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Abstract. Natural scenes consist of a wide variety of stochastic pat-
terns. While many patterns are represented well by statistical models
in two dimensional regions as most image segmentation work assume,
some other patterns are fundamentally one dimensional and thus cause
major problems in segmentation. We call the former region processes and
the latter curve processes. In this paper, we propose a stochastic algo-
rithm for parsing an image into a number of region and curve processes.
The paper makes the following contributions to the literature. Firstly,
it presents a generative rope model for curve processes in the form of
Hidden Markov Model (HMM). The hidden layer is a Markov chain with
each element being an image base selected from an over-complete basis,
such as Difference of Gaussians (DOG) or Difference of Offset Gaussians
(DOOG) at various scales and orientations. The rope model accounts
for the geometric smoothness and photometric coherence of the curve
processes. Secondly, it integrates both 2D region models, such as tex-
tures, splines etc with 1D curve models under the Bayes framework.
Because both region and curve models are generative, they compete to
explain input images in a layered representation. Thirdly, it achieves
global optimization by effective Markov chain Monte Carlo methods in
the sense of maximizing a posterior probability. The Markov chain con-
sists of reversible jumps and diffusions driven by bottom up information.
The algorithm is applied to real images with satisfactory results. We
verify the results through random synthesis and compare them against
segmentations with region processes only.

1 Introduction

Natural images consist of a wide variety of stochastic visual patterns. As an
example, Figure 1 illustrates how an image is decomposed into point, line, curve
processes, regions of coherent color and textures, and objects. Parsing an image
into its constituent components is a fundamental problem in image understand-
ing. It augments the current pixel-based image representation to a semantic
object-based description, and thus has broad impacts on many applications, in-
cluding image compression, photo editing, image database retrieval, object recog-
nition in vision, and non-photo-realistic rendering (NPR) in graphics. Solving
the image parsing problem needs 1). a number of types of probabilistic models
which can characterize various visual patterns and are compatible (or compara-
ble) with each other, and 2). inference algorithms which can effectively handle
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a). A color image b). A point process c). A curve/line process

d). A color region e). 2 texture regions f). Faces and words

Fig. 1. An example of image parsing and decomposition.

different types of probabilistic models and achieve globally optimal solution.
These are general topics of this paper.

In the literature, image segmentation work usually assume that images con-
tain regions of homogeneous properties, such as textures, textons (attributed
points), colors, and shading. While many visual patterns are represented well by
such 2D models, there are many other visual patterns which are fundamentally
one dimensional and thus cause major problems in segmentation. For example,
see those lines, trees, grids in Figures 6,8, and 10. We call the 2D patterns region
processes and 1D patterns curve processes.

In this paper, we propose a stochastic algorithm for parsing an image into
a number of region and curve processes. The paper makes contributions in the
following aspects.

Firstly, it presents a generative rope model for curve patterns. The rope
model is in the form of hidden Markov model. The hidden layer is a chain of
connected knots. Each knot has 1-3 image bases selected from an over-complete
basis[9], such as DOG (difference of Gaussians) or DOOG (difference of offset
Gaussians) at various scales and orientations. The Markov model accounts for
not only the geometric smoothness as in the SNAKE[10] or Elastica models[8],
but also the photometric coherence along the curve.

Secondly, it integrates both 2D region and 1D curve models for image parsing.
We adopt a generative image model which represents an image I as a superpo-
sition of two layers I = Ir + Ic. Ir is partitioned into disjoint regions and Ic

is a linear sum of some image bases which are grouped into curves. The algo-
rithm consists of two parts. Part I is image segmentation on Ir, and this is done
by a recent data driven Markov chain Monte Carlo (DDMCMC) algorithm[11].
Part II infers the curves patterns from Ic, and is the main focus of this paper.
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By virtue of the generative image models, the cooperation of the two parts is
governed in the posterior probability.

Thirdly, it achieves global optimization by effective Markov chain Monte
Carlo. Due to the use of different families of models, the solution space consists
of many subspaces of varying dimensions. Therefore the Markov chain consists
of reversible jumps[4,5] and stochastic diffusions to explore the complex solution
space. The jump dynamics realize the death/birth, split and merge of regions and
curves, the switching of models, and so on, while the diffusion process realizes
region growing/competition[12], and curve deformation[10].

The algorithm is applied to a set real images and some results are shown
in Figures 8 and 10 . We verify the results through random synthesis from the
computed solution and compare the results against segmentations with region
process only.

