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Abstract. Many problems in vision can be formulated as Bayesian inference. It is important to determine the
accuracy of these inferences and how they depend on the problem domain. In this paper, we provide a theoretical
framework based on Bayesian decision theory which involves evaluating performance based on an ensemble of
problem instances. We pay special attention to the task of detecting a target in the presence of background clutter.
This framework is then used to analyze the detectability of curves in images. We restrict ourselves to the case where
the probability models are ergodic (both for the geometry of the curve and for the imaging). These restrictions
enable us to use techniques from large deviation theory to simplify the analysis. We show that the detectability of
curves depend on a paramekemvhich is a function of the probability distributions characterizing the problem. At
critical values oK the target becomes impossible to detect on average. Our framework also enables us to determine
whether a simpler approximate model is sufficient to detect the target curve and hence clarify how much information
is required to perform specific tasks. These results generalize our previous work (Yuille, A.L. and Coughlan, J.M.
2000.Pattern Analysis and Machine IntelligenBAMI, 22(2):160-173) by placing itin a Bayesian decision theory
framework, by extending the class of probability models which can be analyzed, and by analysing the case where
approximate models are used for inference.
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1. Introduction knowledge do we need about the task in order to

solve it. Intuitively, if a visual task is easy then we
This paper is concerned with determining the fun- will only need to use a simple model to solve it.
damental limits of visual inference and quantifying But a more difficult task may require a sophisticated
what aspects of a visual task make it easy or hard. model which uses a lot of knowledge about the specific
An important related question is how much prior task.
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Figure 1L Left to right, three detection tasks of increasing degrees of difficulty. The stop sign (left) is easy to find. The gila monster (centre) is
harder. The dalmation dog (right) is almost impossible.

For example, consider the tasks of detecting the three the theory of road tracking developed by Geman and
target objects—stop sign, gila monster, and dalmation Jedynak (1996) but have been unable to get this algo-
dog—from the images in Fig. 1. Intuitively, detecting rithm to work on the domains they are interested in.
the stop sign in the left panel is far easier than detect- An important consequence of the analysis we perform
ing the dalmation dog in the right panel. But can we is thatwe are able to specify precisely when this al-
quantify the relative difficulties of these tasks? And gorithm will work and when it will not based on the
can we determine what precise aspects of the imagestatistical properties of the domaiNoreover, our the-
and the targets makes the task easy or hard? For examery will also help determine how to modify the Geman
ple, it seems likely that the difficulty of detecting the and Jedynak algorithm, to ensure that it does work, by
gila monster (centre panel) is because the texture of thebuilding into it additional knowledge of the domain.
target is very similar to the texture of the background.  To address these issues, we formulate visual tasks
Finally, how much knowledge do we need about the as Bayesian inference, see Knill and Richards (1996),
targets and the background in order to solve the tasks?using Bayesian decision theory (DeGroot, 1970). This
Intuitively, a simple edge detector followed by spatial gives us the necessary concepts for quantifying the dif-
grouping (e.g. a Hough transform) might be sufficient ficulty of visual tasks and for determining fundamental
to detect the stop sign (left panel) but, by contrast, it limits by means of th&ayes riskindeed, as reviewed
seems impossible to detect the dalmation dog (right by the authors (Yuille, Coughlan, Zhu, 2000), most
panel) without knowing something about the shape and work on performance analysis of visual algorithms
texture of dalmations. is either explicitly, or implicitly, formulated in these

At a more practical level, at least two researchers terms, see Fig. 2. This includes Cramer-Rao bounds
(private communications) have been impressed with (Young and Chellappa, 1992; Barron et al., 1994;

Existing Bounds:

Cramer-Rao
Hilbert-Schmidt

R ROC curves
Frequentist/stochastic

Order Parameter K

Figure 2 Decision theory gives performance bounds in terms of the Bayestiskany existing performance bounds can be expressed in
these terms. In this paper, we analyze the Bayes risk for detecting a target curve in clutter and show it depends on an ordeKparameter
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Szeliski and Kang, 1997; Rajagopalan and Chaudhuri, approximate model. An approximate model may be
1998) Hilbert-Schmidt bounds (Grenander et al., used because: (i) we may not know the correct models,
1998), frequentist empirical analysis (Hoover et al., or (ii) it may be more computationally efficient (i.e.
1996; Heath et al., 1997; Bowyer and Phillips, 1998; quicker) to use an approximate model. In this case,
Konishi et al., 1999), and order parameters (Yuille and are concerned with how much prior knowledge about
Coughlan, 1999, 2000). In addition, related techniques the target is required in order to detect Bome detec-
from signal detection theory (Green and Swets, 1988), tion tasks, see Fig. 1, are far more difficult than others
such as the receiver operator characteristic (ROC) depending on the different statistical properties of the
curves have also been used for image analysis and ATRtarget and the background. For some of these tasks low-
(Ratches et al., 1997; Bowyer and Phillips, 1998). level general purpose algorithms will be sufficient to
In this paper, we use Bayesian decision theory to segmentthe target from the background but other tasks,
analyse the performance of models for curve (or road) such as the dalmation dog, appear to require high-level
detection. We assume that the probability models are knowledge about dogs. Our theoretical analysis shows
ergodic (Cover and Thomas, 1991) so that techniquesthatthe paramete#§ change as we use simpler models.
from large deviation theory (Dembo and Zeitouni, We concentrate our study on a specific form of approxi-
1998) can be used to simplify the analysis. These tech- mation, motivated by Minimax Entropy learning theory
nigues can also be applied to analyze related problems(zhu et al., 1997), and compute explicitly the change
such as texture discrimination (Zhu et al., 1997; Wu of K. This helps us determine how much prior knowl-
et al., 2000). edge about the target is required in order to detect it.
We derive a parametek whose value character-  (Our preliminary results on this topic were presented in
izes the difficulty of the problemK is computed from a conference proceedings (Yuille and Coughlan, 1999)
the probability distributions which describe the prob- and applied only to factorizable distributions.)
lem). At critical values of this parameter it becomes  In a previous paper (Yuille and Coughlan, 2000) we
almost impossible to detect the target because it will address different aspects of the same problem for the
be confused by all the curves in the background im- special case of the Geman and Jedynak model (Geman
age clutter. It becomes like looking for a needle in a and Jedynak, 1996) for detecting roads, see Section
haystack. The point is that the chances of confusing 3. We exploited the factorizability of the Geman and
a specificbackground curve with the target curve are Jedynak model to put tight bounds on the probability
very small. But there are so many background curves of successful detection of road targetdiofte size N
that it is possible that one of them may be confused In addition, we were able to provide analysis which
with the target curve. The precise theoretical results are included paths that were partially on and partially off
stated in Sections 3 and 4. They apply in the limit as the the target road (although this analysis included assum-
sizeN of the target curve tends to infinity and they ig- ing a tree representation which has some limitations,
nore curves which are partially on and partially off the see Section 3). In particular, we showed that many
target curve. In some conditions, we can prove mathe- properties of the tasks such as detectability (Yuille and
matically that the Bayes risk has a jump from O (perfect Coughlan, 2000) and expected complexity (Coughlan
detectability) to 1 (perfectindetectability) as the param- and Yuille, 1999) fell off exponentially as2X where
eter K passes through a critical value. In other cases, N is the length of the target road aKdis a parameter.
we prove a weaker result that te&pected numbeof See Section 3 for a more detailed description of how
background clutter curves which can be confused with this previous work overlaps with this paper.
the target curve becomes infinite at this critical value  Inthe next Section 2, we briefly review Bayesian de-
of K. We then use computer simulations to show that cisiontheory and describe how it can be appliedto prob-
the Bayes risk does jump from O to 1 at this critical lems such as target detection. Section 3 describes the
value. We refer to this informally asghase transition Geman and Jedynak model for road tracking (Geman
by analogy to statistical physics (A phase transition is and Jedynak, 1996), briefly summarizes our previous
“a qualitative change in the dynamical properties of a results (Yuille and Coughlan, 2000) and then extends
system of many degrees of freedom due to a change ofthe analysis to deal with situations where we use an
externally controlled parameters” Amit, 1989). approximate model to detect the road and to determine
In addition, we analyze what happens if we at- how much information is required to solve the task. In
tempt to perform Bayes inference using a simpler Section 4 we extend the analysis to deal with a more
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general class of probability models, including those the visual task is easy. In this paper we concentrate on
learnt by Minimax Entropy learning (Zhu et al., 1997), classification tasks, where each observaticontains
and obtain similar results for how much information is a single target and multiple distractors, and the loss
required to solve the curve detection task. function takes value 1 if the target is misclassified and
is O if the target is correctly classified. In some situa-
tions, however, it may be impractical to use the Bayes
estimator (e.g. it may be impossible to compute) so we
may instead compute the expected loss of a different
(usually more easily computable) estimator.

