which are
of width u and height v. We consider each feature map as an
instance of an xconcept and obtain its localization map (i.e.,
super-pixels of each feature map). To produce the localization
map, we use Grad-CAM (Selvaraju et al. 2017) to compute
the gradients of yc with respect to the feature maps Am,L
and are then spatially pooled using Global Average Pooling
(GAP) to obtain the importance weights (αcm,L) of a feature
map m at layer L for a target class c:

αcm,L =
1

Z

∑
i

∑
j

∂yc

∂Am,Lij
(2)

Using the importance weights, we select top p super-pixels
for each class. Given that there are C output classes in the
dataset χ, we get p ∗ C super-pixels from each image in the
training dataset. We apply K-means clustering with outlier
removal to group these super-pixels into G clusters where
each cluster represents an xconcept (as shown in Figure 2).
For clustering, we consider the spatial feature maps f(I)
instead of the super-pixels (i.e., actual image regions) them-
selves. We use the silhouette score value of a different range
of clusters to determine the value of K.



B. Identifying Class-Specific Xconcepts For each output
class c, we learn the most common xconcepts that are highly
influential in the prediction of that class over the entire train-
ing dataset χ. We use the TCAV technique (Kim et al. 2018)
to identify these class-specific xconcepts. Specifically, we
construct a vector representation of each xconcept, called
a CAV (denoted as vX ), by using a direction normal to a
linear classifier trained to distinguish between the xconcept
activations from the random activations. We then compute
directional derivatives (Sc,X ) to produce estimates of how
important the concept X was for a CNN’s prediction of a tar-
get class c, e.g., how important the xconcept stripedness
is for predicting the zebra class.

Sc,X = ∇gc(f(I)) · vX (3)
where gc denote the classifier component of the CNN that
takes the output of f and predicts log-probability of output
class c. We argue that these class-specific xconcepts facilitate
in generating meaningful explanations by pruning out inco-
herent xconcepts. For example, the xconcepts such as wheel
and wings are irrelevant in explaining why the network’s
prediction is a zebra and not a cat.

Fault-Line Identification
In this subsection, we describe our approach to generate
a fault-line explanation using the class-specific xconcepts.
Let us consider that npred and nalt xconcepts have been
identified for output classes cpred and calt respectively, i.e.,∣∣Σpred∣∣ = npred and |Σalt| = nalt. We denote CAVs of
the npred xconcepts belonging to the class cpred as vpred =
{vipred, i = 1, 2, . . . , npred} and CAVs of the nalt xcon-
cepts belonging to the class calt as valt = {vialt, i =
1, 2, . . . , nalt}. We formulate finding a fault-line explanation
as the following optimization problem:

minimize
δpred,δalt

αD(δpred, δalt) + β
∥∥δpred∥∥1

+ λ ‖δalt‖1 ;

D(δpred, δalt) = max{gpred(I
′
)− galt(I

′
),−τ};

I
′

= Am,L ◦ v>predδpred ◦ v>altδalt;
δipred ∈ {−1, 0}, δialt ∈ {0, 1} ∀i and α, β, λ, τ ≥ 0.

(4)
We elaborate on the role of each term in the Equation 4 as

follows. Our goal here is to derive a fault-line explanation
that gives us the minimal set of xconcepts from Σpred and
Σalt that will alter the model prediction from cpred to calt. In-
tuitively, we try creating new images (I ′) by removing xcon-
cepts in Σpred from I and adding xconcepts in Σalt to I until
the classification result changes from cpred to calt. To do this,
we do not directly perturb the original image but change the
activations obtained at last convolutional layer Am,L instead.
In order to perturb the activations, we take the Hadamard
product (◦) between the activations (Am,L), v>predδpred and
v>altδalt. The difference between the new logit scores for
cpred (i.e., gpred(I ′)) and calt (i.e,. galt(I ′)) is controlled by
the parameter τ . We apply a projected fast iterative shrinkage-
thresholding algorithm (FISTA) (Beck and Teboulle 2009;
Dhurandhar et al. 2018) for solving the above optimization
problem. We outline our method in Algorithm 1.

