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Abstract. Textons refer to fundamental micro-structures in generic
natural images and thus constitute the basic elements in early (pre-
attentive) visual perception. However, the word “texton” remains a vague
concept in the literature of computer vision and visual perception, and
a precise mathematical definition has yet to be found. In this article, we
argue that the definition of texton should be governed by a sound math-
ematical model of images, and the set of textons must be learned from,
or best tuned to, an image ensemble. We adopt a generative image model
that an image is a superposition of bases from an over-complete dictio-
nary, then a texton is defined as a mini-template that consists of a varying
number of image bases with some geometric and photometric configura-
tions. By analogy to physics, if image bases are like protons, neutrons
and electrons, then textons are like atoms. Then a small number of tex-
tons can be learned from training images as repeating micro-structures.
We report four experiments for comparison. The first experiment com-
putes clusters in feature space of filter responses. The second use trans-
formed component analysis in both feature space and image patches. The
third adopts a two-layer generative model where an image is generated
by image bases and image bases are generated by textons. The fourth
experiment shows textons from motion image sequences, which we call
movetons.

1 Introduction

Texton refers to fundamental micro-structures in generic natural images and the
basic elements in early (pre-attentive) visual perception[8]. In practice, the study
of textons has important implications in a series of problems. Firstly, decompos-
ing an image into its constituent components reduces information redundancy
and, thus, leads to better image coding algorithms. Secondly, the decomposed
image representation often has much reduced dimensions and less dependence
between variables (coefficients), therefore it facilitates image modeling which is
necessary for image segmentation and recognition. Thirdly, in biological vision
the micro-structures in natural images provide an ecological clue for understand-
ing the functions of neurons in the early stage of biological vision systems[1,13].
However, in the literature of computer vision and visual perception, the word
“texton” remains a vague concept and a precise mathematical definition has yet
to be found.
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One related mathematical theory for studying image components is harmonic
analysis[5] which is concerned with decomposing some classes of mathematical
functions. This includes Fourier transforms, wavelet transforms[4], and recently
wedgelets and ridgelet[5] and various image pyramids in image analysis[14]. In
recent years, there is a widespread consensus that the optimal set of image
components should be learned from the ensemble of natural images. The natural
image ensemble is known to be very different from those classic mathematical
functional classes from which the Fourier and wavelet transforms were originally
derived. This consensus leads to a vast body of work in the study of natural
images statistics and image micro-structures, among which two streams are most
remarkable.

One stream studies the statistical regularities of natural images. This in-
cludes the scale invariance[15], the joint density (histograms) of small image
patches (e.g. 3 × 3 pixels)[10,9], and the joint histogram or correlation of filter
responses[3]. Then probabilistic models are derived to account for the spatial
statistics[7].

The other stream learns over-complete basis from natural images under the
general idea of sparse coding[13]. In contrast to the orthogonal bases or tight
frame in the Fourier and wavelet transforms, the learned bases are highly cor-
related, and a given image is coded by a sparse population in the over-complete
basis. Added to the sparse coding idea is independent component analysis (ICA)
which decomposes images as a linear superposition of some image bases which
minimizes some measure of dependence between the coefficients of these bases[2].

While the over-complete basis presents a major progress in the pursuit of
fundamental image elements, one may wonder what are the image structures
beyond bases. By an analogy to physics, if we compare the image bases in the
sparse or ICA coding to protons, neutrons, and electrons, then what are the
“atoms”, “molecules”, and “polymers” in natural images? How do we learn such
structures from generic images? This paper presents one step towards this goal.

We first examine the generative model in the sparse coding scheme. One basic
assumption under this scheme is that the bases are independent and identically
distributed. To release this assumption, we study the spatial structures of the
bases under a generative model and define a texton as a mini-template that con-
sists of a varying number of image bases with some geometric and photometric
configurations. Like an atom in physics, a couple of bases in the texton have
relatively large coefficients (heavy weights) and thus form the “nucleus” which
is augmented by some bases with small coefficients (light weight) like electrons.
Then a small number of textons can be learned from training images as repeating
micro-structures.