2. Bayesian Decision Theory

Image analysis, like all inference problems, can be ex-

pressed in terms of Bayesian decision theory. In sub- "\ ¢t herformance measures used to evaluate visual
section 2.1 we briefly review decision theory 5 4orithms can be interpreted as being the Bayes risk
(DeGroot, 1970) and in subsection 2.2 we apply itt0 (once the problem has been framed in these terms).
target detection. In other words, the problem is formulated as Bayesian

inference with state variables, probability distributions
2.1. Decision Theory and loss functions. The best estimatdis found and

the Bayes risk evaluated. For classification problems
There is a setl € D decisions, a set of observations the Bayes risk will correspond to the misclassification
z e Z and a set of statese Sof the system observed.  rate (e.g. false positives and false negatives sometimes

We have a prior distributiof®(s), a likelihood func- ~ With certain errors weighted more highly than others).
tion P(z|s), and a loss functioh(d, s) (without loss of Calculating the Bayes risk is often impossible to do
generality we assume that the loss functions never take@nalytically. In the cases we study in this paper, self-
negative values). For any observatipnthe risk (i.e. averaging (or ergodic) properties of the probability dis-
expected loss) is: tributions makes it possible to estimate the Bayes risk
for large systems.
P(z|s)P(s We are also interested in how performance (i.e. the
R(d:2) = / ds(d. S)%- (1) risk) is degraded by using the wrong probability distri-

butions for inference (e.g. because the true probability
For a set of observations drawn frd?z), we define models are unknown). This means that we will not use
a decision rulel = c(2). The risk of the decision rule  the optimal decision rule (because we will pick the de-
involves averaging over the observatiangith respect cision rule appropriate to the wrong distributions) and
to P(2). The expected risk is the loss averaged over all hence our performance will be worse than the Bayes
statess and observationz risk. Intuitively, small errors in the distributions will
only change the decision rule slightly and hence will
R(C) = /dz dsl(c(), s)P(s, 2P(s).  (2) cause performance to degrade by a small amount. A
standard result, the concavity of the Bayes risk, formal-
) ] ] izes this intuition (DeGroot, 1970). However, a more
~ Note that this average is taken with respect to the jnortant situation arises when a simplified probability
joint distribution P(s, z), which we term theBayes gistribution (which may be significantly different from

Ensembleor distribution over all problem instances.  tne trye distribution) is deliberately used for computa-
The strength of Decision Theory is that it allows us to  tjgnal purposes, see Sections 3.4 and 4.5.

determine thaypical performance of inference proce-

dures by averaging over all problem instances of the

Bayes Ensemble, rather than focusing on worst-case2.2. Discriminating A from B

performance measures, which may seldom be relevant

in practice. The first task is to determine whether a sampleas
The Bayes estimatar* is chosen to minimize the  been generated by one of two distributioRg(z) or

risk R(c). The Bayes risk ifR(c*) and is a natural per-  Pg(z). We assume that the sample is equally likely to

formance measure for visual tasks. Note that, provided be generated by modé\ or model B. The penalty

weak technical conditions are satisfied, Begyes risk for misclassification is symmetric so that we pay

is obtained by minimizing equation (1) separately for penalty 1 if a sample fromh is misclassified a8 and

all d andz. Intuitively, if the Bayes risk is low then  vice versa. We pay no penalty if the sample is correctly
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Figure 3. Discriminating betweerPa and Pg. Left panel, the distribution®a(Z) and Pg(Z) whereZ is a two-dimensional vector. Right
panel, plots of the induced distributiof (r) (solid line) andPg(r) (dashed line) as functions of the log-likelihood ratio (or reward) =
log{Pa(2)/Pg(2)}. The induced distributions provide a complete description of the problem of discrimin@grend Pg. Note that this
description is in terms of the log-likelihood ratio, which means that the discrimination problem has been redueeditoensiomegardless
of the dimensionality of. The greater the overlap betweBR(r) and Pg(r), the greater the misclassification rate.

classified. The optimal decision, given these assump- discriminating Pa(z) from Pg(z) (Yuille, Coughlan,
tions, is to use the likelihood ratio test and classify Zhu, 2000), see Fig. 3.

the sample a4\ if log{Pa(2)/Pg(2)} > 0 and asB if it is straightforward to show that IQ@A(r)/
log{Pa(2)/Ps(2)} < 0. The BayesrisiR* is then given Pg(r)) =r for all r. The Bayes risk may then be re-
by summing the probabilities that a samplis gener- expressed in terms of log-likelihood space:

ated by one distributio®a(-) or Pg(-) but is misclas- o
. . . . 1 o0 n 1 n
sified as being generated by the other. More precisely: R — E/O dr Ps(r) + ) [w dr Par).  (5)

1
R == / dz Pg(2) .
2 Jizlog(Pa2)/Ps(2)}>0} 2.3. Targetin Clutter
1
+ 5/ dz Pa(2). (3) To detect a target in clutter, the task is to determine
{z:log{Pa(2)/ Ps(2)} <0}

which of M 4+ 1 samplesz, z, ..., zy is the target.
Without loss of generality we assume thgis the tar-

get so it is generated bRa(zo) and the background
Z1,...,2y is generated by the background distribu-
tion Pg(zi,...,2v). Observe that we are assuming
that the background samples ..., zy arenotnec-
essarily independent. We do, however, assume that
all the distractors have the same marginal distribution

We canre-expressthe Bayes risk completely in terms
of the log-likelihood ratior (z) = log{Pa(2)/Ps(2)},
which we also refer to as thheward function The dis-
tributions Pa(z) and Pg(2) inducedistributions onr
given by the formulas:

A Pa(z .

Pa(r) = /dz Pa(2)6 (r —log P:EZD’ Ps(2). (|.e.Z{Zi:i¢” Pg(z1,...,2zm) = Pg(zj) forall
i=1...,M)

R Pa(2) @) Once again, the expected Id®swill be determined

Pg(r) = /dZ PB(Z)8<r —log PB(Z)>' by the misclassification rate. We define the loss to be 0

when sampléA is correctly identified and to be 1 oth-
erwise. The optimal decision rule (assuming a uniform
prior on which of theM + 1 samples comes from) is

to estimate thaA generates the samplégiven by:

The induced distributionBa(r ) andPg(r ) provide a
complete description of the problemdiscriminating
Pa(z) from Pg(2) (although there are many possible
choices 0fPa(z) and Pg () which give rise to the same Pa(z)
induced distribution®a(r) and Pg(r)). For instance, " i=0..., Pg(z)  "i=0....

Pa(r) andPg (1) uniquely determine the ROC curve for (6)
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Figure 4 Target in clutter: discriminating one sampleRy from many samples dPg. Left panel, the induced distributio (r) andPg (r),
drawn as before, and the distributi®max(r smax) (dash-dot line) of the maximum reward of all tRg samples. This maximum reward will
cause a misclassification error if it is higher than the reward oPtheample. Note thaPgmax(f max) Overlaps more witHPa(r) than Pg(r)

dpes. Right papel, the probability of misclassification can be expressed as the overlap IBwaen) (dashed line), the anti-cumulative of
Pemax(r), andPa(r) (solid line).

To determine the misclassification rate we definetwo and so the danger of misclassification depends on the

random variables: overlap betweePa(r) andCgmax(r ).
For the problems we are interested in, see the next
rA=r).  lemax= e rp, (@) two sections, there is an additional paraméterhich

determines the size of the targ@t (s a positive inte-
ger). We normalize the reward function byyand con-
sider the distribution®a(r /N) andCgmax(r /N). The

where we have assumed, without loss of generality, that
the Oth sample is fronA and the remaining samples

23, ..., Zv arefromPg(). Misclassification will occur structure of the problem (e.g. the ergodicity of the dis-

whenever gnay is larger tham 4. In this sense,gmaxis S Y .

the reward of the most misleading sample fr tributions) means tha®a(r/N) will be sharply peaked

see F;Ig\ll 4 : Y ple frég(), andCpgmax(r /N) will tend to a step function. The Bayes
We induce a probability distributiorPa(ra) on risk will therefore tend to be zero or one depending on

ra as before by requiring that is generated by mhtﬁ?e;;hkeo;ge?r%B)m?ge/g) Is5t0 the right or left
Pa(2). A distribution Pgmax(r max) is also induced on P A ! g. o

b ing thatz ted b Clearly the results depend on the peakedness of the
rPBmaX y requm_rlla_s 'zc;’lé. ie;tfa“é (?rr(;c?len??hz neyt distributions. For the models that we study this can
t\/\?o(zsléc.:'&i.c;nstv)v.e W;ll :jiscusl; how toI comy (l;te it for t);\e be determined using results from the theory of large
roblems of interest) from the formula: P deviations (Demba and Zeitouni, 1998). This will be
P ' described in the following sections.
A _ A very important issue, in the context of this pa-
PBmax(erax)—/ dz,---dzw Pg(z--2u) per, is how the analysis is modified if theferenceis
X 8(Fgmax— Max(r (z1), ..., r(zm))). performed using incorrect probability models. We de-
fine new variables
(8
Let éBmaxA(eraX) be the “arlti”-cumulative distri- s(z) = log QA(Z),
bution of Pgmax(remax), i.€. Cemax(rBmax) = f;:nax Qs
Pemax() dr. (The term “anti”-cumulative is chosen Semax({Zj © j=1.....M}) = max log QA(Zi),
since the limits of integration are non-standard.) Then =L M Qs(z)
the probability of misclassificatiois given by: (10)
R*=Pr(ra <rgma) = /dr PA(r) Pr (r <rgmaY whereQa, Qg are “wrong models” used for inference
instead of the correct modeB,,Pg (i.e. thez; are
_ / dr Pa)Camax(). (9) generated byPa, P as before). Then we induce distri-

butions Qa(s) = Y, Pa(2)8(s — log Qa(2)/Qg(2))
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Ifigure 5 The Phase Transition. In each panel the solid line denéﬁg{s/N) (sharply peaked abouts) and the dashed lines denotes
Cemax(r/N). Left panel shows a large chance of misclassification bedagsgx(r/N) takes a large value negk. The right panel shows a
very small chance of misclassification becaGsghax(r /N) takes small values neak.

and similarly compute the new “anti”-cumulative N limit where the law of large numbers (or the “self-
distributionD gmax(Semax) 0N the best distractor reward. averaging” in physicists’ terminology), makes estimat-

The expected loss is then: ing the expected loss straightforward (see Yuille and
Coughlan (2000), for bounds on how fast the error rates

. A A change as a function of the lengthof the road). We

Ry = / ds Qa(S) Demax(s). (1) will only deal with the difficulty of distinguishing be-

tween the true road path and a set of distractor paths
Once again, for the problems in this pap@a(s/N) which have no overlap .with the road. (Some an'alysis
andDgmax(s/N) will tend to a delta function and a step of the_ case when 'Fhe d!stractor paths overlap with the
function respectively for largt\. The expected risk ~ "0ad is presented in Yuille and Coughlan (2000)).
will be zero, or one, depending on whether the step is 1 NiS paper is not concerned with specific algorithms
to the left or the right of the delta function spike. for solving the problem. In their application domain,
This corresponds to analysing the problem using Geman and Jedynak (1996) demonstrated experimen-
the wrong models. (Recall that the wrong model may tally that their algorithm converged close to the optimal
be used because of either computational ease of in-Solution inlinear expected time (i.@(N)). In related
ference or because the true model is not accurately Work (Coughlan and Yuille, 1999), we described &n A
known). As we will show in the next sections, there algorithm. We proved that, provided the task is solv-
will be situations where the task can be solved (i.e. the @ble, the A algorithm converges to a close approxi-
loss is asymptotically zero) even when the wrong mod- Mation to the MAP estimate with expected complexity
els are used. In other situations, the task can only be ©(N)- (Properties of this algorithm, such as the size of
solved using the correct models. the approximation error and the constants in the com-
plexity results, were given in terms of quantities simi-
lar to the order parameters which we will derive in this
3. Road Tracking section).