Algorithm 1 Generating Fault-Line Explanations
Input: input image I , classification model M , predicted

class label cpred, alternate class label calt and training
dataset χ

1. Find semantically meaningful superpixels in χ,

αcm,L =
1

Z

∑
i

∑
j

∂yc

∂Am,Lij

2. Apply K-means clustering on superpixels and obtain xcon-
cepts (Σ).

3. Identify class specific xconcepts (Σpred and Σalt) using
TCAV,

Sc,X = ∇gc(f(I)) · vX
4. Solve Equation 4 to obtain fault-line Ψ,

Ψ← min
δpred,δalt

αD(δpred, δalt) + β
∥∥δpred∥∥1

+ λ ‖δalt‖1

return Ψ.

Experiments
We conducted extensive human subject experiments to quan-
titatively and qualitatively assess the effectiveness of the
proposed fault-line explanations in helping expert human
users and non-expert human users understand the inter-
nal workings of the underlying model. We chose an im-
age classification task for our experiments (although the
proposed approach is generic and can be applied to any
task). We use the following metrics (Hoffman et al. 2018;
Hoffman 2017) to compare our method with the baselines1.

1. Justified Trust (Quantitative Metric). Justified Trust is
computed by evaluating the human’s understanding of
the model’s (M ) decision-making process. In other words,
given an image, it evaluates whether the users could reli-
ably predict the model’s output decision. More concretely,
let us consider that M predicts images in a set C correctly
and makes incorrect decisions on the images in the set W .
Justified trust is given as sum of the percentage of images
in C that the human subject thinks M would correctly
predict and the percentage of images in W that the human
subject thinks M would fail to predict correctly.

2. Explanation Satisfaction (ES) (Qualitative Metric). We
measure human subjects’ feeling of satisfaction at having
achieved an understanding of the machine in terms of
usefulness, sufficiency, appropriated detail, confidence,
and accuracy (Hoffman et al. 2018; Hoffman 2017). We
ask the subjects to rate each of these metrics on a Likert
scale of 0 to 9.
We used ILSVRC2012 dataset (Imagenet) (Russakovsky et

al. 2015) and considered VGG-16 (Simonyan and Zisserman
1We empirically observed that the metrics Justified Trust and

Explanation Satisfaction are effective in evaluating the core objec-
tive of XAI, i.e. to evaluate whether the user’s understanding of
the model improves with explanations. These metrics are originally
defined at a high-level in the work by (Hoffman et al. 2018) and we
adapt them for the image classification task.



2014) as the underlying network model. We randomly chose
40 classes in the dataset for our experiments and identified
46 xconcepts using our algorithm2.

We applied between-subject design and randomly assigned
subjects into ten groups. We perform this separately with
expert user pool and non-expert user pool. Subjects in non-
expert pool have no background in computer vision, whereas
subjects in expert pool are experienced in training an im-
age classification model using CNN. Each group in the non-
expert pool are assigned 6 subjects and each group in the
expert pool are assigned 2 subjects. Within each group, each
subject will first go through a familiarization phase where the
subjects become familiar with the underlying model through
explanations (with 15 training images), followed by a test-
ing phase where we apply our evaluation metrics and as-
sess their understanding (on 5 test images) in the underlying
model. Specifically, in the familiarization phase, human will
be shown the input image I and the CNN’s prediction cpred
and asked to provide calt as input. We will then show an
explanation to the human user for the model’s prediction
cpred. For example, in CoCoX group, we show the fault-line
explaining why the model chose cpred instead of calt. In the
testing phase, human will be given only I and will not see
cpred, calt, and explanations, and we evaluate whether the
human can correctly identify cpred based on his/her under-
standing of the model gained in the familiarization phase.