We implement four experiments for comparison. The first experiment com-
putes clusters in feature space of filter responses, as it is done in [11]. This is
a discriminative model. The learned cluster centers are transferred into an im-
age icon by pseudo-inverse. Then a typical image structure may appear multiple
times as different image icons with translation, rotation and scaling. To address
this problem, we did a second experiment which integrates the clustering with
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some affine transform, in an idea of transformed component analysis (TCA)[6].
The number of learned clusters (TCA) is largely reduced, but they lack variabil-
ity. In the third experiment, we adopt a generative model and assume that an
image is generated by a number of bases from an over-complete dictionary, and
the bases are generated by a set of textons. Both the base and texton sets need
to be inferred. Then for each texton, we draw a set of typical examples to show
the variety. In the fourth experiment, we show the learning of texton structure
from motion image sequence. Motion provides extra information for identifying
the basic elements which we call “movetons”

The paper is organized as follows. In Section (2), we first briefly review some
previous work on learning over-complete bases and k-mean clustering. Then
we report two experiments on transformed components analysis in Section (3).
Section (4) presents a generative model for learning textons as mini-templates of
bases, and we also show the learning of textons from image sequences. Section (5)
discusses some future work.

2 Previous Work

In this section, we briefly review two previous work for computing image compo-
nents. One is based on a generative model[13] and the other on a discriminative
model[11].

Fig. 1. Some image bases learned with sparse coding by (Olshausen and Field,1997).

2.1 Sparse Coding with Over-Complete Basis

Let ψ = {ψ�(u, v), � = 1, ..., L} be a set of 2D base functions (kernels or win-
dows), then a dictionary (basis) of local image bases can be obtained by an
orthogonal transform A (translating, rotating, and scaling) in a transform space
ΩA � A,

∆ = {ψ�(u, v;A) : A = (x, y, τ, σ) ∈ ΩA, � = 1, ..., L.}
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The sparse coding scheme[13] and other wavelet transforms[4] are based on
a simple generative image model where an image I is a linear superposition of
some nB bases selected from ∆ plus a Gaussian noise map n,

I =
nB∑
i

αi ·ψi + n, ψi ∈ ∆, ∀i. (1)

We denote the base representation by a base map, each base bj is denoted by its
type �j , coefficient αj and transforms xj , yj , τj , σj .

B(I) = {bj = (�j , αj , xj , yj , τj , σj) : j = 1, 2, ..., nB .}
When ∆ is over-complete, B(I) have to be inferred from image I and a prior
model is crucial for the selection of bases. In all current coding literature, the
bases are assumed to be independently and identically distributed (iid), so

p(B) =
nB∏
j=1

p(bj), p(bj) = p(αj) ·unif�(�j) ·unif(xj , yj) ·unif(τj) ·unif(σj). (2)

�j , xj , yj , τj , σj are assumed to be independently and uniformly distributed.
When p(α) is chosen to have high kurtosis (peaky at zero and heavy tails),
it leads to the sparse coding idea by Olshausen and Field[13]. For example, p(α)
can be a Laplacian distribution or a mixture of Gaussians,

p(α) ∼ exp{−|α|/c} or p(α) =
2∑

j=1

ωjN(0, σj).

Using such priors, Olshausen and Field learned a set of bases ∆ in a non-
parametric form from a large ensemble of image patches. The learning is done
by maximum likelihood estimation and some of the learned bases are shown
in Fig. 1. Such bases capture some image structures and are believed to bear
resemblance to the responses of simple cells in V1 of primates.

2.2 K-Mean Clustering in Feature Space

The other related work in computing image elements was shown by Leung and
Malik who adopted a discriminative model.