In this section we use concepts from Decision theory

to analyse variants of the Geman and Jedynak model3.1. The Geman and Jedynak Model

(Geman and Jedynak, 1996). This model was success-

fully applied to detecting roads from aerial images of Geman and Jedynak formulate road detection as tree

the south of France. search, see Fig. 6, through a Q-nary tree. The start-
We restrict ourselves to the question of whether the ing point and initial direction is specified and there

task can be solved (i.e. is the expected loss sufficiently are QN possible distinct paths down the tree. A road

small?). Our analysis will also show how the difficulty hypothesis consists of a set of connected straight-line

of the problem increases when we use approximate segments calledegmentsWe can represent a path by

models for inference. Our analysis is done in the large a sequence of moveg;} on the tree. Each move
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Figure 66 Geman and Jedynak’s tree structure with a branching
factor of Q = 3. The prior probabilities may express a reference for
certain paths, such as those which are straight.

belongs to aralphabet{a,} of size Q. For example,

pirical probability distributionPon(y; = b,,). Similarly,
they compute the empirical probability distribution
Poit (i =by,) for the filter response evaluated off the
road segments (i.e. the background). (See (7) for exam-
ples of loglikelihoods and see Konishi et al., 1999, for
a detailed survey.) For any patth} through the tree we
have a corresponding set of observatipns$. If theith
segment does lie on the true road theis distributed
by Pon(-) (otherwise byPy(-)). The filter responses
are assumed to be independent for different segments,
see Fig. 7.

As described in Geman and Jedynak (1996), MAP
estimation corresponds to finding the p&th with fil-
ter measurementsy;} which maximizes the (scaled)
loglikelihood ratio:

the simplest case studied by Geman and Jedynak sets

Q = 3 with an alphabed;, a,, a3 corresponding to the
decisions: (i)a,—go straight (0 degrees), (i§,—go
left (—5 degrees), or (iiilpz—go right (+5 degrees).
This determines a path, . . ., Xy in the image lattice
wherex;, X; 1 indicate the start and end points of thie
segment. The relationship between the two representa-
tions is given byxi 1 = Xi + w(X; — Xj_1, tj), where
W(Xi —Xi_1, tj) is a vector of approximately fixed mag-
nitude (7 pixels plus small corrections to ensure that the
segment ends on a pixel) and whose direction depends
on the angle of the movie relative to the direction of
the previous segment — X;_;.

There are some difficulties in mapping this tree rep-

rdti}. {yih)

Z| -

i log P(Y | X) 4 log P(X)
N
— ZlogU(ti)}
i=1

N
Z IOg{ Pon(Yi )/ Poff(Yi )}
i=1

12)

1

P

1 N
N ; log{ Pac(t)/U )}, (13)

resentation onto an image lattice. These will be de- whereU(-) is the uniform distribution (i.eU (t) =

scribed in subsection 3.3 where we describe our com-
puter simulations.
Geman and Jedynak place a prior probability on the

1/Q vt) and SOZ. —11ogU () = —N log Q whichis
a constant. The introduction bf(-) helps simplify the
analysis in the following subsections.

set of paths down the tree. This can be expressed by a

probability distributionP ({t;}) = [/, P(t). For our

Q = 3 example, we may choose to go straight, left or
right with equal probability (i.e.P(a;) = P(ay) =
P(az) =1/3). In a later section, we will consider
first order Markov chain models wheR{{t;}) = P(ty)
[T Ptisalt).

Geman and Jedynak derive their likelihood function
by applying an oriented non-linear filter which is de-
signed to detect straight road segments (by estimating
a quantity related to the image gradient). The filter is
gquantized so that its respongean take one of values
{b,}. The filter is trained on examples of on-road and
off-road segments. For example, for all road segments
(Xi, Xi+1) (for anyi) we align the filter to the segment
and compute its respongeas a function of the image
intensities on the segment (for precise details of the fil-

3.2. Analysis of the Geman and Jedynak Model
Using Sanov’s Theorem

In this subsection, we analyze the performance of the
Geman and Jedynak model from the perspective of de-
cision theory. This analysis is a simplification of the
more extended results (e.g. including partially overlap-
ping paths and bounds for finit¢) which are reported
elsewhere Yuille and Coughlan (2000). Here we con-
centrate only on the qualitative aspects of performance
(i.e. can we detect the road or not).

We assume that we have one samfil¢, {y;} of
measurements generated by the road modeRj£-),
Pac) and we have to distinguish it from a background
of distractor samples generated®y (-), U (-). In addi-

ter see Geman and Jedynak, 1996). This gives an em-tion, we assume that the distractor paths are based on a
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Figure 7. The quantized distribution,, (Left) and Py (Right) for theWI (x)| learnt from image data. Observe that, not surprisin@ly,(xn
is likely to take larger valuesn an edge rather thaoff an edge.

Q-nary tree so that these paths can overlap and are notb,}. For any path{t}, {yi} we can definetwo

independent. This is an approximation to the Geman hlstogram&/f é with components), = Z, 1%t.a,

and Jedynak model where one assumes that one patl{y =1, ..., Q)andg, = % Zi'\‘zl Sy.b, (V= ., J).

on the tree is the road and the ott@¥ — 1 paths are  These histograms amufficient statistics(De Groot,

distractors (see analysis in Yuille and Coughlan (2000). 1970) for the distributionsa(z), Ps(2) (i.e. the dis-

See subsection 3.3 for a discussion of the approxima- trlbutlons Pa(2) and Ps(2) can be expressed &

tions needed to map the tree structure onto the image (v (2), ¢(z)) and fg (¥ (2), $(2)) for functions fa(-)

lattice. and fg(-)). In particular, the (scaled) log-likelihood
To analyze the road detection task from our decision ratio can be expressed as:

theory perspective, see Eq. (9), requires us to compute

Pa(r) andCgmax(r) where A indicates the road path . N —o-d LB

andB the distractor paths. b =a-v+5-4, (13)
For the road detection problem, the variable=

(t,y) wheret = (t3, ..., ty) describes the spatial ge- where we define the two vectots and g8 to have

ometry of the path angl = (yi, ..., yn) are the mea- ~ cOmponentsy, = log G?a(ta;) foru=1...,Qand
surements of the edge detection filters along the path. 8, = log §°;§E§ forv=1,...,J

The probability distributionP(z) and Pg(z) are re- We first determine the behaviour dPa(r) for
placed by: large N. The result is that, for largéN, ISA(r) be-

comessharply peaked about its mean valig =
(r)e, = (1/N)D(Pa||Ps) where D(Pa|Ps)= Y,
Pa(r) log & PA”) is theKullback-Leiblerdivergence be-
(14) tween PA(r) and Pg(r). This result follows from the
law of large numbers which implies that the normalized
sum of a set ol independent identically distributed
(i.i.d.) variables tends to theeanof the distribution
The (scaled) log-likelihood ratiar =(1/N)log asN — oo. Moreover, the distributiorPa(r) falls
Pa(2)/Ps(2) is identical to the criterion, Eq. (13), that  off from its peak value, at =7, exponentially with
Geman and Jedynak seek to maximize. Observe weN. The proof of this second result follows from
havescaledthe log-likelihood ratio by IN so that it Sanov’s theorem, see Appendix A, which is a result
will tend to a finite limit asN +— oo. in the large deviation theory literature. Large deviation
We now introduce an alternative representation theory (Dembo and Zeitouni, 1998) is an area of statis-
for the problem which is crucial for our analy- tics which attempts to put bounds on the probabilities
sis. Recall that the movet and the observations of rare events. Thisresultis important because it means
yi take values within thdinite alphabets{a,} and that weonly need to determine the valuecfbémax(r A)

N
Pa@ = [ | Pon(¥i) Pac (),
i=1

N
Ps(2) = [ | Porr(y)U (t).
i=1
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(becauseﬁA(r) is peaked abotit, for large N). For or- Appendix A. Multiply by QN to obtain the expected

ganizational purposes we state this result as a theoremnumber= e-N{9»)-10aQl of distractor paths with re-
First we introduce the notatioa used in Coverand  wards greater thap. The critical valuey* is the so-

Thomas (1991) to simplify the results derived from lution of the equationg(y) = log Q. See the technical

Sanov’s theorem and to concentrate on the important report for more details. O
aspects. Lek be a variable that take$ distinct val-

ues. Then we say thdt(x; N) = eN9® to mean that A further theorem is required to prove that the max-
there exist polynomial functions dfi, poly,(N) and ~ imum reward of all distractor paths js for largeN.
poly,(N), whose order depends only @h such that We emphasize that a key part of this proof requires that
W}(N) eNI® < f(x; n) < poly,(N) eN9® forallx, N. the distractor paths form a tree structure.

Theorem 1. The mean reward of the road is given by Theorem 3. If the distrqctor paths are defined on a
Q-nary tree thefimy,_, .o Cgmax(r) = Oforr > y*and

Fa = (1/N)D(Pa(r) || Pa(r)) liM N oo Comax(T) = 1forr < y*.
D (Pon || Potr) + D(Pag || U).