We organize this paper as follows. We first formulate the problem in Section
2. The Section 3 briefly overviews the region models used by region processes.
Section 4 discusses the rope model for curve patterns. Section 5 discusses the
structure of the solution space. Then we present the integrated algorithm in
Section 6. Some experiments are shown in section 7. We conclude the paper
with a discussion in section 8.

2 Problem Formulation in Bayes Statistics

Let Λ = {(i, j) : 1 ≤ i ≤ L, 1 ≤ j ≤ H} be an image lattice, and I be an
intensity image defined on Λ. We assume that the image I is a superposition of
two layers,

I = Ir + Ic, (1)

where Ir and Ic are called region layer and curve layer respectively.
We assume that the region layer Ir consists of a number ofKr disjoint regions

which form a partition of the lattice Λ.

∪Kr

i=1Ri = Λ, Ri ∩Rj = ∅, ∀i �= j.

Let IrR denote the image intensities in a region R, and a region is said to be
coherent in the sense that IrR is a realization from a probabilistic model p�(IR;Θ).
� indexes the model or a stochastic process, and Θ is a vector valued parameter
of the model. We should discuss the families of region models shortly. Therefore
the region processes are represented by a vector W r of unknown dimension.

W r = (Kr, {(Ri, �i, Θi); i = 1, 2, ...,Kr}). (2)

We assume that the curve layer Ic is a linear sum of a number of N image
bases, following the literature of image coding[7,9].

Ic =
N∑

j=1

αjBj , Bj ∈ ∆, (3)
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αj is the coefficient and base Bj is selected from a over-complete basis or dictio-
nary ∆, for example, ∆ includes Difference of Gaussains (DoG) and Difference
of Offset Gaussians (DOOG) over a group of transforms (scaling, rotating, and
translation). These image bases are grouped into a number of Kc ≤ N curves
Ci, i = 1, ...,Kc based on a probabilistic curve model that we should deliberate
in section (4.2). Ci is a list of bases with certain geometric and photometric
regularities. Thus the curve processes are denoted by a vector W c and Ic is a
deterministic function of W c,

W c = (Kc, {Ci; i = 1, 2, ...,Kc}), Ic = Ic(W c). (4)

In a Bayesian framework, our objective is to make inference about W =
(W r,W c) from I that maximizes a posterior probability,

W ∗ = (W r, W c)∗ = arg max
Ω�W

p(W r, W c|I) = arg max
Ω�W

p(I − Ic(W c)|W r)p(W r)p(W c).

In the computation, the region and curve processes W r,W c are coordinated by
the generative models expressed in equations (1) and (3), i.e.

Ir = I− Ic(W c).

In a language of neuroscience, the two layers W r,W c (supposed they are rep-
resented by two cortical areas) have some mutual inhibition as they compete to
explain the observed image, like the lateral inhibition between adjacent neurons
(which are bases Bj in our representation). This enables the use of multiple fam-
ilies of image models either 2D or 1D , and distinguishes the generative methods
from the discriminative methods for image segmentation (e.g. [6]).

In the following two sections, we discuss the mathematical models for the
region and curve processes.

3 Probabilistic Models for Region Processes

In this section, we briefly overview the probabilistic models for region processes,
following the DDMCMC work in [11].

1. The likelihood for the region layer Ir. This is a product of individual region
models,

p(Ir|W r) =
Kr∏
i=1

p�i(I
r
Ri
;Θi).

�i ∈ {1, 2, 3, 4} indexes the following four families of intensity models.
Family 1: �1. This is a simple Gaussian model for flat regions. It assumes

that pixel intensities in a region R are constant subject to an independently and
identically distributed (i.i.d.) Gaussian noise.

Family 2: �2. This is a non-parametric model for cluttered regions. It as-
sumes that pixel intensities are iid distributed according to a histogram which
is discretized as a step function expressed by a vector Θ = (h1, h2, ..., hG).
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Family 3: �3. This is Markov random field model (FRAME) for textured
regions. We choose a set of 8 filters in FRAME and formulate the model in
pseudo-likelihood form.

Family 4: �4. This is a spline model for regions with gradually changing
intensities, such as lighting areas.

We refer to [11] for detailed specification of these models. In summary, the
algorithm can switch between the families to search for a good fit in terms of
high likelihood function for each region IrR.

