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Abstract— Aiming to understand how human (false-)belief—
a core socio-cognitive ability—would affect human interactions
with robots, this paper proposes to adopt a graphical model to
unify the representation of object states, robot knowledge, and
human (false-)beliefs. Specifically, a parse graph (pg) is learned
from a single-view spatiotemporal parsing by aggregating vari-
ous object states along the time; such a learned representation is
accumulated as the robot’s knowledge. An inference algorithm
is derived to fuse individual pg from all robots across multi-
views into a joint pg, which affords more effective reasoning
and inference capability to overcome the errors originated from
a single view. In the experiments, through the joint inference
over pgs, the system correctly recognizes human (false-)belief
in various settings and achieves better cross-view accuracy on
a challenging small object tracking dataset.

I. INTRODUCTION

The seminal Sally-Anne [1] study has spawned a vast
research literature in developmental psychology regard-
ing Theory of Mind (ToM); in particular, human’s socio-
cognition in understanding false-belief —the ability to un-
derstand other’s belief about the world may contrast with
the true reality. A cartoon version of the Sally-Anne test is
shown in the left of Fig. 1: Sally puts her marble in the box
and left. While Sally is out, Anne moves the marble from
the box to a basket. The test would ask a human participant
where Sally would look for her marble when she is back.
In this experiment, the marble would still be inside the box
according to Sally’s false-belief, even though the marble is
actually inside the basket. To answer this question correctly,
an agent should understand and disentangle the object state
(observation from the current frame), the (accumulated)
knowledge, the belief of other agents, the ground-truth/reality
of the world, and importantly, the concept of false-belief.

The prior study suggests that at the age of 4 years old,
children begin to develop the capability to understand false-
belief [2]. Such abilities to ascribe the mental belief to the
human mind, to differentiate belief from the physical reality,
and even to recognize false-belief and perform psychological
reasoning, is a significant milestone in the acquisition of
ToM [3], [4]. Such evidence emerged from developmental
psychology in the past few decades call for integrating such
socio-cognitive aspects into a modern social robot [5].

In fact, false-belief is not rare in our daily life. Two
examples are depicted in the middle and the right of Fig. 1:
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Fig. 1: Left: Illustration of the classic Sally-Anne test [1]. Middle
and Right: Two different types of false-belief scenarios in our
dataset: belief test and helping test.

(i) Where does Bob think his cup1 is after Charlie put cup2
(visually identical to cup1) on the table while Dave took cup1
away? (ii) Which milk box should Alice give to Bob if she
wants to help? The one closer to Bob but empty, or the one
further to Bob but full? Although such false-belief tasks are
primal examples for social and cognitive intelligence, current
state-of-the-art intelligent systems are still facing challenges
in acquiring such a capability in the wild with noisy visual
input (see Related Work for discussion).

One fundamental challenge is the lack of proper repre-
sentation for modeling the false-belief from visual input; it
has to be able to handle the heterogeneous information of a
system’s current states, its accumulated knowledge, agent’s
belief, and the reality/ground-truth of the world. Without
a unified representation, the information across all these
domains cannot be easily interpreted, and the cross-domain
reasoning of the events is infeasible.

Largely due to this difficulty, prior work that takes noisy
sensory input can only solve a sub-problem in understand-
ing false-belief. For instance, sensor fusion techniques are
mainly used to obtain better state estimation by filtering
the measurements from multiple sensors [6]. Similarly, the
Multiple View Tracking (MVT) in computer vision is de-
signed to combine the observations across camera views
to better track an object. Visual cognitive reasoning (e.g.,
human intention/attention predictions [7], [8], [9], [10]) only



targets to model human mental states. These three lines of
work are all crucial ingredients but developed independently;
a unified cross-domain representation is still largely missing.

In order to endow such an ability to understand the concept
of false-belief to a robot system from noisy visual inputs,
this paper proposes to use a graphical model represented by
a parse graph (pg) [11] to serve as the unified representation
of a robot’s knowledge structure, fused knowledge across
all robots, and the (false-)beliefs of human agents. A pg is
learned from the spatiotemporal transition of humans and
objects in the scene perceived by a robot. A joint pg can
be induced by merging and fusing the individual pg from
each robot to overcome the errors originated from a single
view. In particular, our system enables the following three
capabilities with increasing depth in cognition:
1) Tracking small objects with occlusions across different

views. Human-made objects in an indoor environment
(e.g., cups) are oftentimes small with a similar appear-
ance. Tracking such objects could be challenging due to
occlusions with frequent human interactions. The pro-
posed method can address the challenging multi-view
multi-object tracking problem by properly maintaining
cross-view object states using the unified representation.