Proof:  E[Z(rgmax N)] > Pgmax("ema)  @nd SO

Moreover liM N 0o Pemax(FBmaxy) = O for rgmax > y*. To com-
R plete the proof requires showing that, with high proba-
/  Pa(r) dr = e NO@IRn+DOl Pac)), bility, there exist distractor paths with rewardarbitar-
rir=Talze ily close toy*. This result follows from generalizing a

whereg,, . are chosen so as to minimize(@® || Pon) theorem by Karp and Pearl (1984) and exploits the fact
+ D¢, || Pag) Subject to the constraint théit — r 4| that the distractor paths form a tree. See the technical
> €. report (Yuille et al., 2000) for more details. |
Proof: fa can be computed directly. The remain-  To complete our analysis of the expected loss, see

ing results follow from Sanov’s theorem (Cover and Eq. (9), (asN +— oo) we must determine whether
Thomas, 1991) which we state in Appendix A. The de- s greater than, or less thaf,. Our final theorem of
tails of this derivation are available as a technical report this section gives a simple condition to determine this.
(Yuille et al., 2000). a
Theorem 4. Let K = D(Ponl| Poit) + D(PaglIlU) —
We now consider what is the probability distribu- |og Q. Thenlimy,.« R* = 0if, and only if K > 0.
tion for the best rewardgmax for the distractor paths.
This is done in two stages. The first stage computes Proof: This result follows straightforwardly by ana-
E[Z(y, N)], the expected number of distractor paths lyzing the relative size afa = D (Pon|| Pot) + D(Pac
of length N which have rewards greater thanThis |[U) and y*. See the technical report (Yuille et al.,
also makes use of Sanov’s theorem. The result, see2000) for details. As a first step, it follows directly
Theorem 2, shows that there is a critical vajue The from Sanov’s theorem that the expected number of dis-
precise value of * is given by a set of simultaneous tractor paths with rewards greater thAiG Py, || Por) +
non-linear equations, see Appendix A. D(Pag|U) (the expected reward of the road) is of form
- e—NK_ O
Theorem 2. Let Z(y, N) be the number of dis-
tractor paths of length N with rewards greater than The bottom line is that whether the road is detectable
y and let H-] be the expectation with respect to Or notdepends only on the size of threler parameter

Pg(2). Then there exists a critical value* such that K. (We use the words “order parameter” by analogy to
lIMN o o E[Z(y, N)] = O for y > p* andlimy, parameters in statistical physics.) The order parameter

E[Z(y, N)] = oo for y < y*. increases the more reliable the local cues for detecting

the road are (as measured By Pon(-)| Po(+))) and
Proof: The probability that any one distractor path the more specific the prior knowledge about the road
has reward greater thancan be tightly bounded using  shape is (as measured By Pxg(-) || U (-))). The or-
Sanov’s theorem and shown to be of foee=N9) for der parameter decreases as the number of distractors,
a positive monotonically increasing function-), see as measured b@N, increases. FoK <0 it will be
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Figure 8 Left panel: the tree structure superimposed on the lattice. Right panel: the pyramid structure used in the simulations.

impossible, on average, to detect the road (because thealthough the are 8 possible paths in the pyramid
probability becomes high that at least one distractor (starting at the apex) there are oni}{ + 1) total
path has higher reward than the road). Ros O it will samples from the likelihood function (as againét 3
be possible to detect the road. (Other aspects of thesamples for the tree model). This does not affect the
problem, such as algorithmic complexity (Coughlan proofs of Theorems 1 and 2—so the expected reward
and Yuille, 1999) and error rates for partially overlap- of the road is as stated and tispected number of dis-
ping paths, Yuille and Coughlan, 2000, will depend on  tractor paths with rewards greater than has a phase
the precise value of .) transition aty = y*. But the proof of Theorem 3 de-

pends on the tree structure so @& no longer be sure
3.3. Computer Simulations: From Tree to Pyramid  that the maximum reward of all distractor pattend

to y*. By the first line of the proof, however, we do
The tree representation used by Geman and Jedynakknow that the maximum reward of the distractor paths
must be modified when we map onto an image lattice, cannot exceeg* but it may be lower.
see Fig. 8. The easiest way to do this involves defining  We use computer simulations to estimate the maxi-
a pyramidwhere paths start at the apex and the only mum reward for distractor paths on the pyramid for the
allowable “moves” are: (i) one step down, (ii) one step special case where the prior geometry is given by the
down and one step left, and (iii) one step down and one uniform distribution. Our computer simulations, see

step right. This can be representeddy; = x; +w(t;) Table 1, show that the maximum reward of the dis-
wheret; € {—1,0, 1} andw(—1) = —i— I w(0) = tractor paths is typically slightly smaller thar for
—J,w(l) = +i — | (wherei, | are thex,y directions  a range of different choices n(-), Py (-). This im-

on the lattice). plies that the order parameter obtained by the calcula-

To obtain computer simulations of roads in back- tion onthe trees do need to be increased slightly for the
ground clutter we proceed in two stages. In the first lattice. We observe two trends in our simulations, see
stage, we stochastically sample from the distribution Table 1. Firstly, the shorter the length of the path then
PAc(t) to produce a road path in the pyramid (start- the larger the difference betweer and the empirical
ing at the apex and moving downwards). In the second mean maximum reward. Secondly, the more similar the
stage, we must sample from the likelihood function to distributions,P(-|on) andP (-|off), then the smaller the
generate the image. We make this simple by choosing difference.

our filter responsey to be the intensity variables. So It should be stressed that the calculation for the
if a pixel x is onor off the path (which we generated in  expectednumber of distractor paths with rewards
the first stage) then we sample the intensity) from higher than the mean true path reward is exact for both

the distributionPyn(1) or Py (1) respectively. Dynamic  the lattice and the tree representations. So if the task is
programming is used in each sample image to obtain formulated in this way then performance in both cases
the path with best reward which is the MAP estimate is measured by the same order parameter. It seems more
of the target path. reasonable, however, to evaluate the task difficulty in

There is one critical differences between the lattice terms of the Bayes risk. In which case the order param-
and the tree representations: the distractor paths oneters for the lattice are slightly bigger than those for the
the lattice canseparate and then rejoin each other tree.



20 Yuille et al.

Table 1 Comparison of the Maximum reward of all distractor
paths withy* for the pyramid case.

Emp. mean  Standard
P(-|on) P(. | off) y* N max. reward deviation
(0.4,0.6) (0.6,0.4) 0.3638 20 0.307 0.044
(0.4,0.6) (0.6,0.4) 0.3638 100 0.35 0.01
(0.4,0.6) (0.6,0.4) 0.3638 200 0.353 0.01
(0.4,0.6) (0.6,0.4) 0.3638 400 0.362 0.0032
(0.3,0.7) (0.7,0.3) 0.6182 20 0.46 0.1
(0.3,0.7) (0.7,0.3) 0.6182 100 0.55 0.04
(0.3,0.7) (0.7,0.3) 0.6182 200 0.57 0.02
(0.1,09) (0.9,0.1) 0.34 20 -0.31 0.3
(0.1,09) (0.9,0.1) 0.34 100 -0.1 0.1
(0.1,09) (0.9,0.1) 0.34 400 -0.02 0.05

inference. In this subsection, an early version of which
appeared in a conference proceedings (Yuille and
Coughlan, 1999), we analyze the value of information
lostby using a weaker prior model. (A similar analysis
can be used to investigate the effects of using approxi-
mate models for the likelihood terni(-), Pos (-).)

More precisely, in place of the correbigh-level
geometric modePag n (t) we replace it by a weaker
genericmodel Pog g (t). This defines two different re-
wardsRg andRy:

The first two columns give the Bernouilli distributior®(- | on),

P(-| off) respectively. The third column gives the theoretical cal-
culation ofy* which is the value of the reward at which there is

a phase transition in the expected number of distractor paths. The
fourth column gives the lengtN of the path. Columns five and six
give the empirical mean maximum reward of the distractor paths
(we ran several simulations and computed the mean of the maximum
reward distractor path) and the standard deviation (with respect to
our simulation runs). Observe that the empirical mean maximum re-
wards approacp* quickly for the first two cases, as a function of the
length of the path, but convergence is much slower for the third case
where the distribution® (- | on) and P(- | off) are very different.

This small shift in the order parameter values makes
little change in the ability to detect the true road path.
In our experiments, see Fig. 9, the order paramkter

Pon(Yi P {j
Re(lt) = 3 log g Ey) +3 g AUG(‘;( Page®)
on I P tl
Ry({t) = Zlo (y +Z AS(:'( Pas.n)
(16)

The optimal Bayesian strategy to search for the road
would be to use the high level model and evaluate paths
based on their rewardgy, . But this strategy ignores the
extra computation time which may be involved in using
the prior Pag 1. For examplePag 1 might be a first
or higher order Markov model (see next section) while
Pac.c might be a zeroth order Markov model which
would be easier to search over. (But applying Sanov’s
theoremto a first-order model does require further tech-
nical conditions to hold, see VYuille et al., 2000). Also,
we might not know the exact form d?xg . Perhaps
the most important situation, to be considered in a later

computed on the tree accounts well for whether the true section, is when we can use a single generic model to
road can be detected. The only exceptions occur whensearch for a target which may be one of several differ-

K is negative but with small modulus. In this case, the
shift in the order parameters (from tree to lattice) is
needed.

3.4. High-Low for Geman and Jedynak

ent models. Using a single generic model (provided it
is powerful enough) to detect the road can be signifi-
cantly faster than testing each possible road model in
turn.