For the first group, called NO-X (short for no-explanation
group), we show the model’s classification output on all
the 15 images in the familiarization phase but we do not
provide any explanation for the model’s prediction. For the
subjects in groups two to nine, in addition to the model’s
classification output, we also provide explanations in the
familiarization phase for the model’s prediction generated
using the following state-of-the-art XAI models respectively:
CAM (Zhou et al. 2016), Grad-CAM (Selvaraju et al. 2017),
LIME (Ribeiro, Singh, and Guestrin 2016), LRP (Bach et al.
2015), SmoothGrad (Smilkov et al. 2017), TCAV (Kim et al.
2018), CEM (Dhurandhar et al. 2018), and CVE (Goyal et
al. 2019). For the subjects in the tenth group, we show the
fault-line explanations generated by our CoCoX model in
addition to the classification output. It may be noted that, in
the testing phase, human will be shown only the image I and
will not be provided cpred, calt, and explanations.

Results
Table 1 compares the Justified Trust (JT) and Explanation
Satisfaction (ES) of all the ten groups in expert subject pool
and non-expert subject pool. As we can see, JT and ES val-
ues of attention map based explanations such as Grad-CAM,
CAM, and SmoothGrad do not differ significantly from the
NO-X baseline, i.e., attention based explanations are not ef-
fective at increasing human trust and reliance (we did not
evaluate ES for NO-X group as these subjects are not shown

2We manually removed noisy xconcepts and fault-lines. We
couldn’t find an automatic approach to filter them. We found that
xconcepts generated by (Ghorbani, Wexler, and Kim 2019) are less
noisy and might help in generating more meaningful fault-lines. We
leave this for future exploration.

any explanations). This finding is consistent with the recent
study by (Jain and Wallace 2019) which shows that atten-
tion is not an explanation. On the other hand, concept based
explanation framework TCAV and counterfactual explana-
tion frameworks CEM, and CVE performed significantly
better than the NO-X baseline (in both expert and non-expert
pool). Our CoCoX model, which is both conceptual and coun-
terfactual, significantly outperformed all the baselines with
69.1% JT in non-expert pool and 70.5% JT in expert pool
(p < 0.01). Interestingly, expert users preferred LRP (JT =
51.1%) to LIME (JT = 42.1%) and non-expert users preferred
LIME (JT = 46.1%) to LRP (JT = 31.1%).

Furthermore, human subjects in the CoCoX group, com-
pared to all the other baselines, found that explanations are
highly useful, sufficient, understandable, detailed and are
more confident in answering the questions in the testing phase.
These findings verify our hypothesis that fault-line explana-
tions are lucid and easy for both expert and non-expert users
to understand.

Gain in Justified Trust over Time: We hypothesized that
subjects’ justified trust in the AI system might improve over
time. This is because it can be harder for humans to fully
understand the machine’s underlying inference process in
one single session. Therefore, we conduct an additional ex-
periment with eight human subjects (non-experts) for each
group where the subjects’ reliance was measured after every
session. Note that each session consists of a familiarization
phase followed by a testing phase. The results are shown
in Figure 3(a). As we can see, the subjects’ JT in CoCoX
group increased at a higher-rate compared to other baselines.
However, we did not find any significant increase in JT after
fifth session across all the groups. This is consistent with our
expectation that it is difficult for humans to focus on a task
for longer periods 3. It should be noted that the increase in JT
with attention map based explanations such as Grad-CAM
and CAM is not significant. This finding again demonstrates
that attention maps are not effective to improve human trust.

Subjective Evaluation of Justified Trust: In addition to
the quantitative evaluation of the justified trust, we also col-
lect subjective trust values (on a Likert scale of 0 to 9) from
the subjects. This helps in understanding to what extent the
users think they trust the AI system. The results are shown in
Figure 3(b). As we can see, these results are consistent with
our quantitative trust measures except that qualitative trust in
Grad-CAM, CAM, and SmoothGrad is lower compared to
the NO-X group.