For an image I on a lattice Λ, at each pixel (x, y), a pyramid of image filters
D = {F1, ..., FN} at various scales and orientations are convolved with the image.
For illustration, we show the filter pyramid in a cone in Fig. 2. Thus a feature
vector representation is extracted, and we denote it by set F(I)

F(I) = {F (x, y) = (F1 ∗ I(x, y), · · · , Fk ∗ I(x, y)) : ∀(x, y) ∈ Λ}.
If there are local image structures occurring repeatedly in image I, then it is
reasonable to believe that the vectors in set F(I) must form clusters. A K-
mean clustering algorithm is applied in[11]. Because the feature vector over-
constrains a local image patch, a pseudo-inverse can recover an image icon from
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Fig. 2. At each pixel, a pyramid (cone) of filters at various scales and orientations are
convolved with the image to extract a feature vector.

each cluster centers. More precisely, let Fc = (fc1, ..., fcN ) be a cluster center in
the N -dimensional feature space, then an image icon φc (say 15 × 15 pixels) is
computed by

φc = argmin
N∑

j=1

(Fj ∗ φc − fcj)2, c = 1, 2, ..., C. (3)

Fig. 3. Two texture images each with 49 image icons φi, i = 1, 2, ..., 49 for the cluster
centers.

We implement this work and some results are shown in Fig. 3 for C = 49
clusters on two typical texture images. Clearly, the cluster centers capture some
essential image structures, such as blobs for the cheetah skin pattern, and bars
for the crack pattern.

In comparison, though both the generative and discriminative approaches
can compute image structures, they are fundamentally different. In a generative
model, an image I is reconstructed by the addition of a number of nB bases
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where nB is usually in the order of 102 times smaller than the number of pixels.
This leads to tremendous dimension reduction for further image modeling. In
contrast, in a discriminative model, I is constrained by a set of feature vectors.
The number of features is N ∼ 102 times larger than the number of pixels!

While both methods may use the same image pyramid, in the generative
model, the base map B(I) are random variables subject to stochastic inference
and therefore the computation of B(I) can be influenced by other variables in
a bottom-up/top-down fashion if we introduce more sophisticated models on
p(B) as in later section. In contrast, in a discriminative method, the responses
of filters in F(I) are deterministic transforms from the image in a bottom-up
fashion which are fixed in the entire computational process.

The results in Figures 1 and 3 manifest one obvious problem that the poten-
tially same image structure appears multiple times which are shifted, rotated,
or scaled versions of each other. For the sparse coding scheme, this is caused
by cutting natural images into small training patches centered at arbitrary lo-
cations. While in the K-mean clustering method, it is caused by extracting a
feature vector at every pixel.

Fig. 4. The transform component analysis allows translation, rotation, and scaling of
local image features or patches.

3 Learning Transformed Components

A rather straight-forward fix for the problem raised in the previous section is to
introduce transformations as hidden (latent) variables. This is called transformed
component analysis (TCA) in [6] and other neural computation literature.

Suppose we extract from image I a set of n features each with an unknown
transformation A ∈ ΩA,

Γ (I) = {γj(Aj) : Aj = (xj , yj , τj , σj), j = 1, 2, ..., n}.
We call Γ (I) the transformed components of I. In the following, we show two
cases as Fig. 4 illustrates.

Transformed Components in Filter Space

In the first case, we compute a feature vector at each pixel by N filters as
Section (2.2). Typically we use Laplacian of Gaussian (LoG), Gabor sine (Gsin)
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Fig. 5. The learned basic elements φ1, φ2, φ3 for the two patterns are shown by the
small image icons, to the right are label maps associated with these icons.

and Gabor cosine (Gcos) at 7 scales and 8 orientations. Thus N = 7 + 7 ×
8 + 7 × 8 = 119. We subsample the image lattice Λ and select n = |Λ|/δ2
locations evenly with δ = 4 ∼ 8 pixels. We choose only 2 scales of the filter cone
shown by the bold curves in Fig. 4.a. Thus a transformed component γ(A) is an
M = 2+2×8+2×8 = 38 dimensional feature vector. The translation (xj , yj , τj)
corresponds to shift and rotation of the filter cone, and σj is the selection of scale
from the cone, as the arrows in Fig. 4.a show. Therefore, the transform A indeed
corresponds to the selection of filters in the filter cones.

γ(A) = (F1(A) ∗ I, F2(A) ∗ I, ..., FM (A) ∗ I).