2) Inferring human beliefs. The state of an object normally
does not change unless a human interacts with it; this
observation shares a similar spirit in human cognition
known as object permanence [12]. By identifying the
interactions between humans and objects, our system also
supports the high-level cognitive capability; e.g., knowing
which object is interacted with which person, whether a
person knows the state of the object has been changed.

3) Assisting agents by recognizing false-belief. Giving the
above object tracking and cognitive reasoning of human
beliefs, the proposed algorithm can further infer whether
and why the person has false-belief, thereby to better
assist the person given a specific context.

A. Related Work

Robot ToM, aiming at understanding human beliefs and
intents, receives increasing research attentions in human-
robot interaction and collaboration [13], [14]. Several false-
belief tasks akin to the classic Sally-Anne test were designed.
For instance, Warnier et al. [15] introduced a belief manage-
ment algorithm, and the reasoning capability is subsequently
endowed to a robot to pass the Sally-Anne test [16] suc-
cessfully. More sophisticated human-robot collaboration is
achieved by maintaining a human partner’s mental state [17].
More formally, Dynamic Epistemic Logic is introduced to
represent and reason about belief and false-belief [18], [19].
These successes are, however, limited to the symbolic-
based belief representations, requiring handcrafted variables
and structures, making the logic-based reasoning approaches
brittle in practice to handle noises and errors. To address this
deficiency, this paper utilizes a unified representation by pg,
a probabilistic graphical model that has been successfully
applied to various robotics tasks, e.g., [20], [21], [22]; it
accumulates the observations over time to form a knowledge
graph and robustly handles noisy visual input.

Multi-view Visual Analysis is widely applied to 3D
reconstruction [23], object detection [24], [25], cross-view
tracking [26], [27], and joint parsing [28]. Built on top

of these modules, Multiple Object Tracking (MOT) usually
utilizes tracking-by-detection techniques [29], [30], [31].
This line of work primarily focuses on combining different
camera views to obtain a more comprehensive tracking,
lacking the understanding of human (false-)belief.

Visual Cognitive Reasoning is an emerging field in
computer vision. Related work includes recovering incom-
plete trajectories [32], learning utility and affordance [33],
inferring human intention and attention [9], [10], etc. As
to understanding (false-)belief, despite many psychological
experiments and theoretical analysis [34], [35], [36], [37],
very few attempts have been made to solve (false-)belief with
visual input; handcrafted constraints are usually required
for specific problems in prior work. In contrast, this paper
utilizes a unified representation across different domains with
heterogeneous information to model human mental states.

B. Contribution
This paper makes three contributions:

1) We adopt a unified graphical model pg to represent and
maintain heterogeneous knowledge about object states,
robot knowledge, and human beliefs.

2) On top of the unified representation, we propose an
inference algorithm to merge individual pg from different
domains across time and views into a joint pg, supporting
human belief inference from multi-view to overcome the
noises and errors originated from a single view.

3) With the inferred pgs, our system can keep track of the
state and location of each object, infer human beliefs, and
further discover false-belief to better assist human.

C. Overview
The remainder of the paper is organized as follows. Sec-

tions II and III describe the representation and the detailed
probabilistic formulation, respectively. We demonstrate the
efficacy of the proposed method in Section IV and conclude
the paper with discussions in Section V.

II. REPRESENTATION

In this work, we use the parse graph (pg)—a unified
graphical model [11]—to represent (i) the location of each
agent and object, (ii) the interactions between agents and
objects, (iii) the beliefs of agents, and (iv) the attributes and
states of objects; see Fig. 2 for an example. Specifically, three
different types of pgs are utilized:
� Robot pg, shown as blue circles, maintains the knowledge

structure of an individual robot, which is extracted from
its visual observation—an image. It also contains attributes
that are grounded to the observed agents and objects.

� Belief pg, shown as red diamonds, represents the inferred
human knowledge by each robot. Each robot maintains the
parse graph for each agent it observed.

� Joint pg fuses all the information and views across a set
of distributed robots.
Notations and Definitions: The input of our system

can be represented by M synchronized video sequences I =
fIk=1::M

t=1::T g with length T captured from M robots. Formally,
a scene R is expressed as

R= f(Ot; Ht) : t= 1; 2; : : : ; Tg;
Ot = foi

t : i= 1; 2; : : : ; Nog;
Ht = fhj

t : j= 1; 2; : : : ; Nhg;
(1)



Fig. 2: System overview. The robotpgs are obtained from each individual robot's view. The jointpg can be obtained by fusing all robots'
pgs. The beliefpgs can be inferred from the jointpg. All the pgs are optimized simultaneously under the proposed joint parsing framework
to enable the queries about the object states and human (false-)beliefs.

whereOt and H t denote the set of all the tracked objects
(No objects in total) and the set of all the tracked agents (Nh
agents in total) at timet, respectively.