Case Study: Figure 4 shows examples of the xcon-
cepts (cropped and rescaled for better view) identified us-
ing our approach. As we can see, our method successfully
extracts semantically coherent xconcepts such as pointed
curves of deer, stripedness of zebra, and woolliness of
deerhound from the training dataset. Also the fault-lines
generated by our method correctly identify the most critical
xconcepts that can alter the classification result from cpred to
calt. For example, consider the image of deerhound shown

3In the future, we also intend to experiment with subjects by
arranging sessions over days or weeks instead of having continuous
back to back sessions.



XAI Framework Justified Trust
(±std)

Explanation Satisfaction (±std)

Confidence Usefulness Appropriate
Detail

Understandability Sufficiency

N
on
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er
tS
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ct
Po

ol

Random Guessing 6.6% N/A N/A N/A N/A N/A
NO-X 21.4%± 2.7% N/A N/A N/A N/A N/A

CAM (Zhou et al. 2016) 24.0%± 1.9% 4.2± 1.8 3.6± 0.8 2.2± 1.9 3.2± 0.9 2.6± 1.3
Grad-CAM (Selvaraju et al.

2017)
29.2%± 3.1% 4.1± 1.1 3.2± 1.9 3.0± 1.6 4.2± 1.1 3.2± 1.0

LIME (Ribeiro, Singh, and
Guestrin 2016)

46.1%± 1.2% 5.1± 1.8 4.2± 1.6 3.9± 1.1 4.1± 2.0 4.3± 1.6

LRP (Bach et al. 2015) 31.1%± 2.5% 1.1± 2.2 2.8± 1.0 1.6± 1.7 2.8± 1.0 2.1± 1.8
SmoothGrad (Smilkov et al.

2017)
37.6%± 2.9% 1.4± 1.0 2.2± 1.8 2.8± 1.0 3.1± 0.8 2.9± 0.8

TCAV (Kim et al. 2018) 49.7%± 3.3% 3.6± 2.1 3.2± 1.8 3.3± 1.6 3.6± 2.1 3.9± 1.1
CEM (Dhurandhar et al.

2018)
51.0%± 2.1% 4.1± 1.4 3.4± 1.4 3.1± 2.1 2.9± 0.9 3.3± 1.6

CVE (Goyal et al. 2019) 50.9%± 3.0% 3.8± 1.9 3.1± 0.9 3.6± 2.1 4.1± 1.2 4.2± 1.2
CoCoX (Fault-lines) 69.1% ± 2.1% 6.2± 1.2 6.6± 0.7 7.2± 0.9 7.1± 0.6 6.2± 0.8

E
xp

er
tS

ub
je

ct
Po

ol

NO-X 28.1%± 4.1% N/A N/A N/A N/A N/A
CAM (Zhou et al. 2016) 37.1%± 3.9% 3.2± 1.8 3.3± 1.4 3.1± 2.1 3.1± 1.8 2.9± 1.9

Grad-CAM (Selvaraju et al.
2017)

39.1%± 2.1% 3.7± 1.2 3.1± 2.2 2.7± 1.9 3.7± 1.1 3.4± 1.6

LIME (Ribeiro, Singh, and
Guestrin 2016)

42.1%± 3.1% 3.1± 2.2 3.0± 1.2 2.8± 1.9 3.1± 2.2 2.8± 1.7

LRP (Bach et al. 2015) 51.1%± 3.1% 3.2± 4.1 3.5± 1.6 4.2± 1.5 4.3± 1.0 3.9± 0.9
SmoothGrad (Smilkov et al.

2017)
40.7%± 2.1% 3.1± 1.0 2.9± 1.2 3.8± 1.5 3.3± 1.1 3.1± 1.0

TCAV (Kim et al. 2018) 55.1%± 3.3% 3.9± 2.8 3.6± 1.6 4.1± 1.3 4.9± 1.2 3.9± 0.8
CEM (Dhurandhar et al.

