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Abstract. In many statistical learning problems, the target functions to be optimized

are highly non-convex in various model spaces and thus are difficult to analyze. In this

paper, we compute Energy Landscape Maps (ELMs) which characterize and visualize an

energy function with a tree structure, in which each leaf node represents a local minimum

and each non-leaf node represents the barrier between adjacent energy basins. The ELM

also associates each node with the estimated probability mass and volume for the corre-

sponding energy basin. We construct ELMs by adopting the generalized Wang-Landau

algorithm and multi-domain sampler that simulates a Markov chain traversing the model

space by dynamically reweighting the energy function. We construct ELMs in the model

space for two classic statistical learning problems: i) clustering with Gaussian mixture

models or Bernoulli templates; and ii) bi-clustering. We propose a way to measure the

difficulties (or complexity) of these learning problems and study how various conditions

affect the landscape complexity, such as separability of the clusters, the number of ex-

amples, and the level of supervision; and we also visualize the behaviors of different

algorithms, such as K-mean, EM, two-step EM and Swendsen-Wang cuts, in the energy

landscapes.

1. Introduction. In many statistical learning problems, the energy functions to be

optimized are highly non-convex. A large body of research has been devoted to either
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Fig. 1. An energy function and the corresponding Energy Landscape

Map (ELM). The y-axis of the ELM is the energy level, each leaf node
is a local minimum and the leaf nodes are connected at the ridges of

their energy basins.

approximating the target function by convex optimization, such as replacing L0 norm

by L1 norm in regression, or designing algorithms to find a good local optimum, such as

EM algorithm for clustering. Much less work has been done in analyzing the properties

of such non-convex energy landscapes.

In this paper, inspired by the success of visualizing the landscapes of Ising and Spin-

glass models by [4] and [29], we compute Energy Landscape Maps (ELMs) in the high-

dimensional model spaces (i.e. the hypothesis spaces in the machine learning literature)

for some classic statistical learning problems — clustering and bi-clustering.

The ELM is a tree structure, as Figure 1 illustrates, in which each leaf node represents

a local minimum and each non-leaf node represents the barrier between adjacent energy

basins. The ELM characterizes the energy landscape with the following information.

• The number of local minima and their energy levels;

• The energy barriers between adjacent local minima and their energy levels; and

• The probability mass and volume of each local minimum (See Figure 3).

Such information is useful in the following tasks.

(1) Analyzing the intrinsic difficulty (or complexity) of the optimization problems,

for either inference or learning tasks. For example, in bi-clustering, we divide the

problem into the easy, hard, and impossible regimes under different conditions.

(2) Analyzing the effects of various conditions on the ELM complexity, for example,

the separability in clustering, the number of training examples, the level of su-

pervision (i.e. how many percent the examples are labeled), and the strength of

regularization (i.e. prior model).

(3) Analyzing the behavior of various algorithms by showing their frequencies of visit-

ing the various minima. For example, in the muilti-Gaussian clustering problem,

we find that when the Gaussian components are highly separable, K-means clus-

tering works better than the EM algorithm [10], and the opposite is true when

the components are less separable. In contrast to the frequent visits of local

minimum by K-means and EM, the Swendsen-Wang cut method [3] converges to

the global minimum in all separability conditions.
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(a) (b)

Fig. 2. (a) Energy Landscape for a 4-component 1-d GMM with all

parameters fixed except two means. Level sets are highlighted in red.

The local minima are shown in yellow dots and the first 200 MCMC
samples are shown in black dots. (b) The resulting ELM and the

correspondence between the leaves and the local minima from the
energy landscape.

We start with a simple illustrative example in Figures 2 and 3. Suppose the under-

lying probability distribution is a 4-component Gaussian mixture model (GMM) in 1D

space, and the components are well separated. The model space is 11-dimensional with

parameters {(µi, σi, αi) : i = 1, 2, 3, 4} denoting the means, variance and weights for each

components. We sampled 70 data points from the GMM and construct the ELM in the

model space. We bound the model space to a finite range defined by the samples.

As we can only visualize 2D maps, we set all parameters to equal the truth value

except keeping µ1 and µ2 as the unknowns. Figure 2(a) shows the energy map on a

range of 0 ≤ µ1, µ2 ≤ 5. The asymmetry in the landscape is caused by the fact that the

true model has different weights between the first and second component. Some shallow

local minima, like E, F, G,H, are little “dents” caused by the finite data samples.

Figure 2 (a) shows that all the local minima are identified. Additionally, it shows the

first 200 MCMC samples that were accepted by the algorithm that we will discuss late.

