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Abstract. In this paper, we present a stochastic algorithm by effective
Markov chain Monte Carlo (MCMC) for segmenting and reconstructing
3D scenes. The objective is to segment a range image and its associated
reflectance map into a number of surfaces which fit to various 3D surface
models and have homogeneous reflectance (material) properties. In com-
parison to previous work on range image segmentation, the paper makes
the following contributions. Firstly, it is aimed at generic natural scenes,
indoor and outdoor, which are often much complexer than most of the ex-
isting experiments in the “polyhedra world”. Natural scenes require the
algorithm to automatically deal with multiple types (families) of sur-
face models which compete to explain the data. Secondly, it integrates
the range image with the reflectance map. The latter provides material
properties and is especially useful for surface of high specularity, such as
glass, metal, ceramics. Thirdly, the algorithm is designed by reversible
jump and diffusion Markov chain dynamics and thus achieves globally
optimal solutions under the Bayesian statistical framework. Thus it real-
izes the cue integration and multiple model switching. Fourthly, it adopts
two techniques to improve the speed of the Markov chain search: One is
a coarse-to-fine strategy and the other are data driven techniques such
as edge detection and clustering. The data driven methods provide im-
portant information for narrowing the search spaces in a probabilistic
fashion. We apply the algorithm to two data sets and the experiments
demonstrate robust and satisfactory results on both. Based on the seg-
mentation results, we extend the reconstruction of surfaces behind oc-
clusions to fill in the occluded parts.

1 Introduction

Recently there are renewed and growing interest in computer vision research
for parsing and reconstructing 3D scenes from range images, driven by new
developments in sensor technologies and new demands in applications. Firstly,
high precision laser range cameras are becoming accessible to many users, which
makes it possible to acquire complex real world scenes like those displayed in
Fig. 1. There are also high precision 3D Lidar images for terrain maps and city
scenes with up to centimeter accuracy. Secondly, there are new applications in
graphics and visualization, such as image based rendering and augmented reality,
and in spatial information management, such as constructing spatial temporal
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databases of 3D urban and suburban maps. All these request the reconstruction
of complex 3D scenes, for which range data are much more accurate than other
depth cues such as shading and stereo. Thirdly, Range data are also needed in
studying the statistics of natural scenes[8] for the purposes of learning realistic
prior models for real world imagery as well as for understanding the ecological
influences of the environment on biological vision systems. For example, a prior
model of 3D scenes is useful for many 3D reconstruction methods, such as multi-
view stereo, space carving, shape recovery from occlusion, and so on.

A): A reflectance map of office A B): A reflectance map of office B

C): A reflectance map of street scene D): A reflectance map of cemetery

Fig. 1. Examples of indoor and outdoor scenes from the Brown dataset. A, B, C and
D are reflectance images IΛ on a rectangular lattice Λ. The laser range finder scans the
scene in a cylindric coordinates and produces panoramic views of the scenes.

In contrast to the new developments and applications, current range image
segmentation algorithms are mostly motivated by traditional applications in rec-
ognizing industry parts in an assembly line. Therefore these algorithms only deal
with polyhedra scenes. In the literature, algorithms for segmenting intensity im-
ages have been introduced or extended to rang image segmentation, e.g., edge
detection[9], region growing methods[5,1] and clustering[6,4]. An empirical com-
parison study was reported jointly by a few groups in [7]. Generally speaking,
algorithms for range segmentation are not as advanced as those for intensity im-
age segmentation, perhaps due to the lack of complex range datasets before. For
example, there is no existing algorithm in the literature which can automatically
segment complex scenes as those displayed in Fig. 1.

In this paper, we present a stochastic algorithm by effective Markov chain
Monte Carlo (MCMC) for segmenting and reconstructing 3D scenes from laser
range images and their associated reflectance maps. In comparison to previous
work on range image segmentation, the paper makes the following contributions.

Firstly, to deal with the variety of objects in real world scenes, the algorithm
introduces multiple types of surface models, such as planes, and conics for man-
made objects, and splines for free-form objects. These surfaces models compete
to explain the range data under some model complexity constraints. The algo-
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rithm also introduces various prior models on surfaces, boundaries, and vertices
(corners) to achieve robust solutions from noisy data.