In this paper we will be concerned with tienari
condition, which was motivated by results in Amari's

The analysis in the previous two subsections assumedtheory of information geometry (Amari, 1982). This

that we used the correct reward function to perform

condition relates the high-level geometric distributions,

Figure 9 The difficulty of detecting the target path in clutter depends, by our theory, on the order par&mnétee largerK the less
computation required. Left, an easy detection task Wite= 0.8647. Middle, a harder detection task with= 0.2105. Right, an impossible

task withK = —0.7272.
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Pac.H (1), to the generic distributionBag ¢ (t) by: the spike of the distribution of the true path from
D (Pon |l Poit) + D(Pag.+ | U) down to D(Pon || Port)
Z PAG,H (t) |Og PAGAyg(t) + D(PAG.G ” U)
t The analysis of the best distractor path and its com-
_ Pac.c(t) 10g Paga(t). 17 parison to the expectgd reward of the road proceeds as
Xt: hee 9Face a7 before, see the technical report (Yuille et al., 2000) for

details, to yield an order parameteg for the generic

This condition is special in that it allows us to obtain  geometry model which can be contrasted with the or-
analytic expressions for the order parametand an der parameteKy when the high-level model is used.
important connection to the Minimax Entropy Learning This gives:
scheme (Zhu et al., 1997) (as we will describe in the
next section). But it should be emphasized thiater Kn = D(Ponll Pott) + D(Pag.H [|U) —log Q, 19)
parameters can be derived for other condititmsthey
may not have the simple analytic expressions which K = D(Pon |l Pott) + D(Pag,c IIU) — log Q.
arise from the Amari condition.

The analysis of the inference usiRgs y was done
in the previous two subsections. The critical concern
was whether the expected high-level reward for the best
path D (Pon || Pot) + D(Pac. 1 || U) was greater than,
or equal to, loQ.

To deal with the generic model, we find that the ex-
pected reward for the true path using the generic model
is:

It follows from the definition of the Amari condi-
tion thatKy — Kg = D(Pag,H |U) — D(Pag,c IIU)
=D(PagH | Pag,g) (where D(plla)=>_, p(y)
log p(y)/q(y) is theKullback-Leiblerdivergence be-
tween distributionp(y) andqg(y)). Therefore the high-
level prior Pag.n has an order parameter larger by
an amount which depends on the distance between it
andPag.c as measured by the Kullback-Leibler diver-
genceD(Pac 1 || Pac.c)- Recall Yuille and Coughlan
Pon( (1999) that the target detection problem becomes in-

on Y) PAG,G(t) .
Pt (Y) ) ;olvable (by any algorithm) when the order_ parameter
off (Y is less than zero. Hence there are three regimes: (1) The
= D(Pon |l Poft) + D(Pac.c [IU), (18) Ultra Regime see Fig. 10, is wherKg < Ky <0
(i.e. D(Pag.h 1U) + D(Ponll Pot) < logQ) and
where we have used the Amari condition to ob- the problem cannot be solved (on average) by any
tain the second term on the right hand side. Thus model (oralgorithm). (II) Th&€hallenging Regimesee
the effect of changing the model is merely to shift Fig. 11, whereKg <0< Ky (i.e. 10gQ < D(Pag

> Pon(y) log + Y Pach(t) log
y t

Figure 10 The Ultra Regim&Ky < Kg < 0. Left, the inputimage. Centre, the true path is shown in white anertbes of the best path found

using the Generic model are shown in black. Right, similar, for the High-Level model. Observe that although the best paths found are close to
the true path there is comparatively little overlap. A dynamic programming algorithm was used to determine the best solution for either choice
of reward.

PR =

Figure 11 The Challenging RegimkKg < 0 < K. Same conventions as previous figure. Observe that the Generic models fails (centre) but
the High-Level model succeeds (right).
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Figure 12 The Easy Regime @ Kg < K. Same conventions as previous figure. In this regime both the Generic and High-Level models

succeed.

[U) + D(Pon|l Pott) < 109 Q + D(Pac.H |l Pac.c))
within which the problem can be solved by the high-
level model but not by the generic model. (11l) TBasy
Regimesee Fig. 12, wherk ; > Kg > 0 and the prob-
lem can be solved by either the generic or the high-level
model.

We illustrate these results by computer simulations

be a generic prioPg which approximate all these mod-
els{Py,} and which is considered the embodiment of
“cattiness.” (In Section 4.4 we show that approxima-
tion can be nicely formulated in terms of projection in
probability space).

In addition, we consider high-level models defined
by second-order Markov chains. For second order

which use the same setup described in subsection 3.3.Markov models the geometry is no longer i.i.d. but

We show examples of the ultra, the challenging, and the
easy regimes in Figs. 10-12. As before ditectthe
best path we apply a dynamic programming algorithm
to optimize the high-level or generic reward functions
applied to the generated data. Dynamic programming
is guaranteed to find the solution with highest reward.

3.5. Multiple Hypotheses and Higher-Order
Markov Models

We extend the theory to deal with multiple (two or
more) high-level models, see Fig. 13. In particular, we
formulate the idea of a hierarchy in which the priors
for several high-level objects can all be approximated
by the same low-level prior, see Fig. 13. For example,
we might have a set of priofy, :i =1, ..., M} for
different members of the cat family. There might then

AVARRNYA
N

Figure 13  The Hierarchy. Two high-level mode®g H;, Pac,H,
“project” onto a low-level generic modé@lag, g, . In situations with
limited clutter it will be possible to detect eith®g n, or Pac,H,

using the single generic modBhg, g, This idea can be extended

to have hierarchies of projections. This is analogous to the superor-
dinate, basic level, and subordinate levels of classification used in
cognitive psychology.

we can still apply Sanov’s theorem for certain classes
of model. See the technical report (Yuille et al., 2000)
for the details.

The prototypical case for two, or more, high-level
models is illustrated in Fig.14. High-level model
Pac.n, prefers roads which move to the right (see the
white paths in the left hand panels of Fig. 14) while
high-level modelPag 1, likes roads moving to the
left (see white paths in the right panels). Both mod-
els Pag n, and Pag 1, project to the same generic
model Rg.c, by Amari projection, and thus form part
of a hierarchy, see Fig. 13. Our theory again enables
us to calculate order parameters and identify three
regimes: (I) The Ultra Regime where none of the mod-
els (Pac.H,,Pac.h, Or Pag.g) can find the target. (11)
The Challenging Regime where the high-level models
Pac.H,,Pac.H, Can find targets generated IBag 1,
and Pag 1, respectivelybut the generic modePac
cannot find either. (Ill) The Easy Regime where the
high-level models find their appropriate targets and the
generic models find both types of target. Once again,
the best paths for the different rewards was found using
dynamic programming (which is guaranteed to find the
global solution).

In the Easy Regime, little is gained by using
the two high-level models. It may indeed be more
computationally efficient to use the generic model to
detect the target. The target could then be classified as
being Pac. 1, OF Pac. 1, iN @ subsequent classification
stage. We will discuss computational tradeoffs of these
two approaches in the next section.

We now repeat this example using high-level models
Pac.Hs Pac, 1, defined by second order Markov chains,



Order Parameters for Detecting Target Curves 23

N s

3 3 1

Figure 14 Two High-Level modelsPsc H,, Pac,H,. Three sets of four panels for Ultra, Challenging, and Easy regimes (left to right). For
each of the three sets, the data in the left and right columns is generaRaghy, andPac, H, respectively. The lower rows gives the solutions

found by the High-Level modelRxg H, Or Pac,H, as appropriate) and the upper rows give the solutions found by the Generic model with

the true paths (white) and the errors of the best paths (black). Observe that all models give poor results in the Ultra regime (left panel). In the
Challenging regime (centre panel) we get good results for the High-Level models and significantly poorer results for the Generic. The rightmost
panel (same conventions) demonstrate the effectiveness of all models in the Easy regime.
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Figure 15  Two High-Level models second-order Markov modekss H,.Pac,H,- Three sets of four panels for Ultra, Challenging, and Easy
regimes (left to right). For each of the three sets, the data in the left and right columns is generBiegdyand Pag H, respectively. The

lower rows gives the solutions found by the High-Level mod®d|, 1, or Pac,H, as appropriate) and the higher rows give the solutions found

by the Generic model with the true paths (white) and the errors of the best paths (black). Observe that all models give poor results in the Ultra
regime (left panel). In the Challenging regime (centre panel) we get good results for the High-Level models and significantly poorer results for
the Generic. The rightmost panel (same conventions) demonstrate the effectiveness of all models in the Easy Regime.

see Fig. 15. This second order property allows us to 4. Order Parameters

obtain more interesting models. For example, model for Non-Factorizable Models
Pac. 1, generates very wiggly roads (“English” roads)
(see left panel of Fig. 15) while modé,g 1, gen- So far, our results have assumed that the data is gen-

erates roads that have long straight sections with oc- erated by factorizable models which enables us to use
casional sharp changes in direction (“Roman” roads, Sanov’s theorem for our analysis. In this section we use
see right hand panels). It is straightforward to compute more general techniques from large deviation theory to
order parameters for these models (the second-orderanalyze more general distributions.

Markov property requires slight modifications to the We are particularly interested in analyzing the be-
earlier calculations) and, as before, we get order pa- haviour of a more general class of probability distri-
rameters which specify the three standard Ultra, Chal- butions which includes those resulting from Minimax
lenging, and Easy regimes—see Fig. 15. In this figure, Entropy learning (Zhu et al., 1997; Zhu, 1999). This is
we point out a fluke where the high-level modRals , a class of Gibbs distributions which are shift-invariant
correctly found the target even in the Ultra Regime. By and obey certain scaling results (to be described later).
our theory, this is possible though highly unlikely. An-  Each distribution is of form:

other unlikely outcome is shown in the bottom right

panel where thé,g 1, model has detected the target Pz|f) = e NFh@ (20)
to one hundred percent accuracyhis is reflected in zp)

the overall darkness of the panel because, with no black

pixels to indicate errors, our graphics package has al- wherez = (zi, ..., zy) hasN componentsﬁ is a pa-

tered the brightness of the panel (compared to the otherrameter (independent &), h(-) are statistics defined
panels which do contain black errors). Dynamic pro- onz, andZ () is the partition function (a normalization
gramming is used to find the best solutions by global constant). We could, for example, lebe an intensity

optimization. image of sizeN with the{z } being the pixel intensities.
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In this case, the statistics could be the (normalized) his-

tograms of filter outputs over the entire image. Alterna-
tively z might represent the geometry and image filter
values on an image curve.

extension of Sanov’s theorem to non-factorizable dis-
tributions.