2. The prior model for region process W r. The prior model p(W r) penalizes
model complexity and ensure boundary smoothness. Let Ai = |Ri| be the area
(pixel number) of Ri, and Γi = ∂Ri be the region boundary, then

p(W r) = p(Kr)
Kr∏
i=1

p(Ri)p(�i)p(Θi|�i) = p(Kr)
Kr∏
i=1

p(Ai)p(Γi)p(�i)p(Θi|�i) (5)

p(Kr) ∝ e−λ0Kr

, p(Ai) ∝ e−γAc
i , p(Γi) ∝ e

−µ
∮

Γi
ds
, p(Θi) ∝ e−νlen(Θi)

In these probabilities, γ, c, ν, µ are some constants and len(Θi) is the number of
parameters in Θi.

A DDMCMC algorithm using this set of priors and image models are
tested in a large set of images with satisfactory results[11]. It was also tested
in a benchmark dataset of 50 natural images by the Berkeley group, and
achieved the best results among the algorithms that have been tested. See
http://www.cs.berkeley.edu /∼dmartin/segbench/BSDS100/html/benchmark.
However, it is evident in these experiments that such region models are not
suitable for 1D curve processes. This motivates our curve models below.

4 Probabilistic Models for Curve Processes

In this section, we present a rope model for curve processes, and we start with
a brief review of existing curve models.

a). b). c). d).

Fig. 2. Four existing curve models. a). SNAKE (Kass et al 1988), b). Random curves
sampled from the Elastica model (Mumford, 1994). c). A random curve sampled from
a MRF curve model (Zhu, 1999), d). A profile model for modeling faces (Cootes et al,
1995) and contour tracking (Isard and Blake, 1996).
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4.1 Previous Curve Models

There are four interesting curve models in the literature as Figure 2 shows. The
first one is the SNAKE model[10]. Let C(s), s ∈ [a, b] be a continuous curve,
a SNAKE model has a smooth term plus an image gradient term for intensity
discontinuity.

p(C) ∼ exp{−
∫ b

a

[−|∇I|2 + αĊ2(s) + βC̈2(s)]ds}.

Mumford studied an Elastica model in [8] motivated by a Ulenbeck process for
a moving particle with friction, let κ(s) be the curvature, then

p(C) ∼ exp{−
∫ b

a

[β + ακ2(s)]ds}.

Figure 2.b shows some typical curves sampled from the above model. The third
model was proposed by Zhu in [13] which integrates model Gestalt properties and
symmetry in a Markov random field model for closed contours, and is learned
by a maximal entropy principle. Figure 2.c shows a typical sample of curve from
this model. The fourth model is used by Cootes et al. [3] for face contour and are
also used in tracking[2]. It is a smooth contour but also measures image profiles
along lines perpendicular to the contour as Figure 2.d shows. This profile is used
to local edges nearby. Recently, August and Zucker [1] constituted a so called
curve indicator random field model.

As we can see, the gradient term in the SNAKE model or the profile mea-
sure are both feature detectors, and they are not generative models for image
intensities.

4.2 A Generative Rope Model of Curve Processes

In the real images, the curve patterns are generated by elongated objects, such as
trees, stems, cables, strings, rails, and so on. Instead of being curves of constant
intensities, such objects often have interesting intensity profiles due to lightings
and are blended with the background regions through image formation.

Fig. 3. A rope model of curves consists of a chain of knots. A knot has 1-3 image bases
shown by the ellipses.
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The curve processes W c have a number of curves {Ci; i = 1, 2, ...,Kc}, and
each curve C is a chain of n knots as shown in Figure 3.

C = (n, ζ1, ζ2, ..., ζn)

Each knot ζ consists of 1-3 image bases. One major base shown by a large ellipse
is often associated with 0-2 small minor bases to achieve smooth blending with
background regions, thus

ζ = ( (α1, B1), ..., (αk, Bk) ), k ≤ 3.

α1, ..., αk are the coefficients of these bases and thus specifies the photometric
properties and B1, ..., Bk are bases selected from an over-complete basis or dic-
tionary ∆. We utilize 134 base functions shown in figure 4 which are Gaussians,
DoG, and DOOG bases at various orientation and scales, and can be translated
to any location.

Fig. 4. Base functions used for the disctionary ∆.

For each curve C we have a 2nd order Markov chain model for the knots

p(C) = p(n)p(ζ1)p(ζ2|ζ1)
n∏

i=3

p(ζi|ζi−1, ζi−2),

where p(n) controls the length of the curve. The conditional probabilities p(ζ2|ζ1)
and p(ζi|ζi−1, ζi−2) are defined so that the curve is smooth in geometry (by
energy terms for co-linearity and co-circularity of adjacent bases as in the
SNAKE/Elastica models) and in appearance (by energy term for the change
of base types and coefficients). This model can be learned by a minimax entropy
method as in [13].