Γ poses constraints on the image I by a model p(I|Γ ). We assume that
γj , j = 1, ..., n form a few tight clusters (mixture of Gaussians) after proper
transforms Aj , j = 1, ..., n. These transforms are inferred as hidden variables so
that the transformed components γj , j = 1, 2, ..., n are aligned. Given a training
image Iobs, an EM-algorithm can be used to infer the hidden transforms and
compute the cluster centers. The computation is governed by MLE.

Let (fc1, ..., fcM ), c = 1, ..., C be the cluster centers in the M -dimensional
feature space, we can recover the C image icons φc, c = 1, ...C for the cluster
centers by pseudo-inverse, as it is discussed in the previous section.

Fig. 5 shows C = 3 centers φ1, φ2, φ3 for the cheetah and crack patterns.
The image maps next to each center element φc, c = 1, 2, 3 is a label map where
the black pixels are classified to this cluster. Clearly, the three elements are
respectively: φ1 — the center the blobs (or cracks), φ2 — the rim of the blobs
(or cracks), and φ3— the background. In the experiments, the translation of each
filter cone is confined to within a local area (say 5× 5 pixels), so that the image
lattice are covered by the effective areas of the cone. Without such constraints,
all cones may move to a background pixel to form a single cluster.
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input image foreground elements background elements

Fig. 6. The learned image icons (cluster centers) φ1, φ2 for the three patterns are
shown by the small images, to the left are windows of transformed versions of the
image patches associated with these icons.

Transformed Components in Image Patches

In this experiment, we replace the feature representation by image windows of
11 × 11 = 121 pixels. These windows can move within a local area and can be
rotated and scaled as Fig. 4.b shows. Thus each transformed component γ(A)
is a local image patch. Like the TCA in feature space, these local patches are
transformed to form tight clusters in the 121-space by an EM-algorithm. The
cluster centers φc, c = 1, ..., C are the repeating micro image structures.

Fig. 6 shows the C = 2 centers for the cheetah, crack, and pine cone patterns.
The image maps next to each center element φc, c = 1, 2 is a set of windows which
are transformed versions of the elements. ψ1 corresponds to the blobs, bars, and
contrasts for the three patterns respectively. ψ2 are for the backgrounds.

In summary, the results in Figures 5 and 6 present a major improvement
from those in Figures 1 and 3, due to the the inference of hidden variables for
transforms. However, there are still two main problems which we should resolve
in the next section.

1. The transformed components {γj , j = 1, ..., n} only pose some constraints
on image I, and they lack an explicit generative image model. As a result,
the learned elements ψ�, � = 1, ..L are contaminated by each other, due to
overlapping between adjacent image windows or filter cones, see Fig. 4.

2. There is a lack of variability in the learned image elements. Take the cheetah
skin pattern as an example, the blobs in the input image display deforma-
tions, whereas the learned elements φ1 are round-shaped. This is caused
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by the assumption of Gaussian distribution for the clusters. In reality, the
clusters have higher order structures which should be explored effectively.

Fig. 7. A two-layer base map and textons are groups of bases.

4 Texton Learning: From Bases to Textons

To resolve the problems raised in the previous section, we propose to define
“texton” as a mini-template that consists of a number of bases at some geometric
and photometric configurations.

We adopt the explicit generative model in equation (1) where an image I is
generated by nB bases. B(I) = {bj = (�j , αj , xj , yj , τj , σj) : j = 1, 2, ..., nB .}
B(I) is selected from an over-complete basis ∆ with three base functions ψ =
{ψ1 = LoG, ψ2 = Gcos, ψ3 = Gsin}.

In the previous work, the bases are assumed to be independently distributed,
see equation (2). To go beyond the sparse/image coding scheme, we need a more
sophisticated probabilistic model for p(B) which should account for the spatial
relations between bases in B.

Fig. 7 illustrates a model for the base map B. It is generally true that the
bases B(I) can be divided into two layers. Bases in the upper layer usually have
relatively larger coefficients αj (heavy) and capture some larger image structures.
Bases in the lower layer have smaller αj (light) and relatively higher frequencies.
By an analogy to physics, we call the bases in the upper layer the “nucleus
bases” as they have heavy weights like protons and neutrons, and the bases in
the lower layer the “electron bases” which are light. It is generally observed that
a nucleus base is surrounded by a few electron bases as the arrows in Fig. 7
show. Some bases in the lower level may not be associated with any nucleus
bases, and we call them “free electrons”. Furthermore the nucleus bases may
also form some spatial groups in the upper layer, such as lines and curves, or
other configurations.