Secondly, the algorithm integrates the range data with the associated re-
flectance map. The reflectance measures the proportion of laser energy returned
from surface in [0, 1] and therefore carries material properties. It is especially
useful for surface of high specularity, for example, glass, metal, ceramics, and
crucial for surface at infinity, such as the sky, where no laser ray returns. The
range data and reflectance map are tightly coupled and integrated under the
Bayes framework.

Thirdly, the algorithm achieves globally optimal solutions in the sense of
maximizing a Bayesian posterior probability. As the posterior probability is dis-
tributed over subspaces of various dimensions due to the unknown number of
objects and their types of surface models, ergodic Markov chains are designed to
explore the solution space. The Markov chain consists of reversible jumps and
stochastic diffusions. The jump realizes split and merge, model switching, and
the diffusion realizes boundary evolution and competition and model adaptation.

Fourthly, it adopts two techniques to improve the speed of the Markov chain
search. One is a coarse-to-fine strategy which starts with segmenting large sur-
faces, such as sky, walls, ground, and then proceeds to objects of medium sizes,
such as furnitures, people etc, and then small objects such as cups, books, etc.
The other are data driven techniques such as edge detection and clustering. The
data driven methods provide heuristic important information, expressed as im-
portance proposal probabilities [13], on the surface and boundaries for narrowing
the search spaces in a probabilistic fashion.

We apply the algorithm to two datasets. The first is a standard USF polyhe-
dra data for comparison, and the second is from Brown university which contains
real world scenes. The experiments demonstrate robust and satisfactory results.
Based on the segmentation results, we extend the reconstruction of surfaces be-
hind occlusions to fill in the occluded parts.

The paper is organized as follows. We start with a Bayesian formulation in
section (2). Then we discuss the algorithm in Section (3). Section (4) shows the
experiments, and Section (5) discuss some problems and future work.

2 Bayes Framework: Integrating Cues, Models, and
Priors

In this section, we formulate the problem under the Bayes framework with inte-
grated two cues, five families of surface models, and various prior models.

2.1 Problem Formulation

We denote an image lattice by

Λ = {(i, j) : 0 ≤ i ≤ M, 0 ≤ j ≤ N}.
Then two cues are available. One is the 3D range data which is a mapping from
lattice Λ to a 3D point,

D : Λ → R3, D(i, j) = (x(i, j), y(i, j), z(i, j)).



A Stochastic Algorithm for 3D Scene Segmentation and Reconstruction 505

(i, j) indexes a laser ray that is reflected from a surface point (x, y, z). Associated
with the range data is a reflectance map

I : Λ → {0, 1, ..., G− 1}
I(i, j) is the portion of laser energy returned from point D(i, j). G is the total
grey levels in discretization. Thus it measures some material properties. For
example, surfaces of high specularities, such as glass, ceramics, medals, appear
dark in I. I(i, j) = 0 for mirrors and surfaces at infinity, such as the sky. D(i, j)
is generally very noisy and thus unreliable when I(i, j) is low, and is considered
a missing point if I(i, j) = 0. In other words, I and D are coupled at such places.

The objective is to partition the image lattice into an unknown number of
K disjoint regions,

Λ = ∪Kn=1Rn, Rn ∩Rm = ∅ ∀m �= n.
At each region R, the range data DR fit to some surface model with parameter
ΘD and the reflectance IR fit to some reflectance model with parameter ΘI .

Let W denote a solution, then

W = (K, {Rn, (�Dn , �In), (ΘD
n , Θ

I
n) : n = 1, 2...,K}).

�D and �I index the types of surface models and reflectance models.
In the Bayesian framework, an optimal solution is searched for maximizing

a posterior probability over a solution space Ω � W ,

W ∗ = arg max
Ω�W

p((D, I)|W )p(W ).

In practice, two regions Ri, Rj may share the same surface model, i.e. ΘD
i =

ΘD
j and ΘI

i �= ΘI
j . For example, a painting or a piece of cloth hung on a wall,

a thin book or paper on a desk, may fit to the same surfaces as the wall or
desk, but they have different reflectances. It is also possible that ΘD

i �= ΘD
j

and ΘI
i = ΘI

j . To minimize the coding length and to pool information from
pixels over more regions, we allow adjacent regions to share either depth or
reflectance parameters. Thus a boundary between two regions could be labelled
as reflectance boundary, depth boundary, or both.