Objectoi
t is represented by a tuple: bounding box location

bi
t , appearance feature� i

t , statessi
t , and attributesai

t ,

oi
t = ( bi

t ; � i
t ; si

t ; ai
t ); (2)

where si
t is an index function:si

t = j; j 6= 0 indicates the
objectoi is held by the agenthj at timet, andsi

t = 0 means
it is not held by any agent at timet.

The agenthj
t is represented by its body key-point position

� j
t and appearance feature� j

t

hj
t = ( � j

t ; � j
t ): (3)

Robot Parse Graphis formally expressed as

~pgk
t = f (oi

t ; hj
t ) : oi

t ; hj
t 2 I k

t g; (4)

whereI k
t is the area wherekth robot can observe at timet.

Belief Parse Graphis formally expressed as

�pgk;j
t = f oi

t 0 : oi
t 0 2 I k

t 0g; (5)

where �pgk;j
t represents the inferred belief of agenthj under

robot k's view; t0 is the last time that the robotk observes
the humanhj . We assume that the agenthj only keeps the
objects s/he observed last time in this area in mind, which
satis�es thePrinciple of Inertia: an agent's belief is preserved
over time unless the agent gets information to the contrary.

Joint Parse Graphkeeps track of all the information across
a set of distributed robots, formally expressed as

pgt = f (oi
t ; hj

t : i = 1 ; 2; :::; No; j = 1 ; 2; :::; Nh )g: (6)

Objective: The objective of the system is to jointly
infer all the parse graphsPG = f pg; ~pg; �pgg so that it can
(i) track all the agents and objects across scenes at any time
by fusing the information collected by a distributed system,
and (ii) infer human (false-)beliefs to provide assistance.

III. PROBABILISTIC FORMULATION

We formulate the joint parsing problem as a maximizing
a posterior (MAP) inference problem

PG� = arg max
P G

p(PGjI ) = arg max
P G

p(I jPG) � p(PG); (7)

wherep(PG) is the prior, andp(I jPG) is the likelihood.

A. Prior

The prior termp(PG) models the compatibility of the
robot pgs and the jointpg, and the compatibility of the joint
pg over time. Formally, we can decompose the prior as

p(PG) = p(pg1)
T � 1Y

t =1

p(pgt +1 jpgt )
MY

k=1

TY

t =1

p( ~pgk
t jpgt ); (8)

where the �rst termp(pgt +1 jpgt ) is the transition probability
of the joint pg over time, further decomposed as

p(pgt +1 jpgt ) =
1
Z

expf�E (pgt +1 jpgt )g; (9)

E(pgt +1 jpgt ) =
N oX

i =1

EL o (bi
t +1 ; bi

t ; si
t )+ EST (si

t +1 ; si
t )+

N hX

j =1

EL h (� j
t +1 ; � j

t ): (10)

The second termp( ~pgk
t jpgt ) is the probability which

models the compatibility of individualpgs and the jointpg.
Its energy can be decomposed into three energy terms

p( ~pgk
t jpgt ) =

1
Z

expf�E (pgt ; ~pgk
t )g

=
1
Z

expf�E A (pgt ; ~pgk
t ) �E S (pgt ; ~pgk

t ) �E Attr (pgt ; ~pgk
t )g: (11)

Below, we detail the above six energy termsE( �) in
Eqs. (10) and (11).

Motion Consistency: The termEL measures the mo-
tion consistency of objects and agents in time, de�ned as

EL o (bi
t +1 ; bi

t ; si
t ) =

(
� (D(bi

t +1 ; bi
t ) > � )) if si

t = 0
� (D(� j

t +1 ; � j
t ) > � )) if si

t = j

EL h (� j
t +1 ; � j

t ) = � (D(� j
t +1 ; � j

t ) > � )) ;

(12)

where D is the distance between two bounding boxes or
human poses,� is the speed threshold, and� is the indicator
function. If an objecti is held by an agentj , we use the
agent's location to calculateEL of the object.

State Transition Consistency: The termEST is the
state transition energy, de�ned as

EST (si
t +1 ; si

t ) = � logp(� (si
t +1 = 0) j� (si

t = 0)) ; (13)

where the state transition probabilityp(� (si
t +1 = 0) j� (si

t =
0)) is learned from the training data.

Appearance Consistency: EA measures appearance
consistency. In robotpgs, the appearance feature vector�
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