We draw a set of random curves (ropes) from the model p(C) in Figure 5.
Figure 5.a shows the geometric curves for the ropes, and the knots of these chains
are shown in Figure 5.b. Then Figure 5.c is the curve layer Ic which is a linear
sum of all bases in the rope, as equation (3) defines.

To summarize, the curve model for p(WC) is,

p(W c) = p(Kc)
Kc∏
i

p(Ci), Ic = Ic(W c).
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a). b). c).

Fig. 5. Random ropes sampled from the prior model p(C). a). The geometric curves
for the sampled ropes. b). A symbolic representation of the sampled ropes. c). Curve
layer Ic by the ropes.

5 The Solution Space Ω

Given the image models in the previous sections, we now briefly analyze the
solution space Ω for W = (W r,W c). As Kr,Kc are unknown numbers, the
solution space Ω is

Ω = [∪KrΩr
Kr ] × [∪KcΩc

Kc ],

where Ωr
Kr is the space for W r with exactly Kr regions and Ωc

Kc is the space
with exactly Kc curves.

In image segmentation, there are two ways of defining a region. One repre-
sents a region boundary Γ (s) = ∂R as a continuous contour parameterized by s
and treats the image domain as a 2D plane. The other considers a segmentation
as a label map ψΛ, and a region Ri is a set of pixels sharing the same label, say
n,

Ri = {(x, y) : ψ(x, y) = n, (x, y) ∈ Λ}, for i = 1, 2, ...,K.

In this paper, we adopt the label map notation and define the solution space
Ωr

Kr as a product of a Kr-partition space and Kr spaces for the image models
as

Ωr
Kr = [ �πKr ×�Θ × · · · ×�Θ︸ ︷︷ ︸

Kr

],

where �Θ = ∪4
i=1�gi. The set of all Kr-partitions, �πKr , is a quotient space of

the set of all possible Kr-labelings divided by a permutation group, PG, for the
labels. It can be denoted as

�πKr = {(R1, R2, ..., RKr ) = πKr ; |Ri| > 0, ∀i = 1, 2, ...,Kr.}/PG,

where
πKr = (R1, R2, ..., RKr ), ∪Kr

i=1Ri = Λ,Ri �= Rj , ∀i �= j

is a set of Kr regions of Λ.
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2. Solution space for Ωc
Kc

Recall the definition of the curve layer in section 4.2. The curve layer is
composed of an unknown number of curves; Each curve consists of an unknown
number of knots which are made up of 1-3 bases. In correspondence to this
definition, the solution space for the curve layer is defined as

Ωc
Kc = �C × . . .×�C︸ ︷︷ ︸

Kc

.

The space for each curve �C is of the form

�C = ∪|Λ|
n=0[�ζ × . . .×�ζ︸ ︷︷ ︸

n

],

where �ζ is the space for each knot and is defined as

�ζ = �B ×�B ×�B .

In the curve layer, the space for the bases is defined as

�B = {φ} ∪ {(bi, Bi), i = 1, 2, ..., Gb ×NB × |Λ|},

where Gb is the number of possible values for coefficient bi, NB is the number of
base functions in the over-complete basis and equals to 134 in this paper, and
|Λ| is the size of the lattice.

6 Integration of Region and Curve Processes by MCMC

Now we turn to the design of the algorithm which forms ergodic Markov chain
with reversible jumps[4,5] and diffusion to explore the solution space Ω.

6.1 Dynamics Design

We use the Metroplis-Hasting algorithm in realizing the jump processes. To
achieve the detailed balance equation the acceptance rate is computed as

α(W → dW ′) = min(1,
G(W ′ → dW )p(W ′|I)dW ′

G(W → dW ′)p(W |I)dW ), (6)

where G(W → dW ′) and G(W ′ → dW ) are the two proposal probabilities for the
Markov chain to jump between solution W and W ′. The data-driven techniques
are used to propose important proposals to guide the Markov chain in traveling
in the solution space Ω more efficiently. The diffusion dynamics are realized by
steepest ascent algorithms.

In the following, we briefly discuss different types of these dynamics for region
and curve processes.
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Jump and Diffusion Dynamics for Region Processes
I. Boundary diffusion This is a diffusion process used to adjust the region

boundaries., which are represented by continuous curves evolving to maximize
the posterior probability through a region competition equation [12].