In the following, we briefly summarize the models for p((D, I)|W ) and p(W ).

2.2 Likelihood with Multiple Surface and Reflectance Models

In the literature, there are many ways for representing a surface, such as implicit
polynomials [1,5], superquadrics [12] and other deformable models. In this paper,
we choose five types of surface models to account for various shapes in natural
scenes.

1. Family D1: planar surfaces specified by three parameters Θ = (a, b, d). Let
(a, b, c) be a unit surface normal with a2 + b2 + c2 = 1, and d is the perpen-
dicular distance from the origin to the plane. We denote by ΩD

1 � Θ as the
space of all planes.
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2. Family D2: B-spline surfaces with 4 control points. Each B-spline surface has
a rectangular grid on reference plane ρ with its two dimensions indexed by
(u, v). Then a grid of h× w control points are chosen on the ρ plane. Then
a spline surface is

s(u, v) =
h∑

s=1

w∑

t=1

ps,tBs(u)Bt(v),

where ps,t = (ηs,t, ζs,t, ξs,t) is a control point with (ηs,t, ζs,t) being co-
ordinates on ρ and ξs,t is the degree of freedom at a point. By choos-
ing h = w = 2, a surface in D2 is specified by 9 parameters Θ =
(a, b, d, δ, φ, ξ0,0, ξ0,1, ξ1,0, ξ1,1). We denote by ΩD

2 � Θ the space of family
D2.

3. Family D3: similarly we denote by ΩD
3 the space for spline surfaces with

9 control points. So a surface in D3 is specified by 14 parameters Θ =
(a, b, d, δ, φ, ξ0,0, ..., ξ2,2).

4. Family D4: This is surface model taken from [11] to fit spheres, cylinders,
cones, and tori. D is specified by 7 parameters Θ = (&, ϕ, ϑ, k, s, σ, τ). We
denote by ΩD

4 � Θ the space of family D4.
5. FamilyD5: This is a non-parametric 3D histogram for the 3D points position.

It is specified by Θ = (hu1 , h
u
2 , ..., h

u
Lu
, hv1, h

v
2, ..., h

v
Lv
, hw1 , h

w
2 , ..., h

w
Lw

), where
Lu, Lv and Lw are the number of bins on u, v, w directions respectively.
This model is used to represent cluttered regions, such as leaves of trees. We
denote by ΩD

5 � Θ the space of family D5.

a b c d

Fig. 2. One typical planar surface in family D1, two typical B-spline surfaces in family
D2 and D3 and one typical surface in family D4 respectively.

Fig 2 displays four typical surfaces, one for each of the first four families.
For the reflectance image I, we use three families of models, denoted by

ΩI
i , i = 1, 2, 3 respectively.

1. Family I1: This is a uniform region with constant reflectance Θ = µ.
2. Family I2: This is a cluttered region with a non-parametric histogram Θ =

(h1, h2, ..., hL) for its intensity with L being the number of bins.
3. Family I3: This is a region with smooth variation of reflectance, modeled by

a B-spline model as in family D3.
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For the surface and reflectance models above, the likelihood model for a
solution W assumes the fitting residues to be Gaussian noise subject to some
robust statistics treatment, so we have

p((D, I)|W ) ∝
K∏

n=1

∏

(i,j)∈Rn

e−φ(D(i,j)−S(i,j;�D
n ,Θ

D
n ))δI(i,j)≥τ)−φ(I(i,j)−J(i,j;�I

n,Θ
I
n)).

In the above formula, φ(x) is a quadratic function with two flat tails to account
for outliers [2] that has been used in the paper. S(i, j; �Dn , Θ

D
n ) and J(i, j; �

I
n, Θ

I
n)

are respectively the fitted surface and reflectance according to model (�Dn , Θ
D
n )

and (�In, Θ
I
n). The depth data D(i, j) is not accounted for if the reflectance I(i, j)

is lower than a threshold τ , i.e δ(I(i, j) ≤ τ) = 0.
To fit the models robustly, we adopt a two-step procedure. Firstly, truncate

points that are less than 25% of the maximum error; Secondly, truncate points
a trough or plateau. Furthermore, the least median of squares method based on
orthogonal distance in [16] has been adopted for the parameters estimation.