Our main result is Theorem 5 which deals with
the expected number of distractor paths with rewards

Our previous results can be obtained as a special casgyreater than the expected reward of the true. The fol-

when the distributiof? (2) is factorizable. More specif-
ically, let 8,,,h,, be the components of the vectgrsh.
Then leth,,(z) = (1/N) Y1V, 8.2 (i.e. the standard
histogram). It is then straightforward to calcul&éz)
from Eq. (20) and show that it is factorizable and equals
]_[iN=l P(z) whereP(z = u) = efx,

The distributionP (z) given by Eq. (20) determines
an induced distribution on tHeature spacef all pos-
sible values of the statistics:

: (21)

Ao . g NF
P(|p) =1en)——=

e
Z(B)

whereQy (h) = {1 : h(l) =h} and|Qy ()] is the size

of this set. LetQ be the number of grayscale levels so
thatthe total number of all possible image®®. Then
|Qn(h)]/QN can be considered to be a normalized
probability distribution onh induced by the uniform
distribution on all images (i.€_j; |§2N(ﬁ)|/QN =1).

As before, we want to analyze the chances of mis-
classification of data generated by models of this form
and, in particular, for curve detection. To do this re-
quires determining the probability of rare events such
as when random alignments of background clutter ap-
pear to look like the target curve.

4.1. Bounds for Log-Likelihood

Discrimination Tasks

In this second, we give results on detection for the new
class of probability models. Our results are weaker than

lowing subsection gives three theorems which are gen-
eralizations to the non-iid case of results obtained by
Yuille and Coughlan (2000) for the i.i.d. case. They are

included here for completeness.

We state the result in this section without proof. The
proofs are given in our technical report (Yuille et al.,
2000) and build on the large deviation theory results of
the previous section.

Theorem 5. Suppose we havé'®9Q samples from
distribution Rs(-) and one sample from &2-). Then
the expected number that have rewbrg Pa(-)/Pg ()
higher than (R)p, is given by eN{d(PallPe)—logQ}
where dPa || Pg) = limy o (1/N)D(Pa || Pg). This
defines an order parameter K d(Pa || Pg) — log Q.

This result is used to determine whether the true
road, the sample fron®,, can be distinguished from
the eN'°9Q distractor paths sampled frofgs. There
is clearly a phase transition @ =d(Pa | Pg). If
d(Pa || Pg) > log Q then we expect there to be no dis-
tractor paths (in the largd limit) with rewards as high
as those from the distractor paths. It should therefore
be possible to detect the true road. On the other hand, if
d(Pa || Pg) < log Q then we expectitto be impossible
to detect the true path.

This result is similar to that we obtained from study-
ing the Geman and Jedynak model, see Section 3. It
is slightly weaker because, like the result for Geman
and Jedynak on the lattice (see subsection 3.3) it can
only determine thexpected numbef distractor paths
with rewards greater than the expected true reward. It

those obtained for thei.i.d case (see previous section) indoesnotdetermine whether tHeest distractor path has

two respects. Firstly, the results agymptotigi.e. they
apply only in the limit adN — oo) and not bounds for

a reward higher than the average true rewgiecall
that the proof of Theorem 3 requires a tree structure for

finite N. Secondly, because the analysis is based on athe distractors).

grid (ratherthan asearch tree) we are unable tocompute We performed computer simulations to investigate
the probability distribution of the best bad path. We the effect of having an unknown starting point and a
are, however, able to obtain results for tiepected more realistic (i.e. non-pyramidal) image lattice. The
number of distractor paths with rewards greater than simulations were performed using ani.i.d. model. They
y. This gives an upper bound for the reward of the best showed, as for Geman and Jedynak on a lattice, that the
distractor path and our computer simulations suggest difference betweep* and the maximum distractor re-
that this upper bound is exact. ward is usually small, see Table 2. As with the pyramid
To obtain our results, we make use of theorems case we observe that the bigger the difference between
from the large deviation theory literature. These are the two distributions the bigger the difference between
described in Appendix B. They can be thought of as y* and the empirical results. We also observed that,



Table 2 Comparison of the maximum reward of all distractor
paths withy * for the lattice case witinknownstarting point.

Emp. mean  Standard
P(-jon)  P(-|off) y* N  max.reward deviation
(0.4,0.6) (0.6,0.4) 0.3638 20 0.399 0.0015
(0.4,0.6) (0.6,0.4) 0.3638 100 0.384 0.0065
(0.4,0.6) (0.6,0.4) 0.3638 400 0.3726 0.003
(0.3,0.7) (0.7,0.3) 0.6182 20 0.74 0.05
(0.3,0.7) (0.7,0.3) 0.6182 100 0.67 0.02
(0.3,0.7) (0.7,0.3) 0.6182 400 0.63 0.01
(0.1,09) (0.9,0.1) 0.34 20 0.48 0.24
(0.1,09) (0.9,0.1) 0.34 100 0.25 0.7
(0.1,09) (0.9,0.1) 0.34 400 0.12 0.03

Conventions as in Table 1. Observe, once again that the empiri-
cal mean maximum rewards approachquickly for the first two
cases, as a function of the length of the path, but convergence is
much slower for the third case where the distributi®ts| on) and

P (- | off) are very different.

in contrast to the case for the pyramid, the empirical
results werdiggerthan the theoretical prediction. We
believe that this is because the starting point of the
path is unknown for the lattice (it is for the pyramid)
and this produces an extra factor which is negligible
in the asymptotic regime but which is significant when
the sizeN of the path is too small for the asymptotic
results to hold.

4.2. Three Related Vision Tasks
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Figure 16 Texture examples, two textures generated by Minimax
Entropy learning distributions.

betweenP, (1) andPg(1). This e-geodesic consists of
all distributions of formP, (1) = PA(1)PE™(1)/Z[A]
where 0< A <1 andZ[)] is a normalization constant.
The Chernoff informatioris defined byC(Pa, Pg) =
D(Py- || Pg) wherer* obeysD (P || Pa) = D(P;+ ||
Pg). The Bhattacharyya boundis defined to
be B(Pa, Pg) =(1/2)(D(Py2 || Pa) + D(Py2 || Ps))
and results ifA. = 1/2. Our results will be summa-
rized in the next section with detailed proofs given in
Yuille et al. (2000).

We now consider three texture tasks which involve
ways of distinguishing between the two textures. Each
task will involve the log-likelihood ratio tesR =

log Pa(1)/Pa(l).

Theorem 6. The negative log probability per pixel
that a sample from g(1) generates a reward R
greater than or equal tq the average rewardR)p,

of a sample from R tends to dPall Pg)
lIMns oo (L/N)D(Pa || Pg) as N +— oo. More infor-
mally Pr(R(1) > (R)p, || drawn from Rs(-)) ~

We now consider three additional visual tasks. These e Nd(PallPs)

tasks were used in Yuille and Coughlan (2000) applied
to distinguish between two different i.i.d. textures. The

The second texture task involves determining

generalization here (see also Wu et al., (2000)) allow whether a samplé is generated by, or Pg.

the results to apply to the realistic textures generated

by Minimax Entropy learning (Zhu et al., 1997), see
Fig. 16.

Theorem 7. The negative log probability per pixel
that a sample from (1) is misclassified as being from

Inthis subsection we are concerned only withimages Pg (and vice versptends to ¢Pa, Ps) = limy- oo

and so we replace by | throughout. Now sup-
pose we have probability distributionBa (I | 84) and
Pg(l |EB), with corresponding potentiaﬁA, BB, see
Eqg. (20) (with same functioﬁ(~)). For concreteness,
the datal can be thought of as being a texture image
but the results are general

The results involve two measures of distance be-

tween probability distributions: the Chernoff informa-

(1/N)C(Pa, Pg) as N+ oo, where QP,, Pg) is the
Chernoff information. P¢R(l) < 0|1 drawn from
Pa(-)) ~ @ Nc(Pa,Ps)

The third texture task involves two texture samples,
one each fromP, and Pg, and requires determining
which is which.

tion and the Bhattacharyya bound. To define Chernoff Theorem 8. The negative log probability per pixel

and Bhattacharyya, we must introduce #igeodesic

that the two samples from aPl) and Rs(l) (one
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from each are misclassified tends to(Ba, Pg) = function is then given by:

lIMNG oo (1/N)B(Pa, Pg) as N~ oo, where BPa,

Pg) is the Bhattarcharyya information. misclassi- 1 55 {NAZ (1)-Re, +-(M—N)B2 -z (1)}

] k P(l | X) = —e*«=1 on on off “Moff 2
fication) ~ e~ Nb(Pa.Ps) (119 z°® - (29)

which we can express in terms of the curve position
4.3. Detecting Curves in Images X1, ..., XN aS:

We now return to the task of detecting curves inimages. P(lX) e T { B (F (1 ) =By (F(1 (Xi)))}’ (24)
The model we use defined directly on the image lattice
(i.e. there is no tree structure). Itis chosen to satisfy the wherep?, ,. B , are the components @t | .
conditions for large deviation theory results to apply,  Thjs gives an overall reward function:
see Eq. (20).

The starting point is now unknown (by contrast to _ .
the pyramid case in Section 3). This does not affect the ROXID = Z.: 109 pxi [Xi-1) + Za: Z
theoretical analysis in the asymptotic limit because the

number of starting points is only polynomial in the x {ﬂg”(Fa(l D) = (ﬂgﬁ(Fa(l (X)))}'

image size (which we take to be a multiple of the target (25)
sizeN).