II. Model adaptation. This is simply to fit the parameters of a region by
steepest descent equation,

dΘi

dt
=

∂ log p(IrRi
;Θi)

∂Θi
.

III and IV. Split a region into two and Merge two regions into one. These
are a pair of reversible jumps. Suppose at a certain time step, a region Rk with
model Θk is split into two regions Ri and Rj with models Θi, Θj , or vice verse,
and this realizes a jump between two states W to W ′.

W = (K, (Rk, �k, Θk), W−)←→ (K + 1, (Ri, �i, Θi), (Rj , �j , Θj), W−) = W ′,

where W− is the remaining variables that are unchanged during the move.
V. Switch image models. This switches the image model within the four

families for a regionRi. For example, from texture description to a spline surface
etc.

W = (�i, Θi, W−)←→ (�′i, Θ
′
i, W−) = W ′.

Jump and Diffusion Dynamics for Curve Processes
VI Curve diffusion. This is a diffusion process by curve deformation [10].
VII and VIII. Create a new curve and Delete a curve. They are a pair of

reversible jumps. At a time step, a new curve could be created with 1-3 knots
or a curve with less than three knots could be killed. The two solution states
before and after the change are denoted as

W = (KC , W−)←→ (KC + 1, CKC+1, W−) = W ′. (7)

IX and X. Split a curve into two and Merge two curves into one. They are
a pair of reversible jumps as well. At a step, two curves could be merged into a
new curve or a curve having at least two knots could be split into two curves.
We have the two states defined as

W = (KC , Ck,W−)←→ (KC + 1, Ci, Cj W−) = W ′. (8)

There have been a great deal of work done in the area of perceptual organi-
zation about how to group 1D elements, such as straight line segments, which
potentially belong to the same object together. These grouping methods are con-
sidered as bottom-up techniques and could be utilized in designing proposals to
help to achieve a fast convergence rate.

XI and XII. Engage a new knot to a curve and Kill a knot from a curve. They
are two complementary moves. At a step, a new knot is proposed to engage to
one of a curve’s two extremes or one of a proposed curve’s two extreme knots
could be killed. The two states can be written as

W = ((ζi1, ..., ζin), W−)←→ ((ζi1, ..., ζin, ζi(n+1)), W−) = W ′. (9)
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In the following, we give an example of how to compute the proposal prob-
abilities G(W → dW ′) and G(W ′ → dW ) for computing the acceptance rate
α(W → dW ′) in equation (6). The readers are referred to [11] for a detailed
discussion of computing proposal probabilities for region processes.

The two proposal probabilities for move type IX (split a curve into two
curves) can be computed as

G(W → dW ′) = q(IX)q(Ck)q(Ci|Ck)q(Cj |Ck)dW ′,

and
G(W ′ → dW ) = q(X)(q(Ci)q(Cj |Ci) + q(Cj)q(Ci|Cj))dW,

where q(IX) is the probability for choosing dynamic type IX, q(Ck) is the proba-
bility for proposing curve Ck to split. The two new curves, Ci and Cj , are created
with the probabilities q(Ci|Ck) and q(Cj |Ck) respectively. Similarly, q(X) is the
probability for choosing dynamic type X, q(Ci) is the probability for choosing
curve Ci, and q(Cj |Ci) is the probability for proposing curve Cj to merge with
Ci. Likewise, we could compute the values for q(Cj) and q(Ci|Cj).

6.2 Initialization by Image Pyramid and Matching Pursuit

To initialize the algorithm, we decompose an image into two layers I = Iro+Ico by
a simply Laplacian pyramid method, as Figure 6 shows. Iro is a lowpass filtered
version of the input image I, and Ico = I − Iro is the residual image. In general,
Iro contains regions, and Ico contains mostly high frequency components for the
curves as well as region boundaries.

Then we adopt a match pursuit method by Mallat and Zhang[7] to quickly
compute an initial set of image bases from image Ico. In particular, we select the
ridge type of bases with coefficients larger than a certain significant threshold τ .

Ico =
∑

αj≥τ

αjBj + I′o.

These selected bases are often good seeds for the curves. The reconstruction
residual image I′o is added to the region layer Iro ← Iro + I′o.