2.3 Priors on Surfaces, Boundaries, and Corners

Generally speaking, the prior model p(W ) should penalize model complexity,
enforce stiffness of surfaces, and enhance smoothness of the boundaries, and
form canonical corners.

The prior model for the solution W is

p(W ) = p(K)p(πK)
K∏

n=1

p(�Dn )p(Θ
D
n |�Dn )p(�In)p(ΘI

n|�In).

where πK = (R1, ..., RK) is a K-partition of the lattice. Equally, a partition πK
is represented by a planar graph with K faces for the regions, a number of edges
for boundaries, and vertices for corners,

πK = (Rk, k = 1, ...,K; Γm,m = 1, ...,M ; Vn, n = 1, ..., N)

Therefore, p(πK) =
∏K
k=1 p(RK)

∏M
m=1 p(Γm)

∏N
n=1 p(Vn). We find that some

previous prior model used by Leclerc and Fischler [10] for computing 3D wire-
frame from line drawings is very relevant to our prior model.

1. Model complexity is penalized by three factors. One is p(K) ∝ e−λoK to
penalize the number of regions, and the second includes p(�Dn ) and p(�

I
n) which

prefers simple model. In general, for a model of type �, p(�) is proportional to
the inverse of the space volume, p(�) ∝ 1/|Ω�|. The third is p(Rn) ∝ e−α|Rn|c

with |Rn| being the area (size) of Rn. The third term forces small regions to
merge.

2. Surface stiffness is enforced by p(ΘD
n |�Dn ), n = 1, 2, · · · ,K. Every three

adjacent control points in the B-spline form a plane, and adjacent planes are
forced to have similar normals in p(ΘD

n |�Dn ).
3. Boundary smoothness is enhanced by p(Γm),m = 1, 2, · · · ,M , like the

SNAKE model. p(Γ (s)) ∝ e
∫
φ(Γ̇ (s))+φ(Γ̈ (s))ds.

4. Canonical corners is imposed by p(Vn), n = 1, 2, · · · , N . As in [10] the
angles at a corner should be more or less equal.
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3 Computing the Global Optimal Solution by DDMCMC

Based on the previous formulation, we see that the solution space Ω � W con-
tains many subspaces of varying dimensions. The space structure is typical, and
will be valid even when other classes of models are used in future. In the lit-
erature of range segmentation, many methods are applied, like edge detection
[9], region growing methods [5,1], clustering [6,4], and some energy minimization
method, generalized Hough transforms. But none of these methods can search
in such complex spaces.

To compute a globally optimal solution, we design ergodic Markov chains
with reversible jumps and stochastic diffusions, following the successful work on
intensity segmentation by a scheme called data driven Markov chain Monte Carlo
[13]. The five types of MCMC dynamics used are: diffusion of region boundary,
splitting of a region into two, merging two regions into one, switching the family
of models, and model adaptation for a region.

In a diffusion step, we run region competition [17] for a contour segment
Γij between two regions Ri and Rj . The statistical force sums over both the
log-likelihood ratio of the two cues:

dΓij(s)
dt

= cκ(s)n(s) + log
p(D(x(s), y(s)); (lDi , ΘD

i ))
p(D(x(s), y(s)); (lDj , ΘD

j ))
+ log

p(I(x(s), y(s)); (lIi , ΘI
i ))

p(I(x(s), y(s)); (lIj , ΘI
j ))

.

Since two cues are used here, each region is different from its neighboring
regions by either range cue or reflectance cue or both of them. Thus, in the
splitting process, we can make the proposal about how to split one surface based
on either the range cue or the reflectance one. This adds an extra step before
splitting to select which cue will be used. As to the rest dynamics, they run in
almost the similar way as in [13] with minor changes.

Now we come to the two techniques used to speed up the Markov chain
search.

3.1 Coarse-to-Fine Boundary Detection

In this section, we detect potential edges based on local window information of
the range cue, and trace the edges to form a partition of the lattice. We organize
the edge maps in three scales according to their significances. For example, Fig. 3
shows the edge maps for the office B displayed in Fig. 1. These edge maps are
used at random to suggest possible boundary Γ for the split and merge moves.
Indeed, the edge maps encode some importance proposal probabilities for the
jumps. Not using such edge maps is equivalent to use a uniform distribution for
the edges, which obviously is inefficient. Refer to [13] for the details of how edge
maps are used in designing jump. Here we deliberate on how the edge maps are
computed.