Fig. 8 illustrates a real example of star pattern. For clarity, we choose a
pattern where the texton elements are well separable, but this is not a necessary
condition for the theory to work, as we show by examples later. The three bases
and their corresponding symbolic sketches are shown on the left of the figure.
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Fig. 8. Reconstructing a star pattern by two layers of bases. An individual star is
decomposed into a LoG base in the upper layer for the body of the star plus a few
other bases (mostly Gcos, Gsin) in the lower layer for the angles.

The symbolic sketches of the two base layers are shown on the right. In the
bottom row, each layer of the bases generates an image (shown by arrow), and
the reconstructed image is the linear sum of the two images. The residue between
the input and the reconstructed image is assumed to be a Gaussian noise map
n.

The regularity of the pattern is reflected by the organization of the bases.
In this example, the nucleus base for a star is a LoG base, which has up to six
electron bases (one LoG, five Gcos’s) as Fig. 9 shows (leftmost). This forms a
mini-template. The dash link means that this electron base may not appear in
all instances (i.e. it appears with a probability). The right side of Fig. 9 displays
some typical configurations of the texton template and their corresponding image
appearances which are different variations of stars.

Fig. 9. Left: The texton template for the star pattern. Right: A sample of typical
texton instances — the sketches (1st row) and image appearances (2nd row).
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In the following, we explain our augmented generative model for discovering
the textons from images.

Let π = {π1, ..., πk} be k deformable texton templates.1 Usually k ≤ 3 for
an image and each template π�, � = 1, ..., k may include m� bases. For example,
a template with m� = 3 bases is

π = ( (�1, α1, τ1, σ1), (�2, α2, δx2, δy2, δτ2, δσ2), (�3, α3, δx3, δy3, δτ3, δσ3) )

for the types of the three bases, and their relative positions, orientations and
scales. Then a texton instance is a deformed version of one of the k texton
templates. We denote a texton instance by

tj = (�j , αj , xj , yj , τj , σj , (ajq), q = 1, 2, ...,m�j ),

where �j ∈ {1, ..., k} is the type of template, xj , yj , τj , σj are for the transform
of the whole texton, and ajq ∈ {0, 1} indicates whether or not a base appears in
the texton. This introduces a new level of variables called the “texton map” T.

T = {tj , j = 1, 2, ..., nT }

Therefore, an image I is generated by the base map B using some base functions
ψ, and the base map B is then generated by a texton map T using some texton
templates π

T π−→ B
ψ−→ I.

Without loss of generality, suppose we have one training image Iobs, according
to our generative model, the likelihood for Iobs is

p(Iobs;Θ) =
∫

p(Iobs|B;ψ)p(B|T;π)p(T;κ) dB dT

where the latent variables B and T are summed out. p(Iobs|B;ψ) is a Gaussian
distribution for the noise n following equation (1). We divide the nB bases in B
into nT + 1 classes

B = +0 ∪ +1 ∪ · · · ∪ +nT
.

Bases in +0 are free electrons and are subject to the independence distribution
p(bj) in equation (2). Bases in other classes form a deformable template.

p(B|T;π) = p(|+0|)
∏

bj∈�0

p(bj)
nT∏
c=1

p(+c|tc;π�c).

p(T;κ) is another distribution which accounts for the number of textons nT and
the spatial relationship among them. It can be a Gibbs model as in [7] and for
clarity, we assume the textons are independent at this moment.
1 To clarify the notations, we use π for a texton template, ψ for a base function, and
φ for an image icon by various clustering.
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Then the goal is to learn the parameters Θ = (ψ,π,κ) by maximum like-
lihood, or equivalently minimize a Kullback-Leibler divergence between p(I;Θ)
and a underlying probability of images,