2018)
61.1%± 2.2% 4.8± 1.6 3.7± 1.6 4.0± 1.2 3.7± 1.0 4.0± 1.1

CVE (Goyal et al. 2019) 64.5%± 3.7% 4.1± 2.3 3.9± 1.5 4.6± 1.5 4.5± 1.4 3.9± 1.2
CoCoX (Fault-lines) 70.5% ± 1.3% 5.7± 1.1 4.9± 0.8 5.8± 1.2 6.9± 1.1 6.4± 1.0

Table 1: Quantitative (Justified Trust) and Qualitative (Explanation Satisfaction) comparison of CoCoX with random guessing
baseline, no explanation (NO-X) baseline, and other state-of-the-art XAI frameworks such as CAM, Grad-CAM, LIME, LRP,
SmoothGrad, TCAV, CEM, and CVE.

in the Figure 4. Our fault-line explanation suggests removing
woolliness and adding black and white pattern to alter the
model’s classification on the image from deerhound to
greyhound.

Related Work
Most prior work has focused on generating explanations us-
ing feature visualization and attribution.
Feature visualization techniques typically identify qualita-
tive interpretations of features used for making predictions
or decisions. For example, gradient ascent optimization is
used in the image space to visualize the hidden feature layers
of unsupervised deep architectures (Erhan et al. 2009). Also,
convolutional layers are visualized by reconstructing the in-
put of each layer from its output (Zeiler and Fergus 2014).
Recent visual explanation models seek to jointly classify the
image and explain why the predicted class label is appro-
priate for the image (Hendricks et al. 2016). Other related
work includes a visualization-based explanation framework
for Naive Bayes classifiers (Greiner et al. 2003), an inter-

pretable character-level language models for analyzing the
predictions in RNNs (Karpathy, Johnson, and Fei-Fei 2015),
and an interactive visualization for facilitating analysis of
RNN hidden states (Strobelt et al. 2016).
Attribution is a set of techniques that highlight pixels of
the input image (saliency maps) that most caused the output
classification. Gradient-based visualization methods (Zhou et
al. 2016; Selvaraju et al. 2017) have been proposed to extract
image regions responsible for the network output. The LIME
method proposed by (Ribeiro, Singh, and Guestrin 2016)
explains predictions of any classifier by approximating it
locally with an interpretable model.

There are few recent works in the XAI literature that
go beyond the pixel-level explanations. For example, the
TCAV technique proposed by (Kim et al. 2018) aims to gen-
erate explanations based on high-level user defined concepts.
Contrastive explanations are proposed by (Dhurandhar et al.
2018) to identify minimal and sufficient features to justify
the classification result. (Goyal et al. 2019) proposed counter-
factual visual explanations that identify how the input could



(a) (b)

Figure 3: (a) Gain in Justified Trust over time. (b) Average Qualitative Justified Trust (on a Likert scale of 0 to 9). Error bars
denote standard errors of the means.

Figure 4: Examples of xconcepts (Left) and fault-line explanations (Right) identified by our method.

change such that the underlying vision system would make
a different decision. More recently, few methods have been
developed for building models which are intrinsically inter-
pretable (Zhang, Wu, and Zhu 2017). In addition, there are
several works (Miller 2018) on the goodness measures of ex-
planations which aim to assess the underlying characteristics
of explanations.

Conclusions

In this paper, we introduced a new explainable AI (XAI)
framework, CoCoX, based on fault-lines. We argue that due
to their conceptual and counterfactual nature, fault-line based
explanations are lucid, clear and easy for humans to under-
stand. We proposed a new method to automatically mine
explainable concepts from a given training dataset and to
derive fault-line explanations. Using qualitative and quanti-
tative evaluation metrics, we demonstrated that fault-lines
significantly outperform baselines in improving human un-
derstanding of the underlying classification model.
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