At each local window, say a 5 × 5 patch ω ⊂ Λ, we have a set of 3D points
pi = D(m,n) for (m,n) ∈ ω. One can estimate the normal of this patch by
computing a 3× 3 scatter matrix S [4].
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scale 1 scale 2 scale 3

Fig. 3. Computed edge maps based on the range cue at three scales for the office scene
B in Fig. 1.

S =
∑

i

(pi − p̄)(pi − p̄)T .

Then the eigen vector n = (a, b, c) that corresponds to the smallest eigen value
λmin of S is the normal of this patch ω. λmin is a measure of how smooth the
patch is. A small λmin means a planar patch. The distance of the origin to this
patch is the inner product between the unit normal and the center point p̄, that
is, d = n · p̄.

Then an edge is detected by discontinuity of (a, b, d) in adjacent pixels using
standard technique, and each point is associated with an edge strength measure.
We threshold the edge strength at three levels to generate edge maps which are
traced with heuristic local information. We also apply standard edge detection
to the refelectance image and obtain edge maps on three scales. These edge
maps from the two cues are not reliable results by themselves for segmentation,
but they provide important heuristic information for driving jumps of Markov
chains.

3.2 Coarse-to-Fine Surface Clustering

As the edge maps encode importance proposal probabilities for boundary, we
compute importance proposal probabilities on the parameter spaces ΩD

1 , ΩD
2 ,

ΩD
3 , ΩD

4 and ΩD
5 respectively.

In edge detection, each small patch ω ⊂ Λ is characterized by (a, b, d, p̄, λmin).
Therefore, we collect a set of patches,

Q = {ωj : j = 1, 2, ..., J}.
In practice, we can discard patches which have relatively large λmin, i.e. patches
that are likely on the boundary. We also use adaptive patch sizes. We cluster
the patches in set Q into a set of C hypothetic surfaces

C = {Θi : Θi ∈ ΩD
1 ∪ΩD

2 ∪ΩD
3 ∪ΩD

4 ∪ΩD
5 , i = 1, ..., C.}

The number of hypothetic clusters in each space is chosen to be a conservative
number and the clusters are computed in a coarse-to-fine strategy. That is, we
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Ceiling Floor Wall 1

Wall 2 Wall 3 Wall 4

Fig. 4. Computed saliency maps for six clusters of office B at a coarse scale, which fit
surfaces of big areas.

extract clusters of large “populations” which usually correspond to large objects.
Then we compute clusters for smaller objects. It is straight forward to do an EM
algorithm that classifies the patches in S and also compute the clusters in C.
Thus we obtain a probability for how likely a patch ωj belongs to a surface with
parameter Θi, we denote it by q(Θi|ωj) and

∑
i q(Θi|ωj) = 1,∀j = 1, ..., J . We

call q(Θi|ωj) for all i = 1, ..., J the saliency map - a term often used by psycho-
physicists. A saliency map of a hypothetic surface Θi tells how well pixels on
the lattice fit (or belong) to the surface. For example, Fig. 4 shows six saliency
maps for six most prominent clusters in the office view B of Fig. 1. A bright
pixel means high probability. The total sum of the probability over the lattice
is a measure of how prominent a cluster is.

In our experiments, large surfaces are clustered first, as it is indicated in
Fig. 4, the six most prominent clusters represents the ceiling, floor and four
walls of the office scene. Other small objects, such as tables, and books do not
fit well. As Fig 4 shows, many small objects do not light up in the saliency map.
Thus in a coarse to fine strategy, we fit such patches at finer scale. Fig 5 shows
the saliency maps of five additional clusters for a small part of the scene Λo ⊂ Λ.
This patch is taken from the office B scene in Fig 1.

4 Experiments

4.1 The Datasets and Preprocessing

We test the algorithm on two datasets. The first one is the standard Perceptron
LADAR camera images in the USF dataset. These images contains polyhedra
objects and the objects have almost uniform sizes. The second one is Brown
dataset, where images are collected with a 3D imaging sensor LMS-Z210 by Riegl.
The field of view is 800 vertically and 2590 horizontally. Each image contains
444× 1440 measurements with an angular separation of 0.18 degree.
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window background a PC box on desk chair backs books on desk

Fig. 5. Computed saliency maps for five clusters in a finer scale for some smaller
surfaces which do not light up in the coarse scale (above). The saliency maps are
shown in a zoom-in view of a patch in the office B picture.