The target curve position is defined to be = To specify the model uniquely we caither choose
{X1, ..., Xn}. The prior model for the road by (X) = the potentials directlpr use Minimax Entropy learn-

p(x1) [T, p(xi|xi_1) (the prior is chosen to prevent ing (Zhu et al., 1997; Zhu, 1999) fearn the poten-
the curve from ever intersecting itself). In some cases tials from a set of empirical histogram responsége
we extend this to a second order Markov chain prior tried both approaches and noticed no significant differ-

determined by distributions such pgX; X _1, Xi_2). ences in results. Note that because our problem can be
To define the likelihood function we first choose approximated as being one-dimensional, we used a re-
three filters: cursive algorithm to estimate the potentials, as required
by Minimax Entropy learning, instead of the MCMC
FLUo0) = VI -f0 ifx e X, =VI-i methods used by Zhu et al. (1997).

i We obtain order parameters for these models using
. 3 . otrlervwse Theorem 5. But calculating the order parameters re-
F20(x) =VIX AKX ifxeX,=VI-| (22) quired estimating the Kullback-Leibler distances. We
again exploited the one-dimensional structure to com-
F30100) = 1 (%) pute these order parar_nete_zrs recursively. These order
- parameters have contributions both from the geome-
- try and the pixel intensity information, see Yuille et al.
wheref(x), i(x) are the tangent and normal to the curve  (2000) for details. Figure 17 shows the results of simu-
atx, andi, j are the horizontal and vertical unit vectors |ating from the curve model for different distributions.
of the image plane. The curve€hasN pixels and there
are a total oM pixels in the entire image. Inour simu- 4.4, The Wrong Reward Function
lations we typically allowF; to have eight components

otherwise

(i.e. the images have eight grey-level values) B, We now return to the question of what happens if we
are quantized to have six components. have a weak approximate model of the probability
We define{hg,(1), hgs(1):a = 1,2, 3} to be the  (distributions, see subsection 3.4. We are now able to
empirical histograms of the filtef=* 1o = 1,2, 3} generalize our previous results and show how order
evaluatedon-curve and off-curve for an image | parameters change when a weaker model is used.
(wherex labels the filterd=*, F2, . ..). More precisely, In particular, we demonstrate an important con-
hn2(1) = § Xyex 82F(1x) are the components—  nection to Amari's theory of information geometry
indexed byz—of the vectohg,, and similarly forhg, (Amari, 1982) and to Minimax Entropy learning (Zhu
he%, = ww 2_z¢x 8z Fa(1 0y are the components— et al., 1997). The approximations can be viewed as

indexed by z—of the vector ﬁgn. The likelihood projections in probability space (Amari, 1982).
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Figure 17.  (Top) Samples from the Minimax Entropy curve model,

K = 1.00 on left andK = —0.43 on right. (Middle) The true curve
positions for the corresponding samples are shown in white. The
solution path, found by dynamic programming, is in black. Places
where the solution overlaps with the true path are shown in grey.
(Bottom) The true path and the solution fidir = 1.0 (far left, and

left). The true path and the solution f& = —0.43 (right, and far
right). Observe that for positivi, on the left, the solution is very
close to the true path. But K is negative, on the right, then the
solution is very different from the true path—i.e. the task becomes
impossible. The order parameters calculated for the models are con-
sistent with the results. The best paths are determined by optimizing
the reward functions using a dynamic programming algorithm that
does not require known starting point.

Minimax Entropy learning (Zhu et al., 1997)
naturally gives rise to a sequence of increas-
ingly accurate Gibbs distributions by pursuing ad-
ditional features and statistics. The sequefge=
U, P, Py, ..., P« — Pyue (Wherek is the number of
features and statistics included in the moBgl starts
with pg being a uniform distributiobd and approaches
the true distributionPye in the limit ask — oo (Zhu
et al., 1997). The more high-level (i.e. target specific)
the model then the more target specific the statistics.
Conversely, low-level (i.e. general purpose) models
will only use those statistics which are common to
many targets. More precisely, each Gibbs distribution
P, is anAmari projection(Amari, 1982) of the “true”
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Figure 18 The Amari projectionand a sequence of prior models
for animate object shapes by minimax entropy using an increasing
number of feature statistics. See text for interpretation.

distribution Py,e onto the sub-manifoldV;, with P,
being the closest element ®, in M;, in terms of
Kullback-Leibler divergenc® (Pye || P,), see Fig. 18.
Distributions related byAmari projectionwill also sat-
isfy the Amari conditiondescribed in Section 3.4—
i.e.3" Prue(t) log P (t) = 3, P (1) log P, (t). (But the
converse is not true). As shown in Fig. 18, the first
row, from left to right are typical shapes sampled
from three minimax entropy models (Zhu, 1999): a
uniform model, a model matching contour based statis-
tics, and a model matching both contour and region
based statistics.

For simplicity, recall thatin Theorem 6 of subsection
4.2 we gave the probability that a sampléom Pg(-)
has higher reward than the expected reward of a smaple
from Pa(-). Now approximate the distributioRa(-)
by Pi(-). We compute the expected rewe(n@) Pa
D(P4 || Pg) if the data is generated biya(-) and es-
timate the probability that data generated By will
have higher reward. We assume the Amari condition
> Pa(l)logPi(1) = >, Pa(l)logP4(l) and the
additional conditior), log Pe(1){Ps(1) — Pa(1)} =
0 (for example, this is satisfied ®g is the uniform
distribution). More general conditions are described in
Yuille et al. (2000).

Now we ask, what is the probability that we get a
samplel from Pg(-) with rewardR(l) > (R)p,? The
problem can be formulated as in Theorem 6 of the
previous sectionThe only difference is thabecause
(R) p, = D(P4 || Pg), we can replace Rby P; every-
where in the calculation
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We therefore obtain that the probability of error goes
like ~ e~ P(PallPs) This means that the order parame-
ter is higher by an amouri2 (P, || Pg) — D(P; || Ps)
when we use the “correct” reward function. This can
be expressed as:

D(Pall Ps) — D(P4 Il Ps)

P P;
> PAIogP—: = PAIogP—:,

D(Pall Pa) + Y _logPs{P; — Pa},

where we have used the Amari condition Pa
logP; = > P4log P;.

Using the conditiorp _ log Pg{P; — Pa} = O we see
thatthe order parameter increasesliyPa || Pz) when
we use the correct reward functidrhis is precisely the
entropy criterion used in Minimax Entropy learning in
determining the benefit of using an additional statistic

because HP;)—H(Pa) = D(Pa || P3)! This demon-
strates that accurate prior models increase the order
parameters.

4.5. Experimental Curves with Amari Projection

In this section we consider the effects of using

the wrong prior. More specifically, we will consider

two possible geometry prior®y and Pg related

by an Amari projection,) "y P4 (X) logPs(X) =

>« Pa(X)log Ps(X). We call Py (X) the high-level
model and it is used to generate the data (i.e. it is the
“true prior”). By contrast,Pg (X) is called thegeneric
prior (i.e. it is the “wrong prior”).

We will perform inference on the data in two ways.
Firstly, we use the high-level prior in the reward func-
tion (i.e. standard Bayesian inference). Secondly, we
will use the generic prior in the reward function. As
in Section 3.4, the theory predicts there will be three
regimes,ultra, challenging andeasy see caption of
Fig. 19.

In Fig. 20, we consider two high-level models, sec-
ond order Markov chains, which we call roman road
and english road. They are both approximated by the
same generic, first order Markov, road model. We
illustrate the three different regimes.

5. Summary and Conclusions

This paper formulated target detection in terms of

Figure 19 The Challenging regime figure. In thétra regime de-

tection of the curve is impossible even if the high-level model is

used. In thechallenging regimeve will be able to detect the curve if

we use the high-level model bootif we use the generic model. In
the easy regimeboth models are adequate to detect the curve. The

data is shown in the top left square and the true path is shown in the

top right square. The results of estimation using the high-level and

generic models are shown in the left and right middle squares respec-

tively. Their overlaps with the true path are shown in the bottom two

squares (similar conventions to the previous figures). Observe that

the high-level model correctly finds the true path (with a few pixels

of error) but the generic model fails (apart from finding one small
subsection).

be evaluated by the expected loss. We then investi-
gated how much prior knowledge is needed to detect
a target road or curve in the presence of clutter. We
used order parameters to determine whether a target
could be detected using a general purpose “generic”
model or whether a more specific high level model was
needed. At critical values of the order parameters the
problem becomes unsolvable without the addition of
extra prior knowledge. This theory was initially de-

Bayesian inference so that the performance rates canscribed in CVPR’99 (Yuille and Coughlan, 1999) for



Figure 20 Three panels, of two rows each, top to bottom giving
examples of ultra, challenging, and easy regimes. For each panel,
the top row gives a sample generated byanan road mode(left),

the best path found using theman road mode(center), and the
best path found using thgeneric road moderight). Similarly, for

each panel, the bottom row gives a sample generated keyglish

road model(left), the best path found using tleeglish road model
(center), and the best path found usingdkeeric road modelight).

In the ultra regime, top panel, no method works. In the challenging
regime (centre panel), the high-level models (roman and english) find
their targets but the generic models make errors. In the easy regime,
everything works.

the restricted class of factorized probability distribu-
tions.

Our results hold for a class of probablity distribu-
tions which includes those learnt by Minimax Entropy
learning theory (Zhu et al., 1997; Zhu, 1999). This
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generalizes our previous results (Yuille and Coughlan,
2000) on factorizable distributions (which also did not
address the issue of how much prior information is
needed).

The results of this paper were obtained by analysis of
the Bayesian ensemble of problem instances. We antic-
ipate that our approach will generalize to other vision
problems and can be used to determine performance
measures for models in terms of order parameters.

We observe that our results are in a similar spirit to
the theoretical analysis by Tsotsos on the complexity of
visual search (Tsotsos, 1990). Tsotsos uses techniques
from computer science to analyze the complexity of
detecting targets in background. This is very different
from our Bayesian approach and relationship between
these two approaches is a topic for further study.

Hopefully, analysis of the type performed in this
paper can help quantify when high-level knowledge is
needed for visual tasks. This may throw light into the
development of efficient algorithms for segmentation
and recognition.