For the region layer Iro, we conduct some edge detection and clustering as the
DDMCMC algorithm did in [11].

a) I b). Ir
o c). Ic

o

Fig. 6. An input image I (a) is initially decomposed into two components: Ir
o (b) is a

lowpass filtered version, and Ic
o is the residue for high frequency components.
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6.3 Summary of the Algorithm

To summarize, we list the algorithm below.

1. Initialize Ic = Ic
o and Ir = Ir

o by the Laplacian pyramid method.
2. Initial W c by match pursuit, and W r by clustering.
3. Select a diffusion dynamic or a jump dynamic at random.
4. If a diffusion dynamic is selected, run the following dynamics at random:

• For type I, a region is randomly proposed to execute region competition for
its boundaries.

• For type II, a region is randomly selected and its corresponding model pa-
rameter is adapted by a steepest descent method.

• For type VI, a curve is randomly selected and a deformation process is exe-
cuted as in [10].

5. If a jump dynamic is selected,
• a new solution W ′ is randomly sampled according to the dynamic picked at
random below.
− For type III, a region is randomly picked to be split into two new regions
which are randomly proposed by one of the partition maps.

− For type IV, two neighboring regions are randomly chosen to form a new
region.

− For type V, a different model is randomly picked for a randomly chosen
region.

− For type VII, 1-3 knots are randomly proposed to form a new curve.
− For type VIII, a curve is randomly chosen and is then killed.
− For type IX, a curve is randomly picked and is then split into two new
curves.

− For type X, two neighboring curves are randomly proposed to form a
new curve.

− For type XI, a new knot is proposed to engage to one of a randomly
picked curve’s two extreme knots.

− For type XII, one of a randomly picked curve’s two extreme knots is
proposed to be killed.

• The overall posterior probability, p(W ′|I)dW ′, is computed.
• The proposal probabilities, G(W ′ → dW ) and G(W → dW ′) are then com-
puted.

• A decision of acceptance is made according the acceptance probability
α(W → dW ′) in equation 6.

6. Repeat the above steps to draw samples W from p(W |I).
Fig. 7. The algorithm that integrates the region and curve processes.

7 Experiments

We test the algorithm on many natural images and report some results in Fig-
ures 8, 9 and 10. Figure 8 shows the results for a sea shore image where regions
and curves are parsed. Figure 8.b shows the regions, and we sample a synthe-
sized image from the likelihood Irsyn ∼ p(I|W r) given the computed W r, this
illustrates the computed region models. Clearly the shading effects in the water
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Fig. 8. Result: parsing a sea shore image into regions and curves.

and the sky are captured by the spline model in family 4. Figure 8.c is the sketch
for the computed curves W c, and Figure 8.f is the image Ic = Ic(W c). Thus we
have an overall synthesis Isyn = Irsyn + Ic shown in Figure 8.d. By comparing
Irsyn and Ic to the initial decomposition Iro, I

c
o in Figure 6, we clearly see that it

is the more sophisticated region and curve models that refine the decomposition.
Figure 9 shows the segmented regions W r and Irsyn by the previous DDMCMC
algorithms which assumes region processes only.

a). Synthesis ⇐ b). Region processes

Fig. 9. The segmentation and synthesis with region processes only for fig. 8

Figure 10 displays more examples in a similar way. The improvement of syn-
thesized images for all the examples demonstrate the the advantages of engaging
curve models. The parameters for the two methods are set to be the same to have
a fair comparison. Although Figure 10.a by the region processes only successfully
segmented many tree trunks out, it disconnects the background. The synthesis
by region and curve processes for Figure 10.b is more similar to the original im-
age than that by the region processes, thus, the new algorithm acheives a better
visual effect.
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Input images and results by region and curve processes Results by region
processes only

a).

b).

c).

Fig. 10. More image parsing results by the algorithms with the integration of region
and curve processes and by the previous DDMCMC algorithm with region processes
only.

The semantical representation W by region and curve models can largely
reduce the coding length of image. The table below lists the number of bytes
used by W for the synthesized images in comparison with the jpeg algorithm for
the original images.
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Table 1. A comparion of coding lengths in bytes for the example images by the pro-
posed algorithm and the jpeg algorithm.

The image in fig. 8 Image a in fig. 10 Image b in fig. 10 Image c in fig. 10
Region and Curve processes 2,387 2,266 1,347 922

jpeg 17,001 10,620 10,620 6,656

8 Future Work

In future study, we plan to engage generative models for faces and texton
process to realize the image parsing as Figure 1 demonstrates and apply the
algorithm for non-photo-realistic rendering to render stylish paintings.
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