In general, range data are contaminated by heavy noise. Effective preprocess-
ing must be used to deal with all types of errors presented in the data acquisition,
while preserving the true discontinuities. In our experiments, we adopt the least
median of squares (LMedS) and anisotropic diffusion [14] to preprocess the range
data. LMedS is related to the median filter used in image processing to remove
impulsive noise from images and can be used to remove strong outliers in range
data. After that, the anisotropic diffusion is adopted to handle the general noises
while avoiding the side effects caused by simple Gaussian or diffusion smoothing,
like the decreasing of the absolute value of curvature and smoothing of orienta-
tion discontinuities into spurious curved patch. Fig. 6 shows a surface rendered
before and after the preprocessing.

a) b)

Fig. 6. Surface rendered for a range scene by OpenGL. a) before and b) after prepro-
cessing.

4.2 Results and Evaluation

Our results on the Florida dataset are shown in Fig. 7. We also show the 3D
scenes by OpenGL. These 3D scenes are reconstructed by completing the surfaces
behind the occluding objects. For comparison, we also show in Fig. 7 a manual
segmentation used in [7]. It is no surprise that the algorithm can parse such scene
very well, because the image models are sufficient to account for the surfaces in
the dataset.
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segmentation result reconstruction result manual segmentation

Fig. 7. Our segmentation and reconstruction results and the corresponding manual
segmentation from [7] of Florida data set.

The results on the Brown dataset are shown in Fig. 8 and Fig. 9 respectively.
Fig. 8 shows the segmentation results of two parts from office scene A and two
parts from the outdoor scene C and D in Fig. 1 respectively. Fig. 9 shows the
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Fig. 8. Segmentation results for two parts of scene A and one part of scene C, D
respectively in Fig. 1 and the corresponding manual segmentation.

segmentation result of the most complicated part of office scene B in Fig. 1. Since
there is no segmentation benchmark available for such kind of complex scenes
we used here, we ask several candidates to manually segment these scenes and
show the average results in the above figures for comparison. The reconstruction
scene based on the segmentation result shown in Fig. 9 is presented in Fig. 10.

Range image is often incomplete due to partial occlusion or poor surface
reflectance. This can be clearly seen from Fig. 6, in which the floor and the two
walls have a lot of missing points. Analysis and reconstruction of range images
usually focuses on complex objects completely contained in the field of view;
little attention has been devoted so far to the reconstruction of simply-shaped
wide areas like parts of wall hidden behind furniture and facility pieces in the
indoor scene shown in Fig. 6 [3]. In the reconstructing process, how to fill the
missing data points of surfaces behind occlusions is a challenging question. The
completion of these depth information needs higher level understanding of the
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Fig. 9. Segmentation result of the most complicated part of scene B in Fig. 1 and the
corresponding manual segmentation.

Fig. 10. The reconstructed scene based on the segmentation result shown in Fig. 9.
To give the user a better view, we remove some furnitures around the table in the
reconstructed scene. We also insert a polyhedral object extracted from the Florida
dataset to show that our segmentation result can be easily used in scene editing.
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3D models, for examples, expressed in terms of meaningful parts. To solve this
problem, an algorithm also shall make inference about two things: 1). The types
of boundaries as crease, occluding, and so on. 2). The ownership of the boundary
to a surface. In our reconstruction procedure, we only use a simple prior model
to recover the missing parts of the backgrounds (like the walls and the floor)
by assuming they are rectangles. Since we can obtain the needed parameters
to represent these rectangles from the segmentation result, it is not difficult to
fill the missing points. Although this procedure is pretty simple, it illustrates
that our segmentation result provides a solid foundation for continuing work in
this direction. Moreover, our segmentation result can also be directly applied to
scene editing, which is illustrated in Fig. 10.

5 Future Work

The experiments reveal the difficulty to segment degenerated regions which are
essentially one-dimensional, such as the cables and rail in doorway (Fig. 8). Thus,
more sophisticated models will be integrated in future work. We should also
study a more principled and systematic way for grouping surfaces into objects
and completing surfaces behind the occluding objects.
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