Appendix A:  Sanov’s Theorem

Sanov’s theorem is the main theoretical tool used to
obtain our results in Section 3. This appendix describes
the theorem and gives examples of how to apply it. We
also give an expression for the functigiy) which
occurs in Theorem 2 and which determines the critical
valuey*. We refer to Yuille et al. (2000) for a detailed
description of how we apply Sanov to prove the results
stated in Section 3.

To describe Sanov’s theorem we need some notation.
The variablexz are quantized so that they can take one
ofasetofl valuesay, ..., a;. Werefertoay, .. ., a;}
as thealphabetandJ as thealphabet sizeA samplez
of N elementg,, ..., zy can berepresented by the his-
togramng, ..., n; of the frequency that each member
of the alphabet occurs (i.gf=1 n; = 1 anda; occurs
n;N times in the sample). There are a finite num-
ber of histograms which can occur and each possible
histogram is called &pe Because the datais i.i.d.
then the probability of it occuring depends only on the
probability of its type (i.e. the ordering of the data is
irrelevant).

Sanov's Theorem. Letz, 2, ..., zy bei.i.d. froma
distribution R(z) with alphabet size J and E be any
closed set of probability distributions. Let @} e BE)

be the probability that the type of a sample sequence
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Figure 21 Left, Sanov’s theorem. The triangle represents the set of
probability distributions Ps is the distribution which generates the

samples. Sanov’s theorem states that the probability that a type, or

empirical distribution, lies within the subsEtis chiefly determined
by the distributionP* in E which is closest tdPs. Right, Sanov’s
theorem for the coin tossing experiment. The set of probabilities
is one-dimensional and is labelled by the probabifyhead of
tossing a head. The unbiased distributignis at the centre, with
Ps(head = 1/2, and the closest element of the Eds P* such that
P*(head = 0.7.
lies in the set E. Then

2-ND(@" || Py) .
= <PripecE
Nipy = @e®

< (N+1)727 0@ IR (26)

Wherecﬁ* = arg miryg D(J; || Ps) is the distribution

in E that is closest to £in terms of Kullback-Leibler
divergence

Sanov'’s theorem can be illustrated by a simple coin

For example, we can apply Sanov’s theorem to de-
termine the probability that a sampérom Pa(z) will
have log-likelihood reward 10§ (z) / Pg (z) which dif-
fers from the mean rewar (P, || Pg) by more than
€. In this case, the s is defined by:

E={¢:l¢p-a—D(Pal Ps)l > el (27)
where the vecto&x has J components lodPa(a)/
Ps(g) fori=1,...,J.

To apply Sanov's theorem, we have to extrem-
ize D(¢ || Pa) subject to the constrainp € E. By
optimization, using lagrange multipliers, we obtain;

PZ(E) (a) Pé-*ll(f) (a)
Z(p(€))

whereZ (1.(¢)) is a normalization constant apde) is
choosen by solving the equation:

P (a) = ; (28)

J
¢ -& — D(Pa| Ps) = Y _¢(a))log Pa(a;)/Ps(a;)
j=1
— D(Pall Ps) = *e (29)
This equation will have two solutions depending on
the sign. We choose the solution for whibt{¢€ || Pa)
is smallest (because this determines the slowest fall-off
rate).
The probability of a deviation from the mean greater
thane is then less than(@ + 1)72-NP@“ IIP») for large
N and so falls to zero exponentially fast. Note that

tossing example, see Fig. 21. Suppose we have a fairlim._,o D(¢¢ | Pa) = 0. In other words, the smaller

coin and want to estimate the probability of observing
more than 700 heads in 1000 tosses. Thek sethe set

of probability distributions for whictP (head > 0.7
(P(head + P(tails) = 1). The distribution generating
the samples i$s(head = Ps(tails) = 1/2 because
the coin is fair. The distribution irE closest toPs

is P*(head = 0.7, P*(tails) = 0.3. We calculate
D(P*|| Ps) = 0.119. Substituting into Sanov’s the-
orem, setting the alphabet side= 2, we calculate
that the probability of more than 700 heads in 1000
tosses is less tharm?'° x (10012 < 2-9°.

To obtain the results of Section 3 requires specify-
ing setsE which corresponds to specific values of the
reward function (e.qg. leE be the set of types such that
the reward of a distractor path is higher than the ex-

the smaller the fall-off factor.

Finally, we give an exact expression for the function
g(y) whichis referred to in Theorem 2 and whose form
determines the critical valye‘. See Yuille et al. (2000)
for the technical derivation aj(y).

The functiong(y) is given by:

9(¥) =y + D@, Il Pon) + Dy [ Pac).  (30)

which is a monotonically nondecreasing functionyof
with:

_ pérﬂy) pé{f“y) . pZ(é)Ul—k(y)
Y Zuy)) Y Zo(M(y))

pected reward of a true path). We then solve the equa-where Z;1(A(y)), Zo(A(y)) are normalization con-

tion $* = arg mir)j;eE D(¢ || Ps) to obtain the fall-off
rate.

Pon(y)

strants and.(y) is chosen so thazy ¢, (y)log Per(y)

log P,
2 Uy (05 =y,
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The expected number of distractor paths with re-  From these Lemmas we can determine directly the

wards greater thary is given by E[Z(y, N)] = probabilities of rare events for lardé. First, observe
2-Nlg-logQl - The critical valuey* occurs when  thatthe form of the induced distribution in feature space
g(y) = log Q. must obey:

Corollary 1. limy,.o & log P(R| ) = s(f) — § -
Appendix B: Large Deviation Theory h— p(B).

The results in Section 4 require techniques from large  This corollary implies that, for larg#l, P(h| ﬂ)

deviation theory (Dembo and Zeitouni, 1998) which eNisW-Ah-p(B) This shows exponential fall-off for

we summarize in this appendix and refer to Yuille etal. largeN.

(2000) for more details. The concavity ofs(h) and hence o$(h) — ﬁ h—
For probability distributions of the form specified p(8) means that oné dominates for largeN. More

by Egs. (20) and (21) the analysis becomes simplified precisely,

as the image, and/or target size, becomes large (Lewis

etal., 1995). Intuitively, this ibecause the probability Corollary 2. limMyseo N Iog P(h eH |ﬂ) = s(h 1)

distribution in feature space becomes peaked as the size— ,3 h* - ,o(ﬂ) where h* = arg ma>g€H{s(h)
increases due to ergodicitiloreover, the theory gives  — 8. h — p(f)}.
results on how fast the distributions become peaked as
N gets large. Recall that the equations are: For example,H could consist of the set of rare
events that would cause misclassification (e.g. by log-
R e-NBh@ likelihood ratio tests) and hencB(h € H |/3)~
Pz|p) = Tg) eNsthi)—Ah—r® says we only need to be concerned

B with thesingle most likely rare eventin }see Fig. 22.
N These results can be used to give asymptotic expres-
zZp) ' sions on the expected loss for visual tasks. They are
therefore generalizations of Sanov’s theorem which we
We first state two limit results from the large devia- used in the previous section for the i.i.d. case. There is,
tion theory literature (Lewis et al., 1995; Griffiths and however, one important distinction. Sanov’s theorem

P(RIA) = |2n®)S

Ruelle, 1971). givestight boundson the expected errors as a function
of the numberN of samples. The results in this sec-
Lemma 1. liMyoa < log mmh)l — s(h), where tion areasymptoticonly (i.e. only valid in the limit of
N - ’

infinite N). This limitation is not a major concern but
it does reduce the power of our results for the non-iid
case.

s(h) < 0is a concave functlon

. -
Lemma 2. IlmN»—>oo v 109 5 (ﬂ) = p(B) where the The results above are expressed in terms of the proba-
“pressuré ,0(,3) is strictly convex bility of observing certain statistics. There is, however,

E
H
H
®p) o PP

Figure 22  The left panel illustrates Corollary 2—each point is a statisfiel is a set of statistics, ar’ranf_I is the dominant statistic ifl. The
right panel uses duality to give the same result expressed in terms of distributions, see Yuille et al. (2000)—each point is a probabilitydistributio
with the setEy of distributions corresponding to the detof statistics, and witkp* corresponding tdiy, .
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a duality between the statistics and the potentials
B (which determine the probability distributions), see
Langford (1973). Corollary 1 says that for any fixéd
there will be a unique valub* of the statistics which
dominate |5(h|,§) for large N. Conversely, for any

value of the statistics we can determine a corresponding
t Grenander, U., Miller, M.1., and Srivastav, A. 1998. Hilbert-Schmidt

B (i.e. by finding the distribution which gets peaked a

this value of the statistics). (There will be uniqueness

up to simple transformations). By using this duality

M. Pellilo and E. Hancock (Eds.), pp. 295-310. Springer-Verlag,
CS 1223.

Geman, D. and Jedynak, B. 1996. An active testing model for tracking
roads in satellite image$EEE Trans. Patt. Anal. and Machine
Intel., 18(1):1-14.

Green, D.M. and Swets, J.A. 1988Hgnal Detection Theory and Psy-
chophysic¢2nd ed.). Peninsula Publishing: Los Altos, California.

lower bounds for estimators on matrix Lie groups for ATREE
Trans. Patt. Anal., and Machine InteR0(8):790-802.
Griffiths, R. and Ruelle, D. 1971. Strict convexity (“continuity”) of

we can re-express these results in terms reminiscent of  the pressure in lattice systen@omm. Math. Phys23:169-175.
Sanov’s theorem such as Kullback-Leibler divergences Heath, M., Sarkar, S., Sanocki, T., and Bowyer, K.W. 1997. A robust

(D(Pall Ps) = Y, Pa(l)log Pa(1)/Pg(1)) between
probability distributions. See Yuille et al. (2000) for
this analysis.
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Note

1. The term “ensemble” is sometimes used to refer to the Iarge
limit (i.e. large systems with many degrees of freedom) but we do
not restrict ourselves to this limit.
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