Θ∗=(ψ,π,κ)∗ = argminKL(f(I)||p(I;Θ)) = argmax log p(Iobs;Θ) + ε,

=
∫
[
∂ log p(Iobs|B;ψ)

∂ψ
+

∂ log p(B|T;π)
∂π

+
∂ log p(T;κ)

∂κ
]p(B,T|Iobs;Θ)dBdT

ε is an approximation error which diminishes as sufficient data are available for
training. In practice, ε may decide the complexity of the models, and thus the
number of base functions L and template number k. The algorithm for solving
MLE iterates two steps by stochastic gradient, like an EM algorithm, but it is
guaranteed for global convergence.

1. Design a Markov chain Monte Carlo (MCMC) sampler to draw fair samples
of the latent variables from posterior probability for a current Θ,

(B,T) ∼ p(B,T|Iobs;Θ) ∝ p(Iobs|B;ψ)p(B|T;π)p(T;κ).

This includes Metropolis jump dynamics for the death/birth of bases and
textons, the switching of base types and texton types, the assignment of bases
to the classes +c etc., and diffusion dynamics which adjust the positions,
scales, and orientations of bases and textons. The algorithm is initialized by
a matching pursuit method[12] which often yields a very good initial base
map B.

2. Replace the integration by importance sampling, and then adjust the pa-
rameters Θ through MLE. In general, we can learn the base functions ψ, the
texton templates π, and their spatial relation κ. For simplification, we fix ψ
to the Log, Gcos, Gsin bases which are proven to be good enough for many
images.

Beside the running example of the star pattern, we show a few more examples
for the cheetah skin and bird patterns in Fig. 10. For these patterns, the textons
are well isolated, and we have one texton template for cheetah pattern and three
texton templates for bird pattern. The nucleus of the texton is a LoG base,
which is augmented by some electron bases to account for the blob deformations
or bird wings. The texton instances display the variety of image appearances.

To go beyond separable textons, we further group the nucleus bases into
polygons (k-gons). This is in spirit similar to Julesz’s k-gon representation[8].
The difference is that Julesz’s k-gons are based on points (pixels), whereas we
define on bases. The texton templates discussed so far are 1-gon special cases. In
general we can discover k-gon structures by clustering (i.e. improving the model
p(T;κ). Pressed by space limitation, we choose not to discuss the details which is
quite straightforward, and show two examples in Figures 11. The 2-gon for brick
for elongated lines and “L”-shaped turns. The 3-gon for T -shaped junctions. The
k-gons for the straw form aligned bars, or parallel and bifurcation structures.
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Fig. 10. The texton templates for the cheetah (flying bird) patterns, and a sample of
typical texton instances — the sketches (1st row) and image appearances (2nd row)

Fig. 11. The texton templates for the brick and straw patterns. The templates for
k-gon k = 1, 2, 3 and corresponding image appearances.

Finally, we show one example that textons can be learned from motion se-
quence. Fig. 12 reports an experiment that various snow flakes can be tracked
and their shape learned over the motion sequence. The blurred snow scenes make
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the clustering of snow flakes difficult in single image, and the motion provides
much strong cues.

Fig. 12. The texton templates for the snow pattern learned from a movie sequence.
The three types of templates for textons and corresponding image appearances.

5 Discussion

From a series of experiments, we learn that the generative model is a key for
discovering fundamental structures. Texton should be explained as parameter
functions in a generative model. We’d like to answer the following questions to
conclude the paper.
1. Since the image appearance of a texton is a linear sum of some bases, would

this be just equal to the one layer model? No, as shown in the experiments, the
image appearance for a texton is NOT Gaussian distributed. The grouping of
bases into textons accounts for high order statistics and enriches the variety of
elements.
2. What if the image elements are not well separable? In many cases, bases

are combined to form large structures, as atoms are grouped to molecules and
polymers and share electrons. Some k-gon patterns are shown in Fig. 11, and
more examples will be shown on our website http://www.cis.ohio-state.edu/oval.
3. What is next? The base function ψ which should be learned together with

the textons, in particular, for patterns such as hair, water flow etc.
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