The samples are clustered around the local minima, and cover all energy basins. They

are not present in the high energy areas away from the local minima, as would be desired.

Figure 2 (b) shows the resulting ELM and the correspondence between the leaves and

the local minima in the energy landscape. Furthermore, Figures 3 (a) and (b) show the

probability mass and the volume of these energy basins.

In the literature, [4] presents the first work for visualizing multidimensional energy

landscapes for the spin-glass model. Since then statisticians have developed a series

of MCMC methods for improving the efficiency of the sampling algorithms traversing
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(a) probability mass (b) volume

Fig. 3. The probability mass and volume of the energy basins for

the 2-d landscape shown in Figure 2.

the state spaces. Most notably, [15, 16] generalize the Wang-Landau algorithm [26]

for random walks in the state space. [29] uses the generalized Wang-Landau algorithm

to plot the disconnectivity graph for Ising model with hundreds of local minima and

proposes an effective way for estimating the energy barriers. Furthermore, [30] construct

the energy landscape for Bayesian inference of DNA sequence segmentation by clustering

Monte Carlo samples.

In contrast to the above work that compute the landscapes in “state” spaces for

inference problems, our work is focused on the landscapes in “model” spaces (the sets

of all models; also called hypothesis spaces in the machine learning community) for

statistical learning and model estimation problems. There are some new issues in plotting

the model space landscapes. i) Many of the basins have a flat bottom, for example, basin

A in Figure 2.(a). This may result in a large number of false local minima. ii) There

may be constraints between parameters, for example, the weights have to sum up to one

—
∑
i αi = 1. Thus we may need to run our algorithm on a manifold.

2. ELM construction. In this section, we introduce the basic ideas for constructing

the ELM and estimating its properties - mass, volume and complexity.

2.1. Space partition. Let Ω be the model space over which a probability distribution

π(x) and energy E(x) are defined. In this paper, we assume Ω is bounded using properties

of the samples. Ω is partitioned into K disjoint subspaces which represent the energy

basins

Ω = ∪Ki=1Di, ∩Ki=1Di = ∅ ∀i 6= j. (2.1)

That is, any point x ∈ Di will converge to the same minimum through gradient descent.
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Fig. 4. The model space Ω is partitioned into energy basins Di

(along the x-axis), and the energy R (the y-axis) is partitioned into
uniform intervals [uj+1, uj).

As Figure 4 shows, the energy is also partitioned into intervals [uj+1, uj), j = 1, 2, ..., L.

Thus we obtain a set of bins as the quantized atomic elements in the product space Ω×R,

Bij = {x : x ∈ Di, E(x) ∈ [uj+1, uj)}. (2.2)

The number of basins K and the number of intervals L are unknown and have to be

estimated during the computing process in an adaptive and iterative manner.

2.2. Generalized Wang-Landau algorithm. The objective of the generalized Wang-

Landau (GWL) algorithm is to simulate a Markov chain that visits all the bins {Bij ,∀i, j}
with equal probability, and thus effectively reveal the structure of the landscape.

Let φ : Ω→ {1, . . . ,K} × {1, ..., L} be the mapping between the model space and bin

indices: φ(x) = (i, j) if x ∈ Bij . Given any x, by gradient descent or its variants, we can

find and record the basin Di that it belongs to, compute its energy level E(x), and thus

find the index φ(x).

We define β(i, j) to be the probability mass of a bin

β(i, j) =

∫
Bi,j

π(x) dx. (2.3)

Then, we can define a new probability distribution which has equal probability among

all the bins,

π′(x) =
1

Z
π(x)/β(φ(x)), (2.4)

with Z being a scaling constant.

To sample from π′(x), one can estimate β(i, j) by a variable γij . We define the

probability function πγ : Ω→ R to be

πγ(x) ∝ π(x)

γφ(x)
=
∑
i,j

π(x)

γij
1(x ∈ Bij) st.

∫
Ω

πγ(x)dx = 1.

We start with an initial γ0, and update γt = {γtij ,∀i, j} iteratively using stochastic

approximation [17]. Suppose xt is the MCMC state at time t, then γt is updated in an
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xt
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x’’t

v’ v

Fig. 5. First two steps of projected gradient descent. The algorithm

is initialized with MCMC sample xt. v is the gradient of E(x) at
the point xt. Armijo line search is used to determine the step size α

along the vector v. x′t is the projection T (xt +αv) onto the subspace

Γ. Then x′′t is the projection T (xt + α′v′), and so on.

exponential rate,

log γt+1
ij = log γtij + ηt1(xt ∈ Bij), ∀i, j. (2.5)

ηt is the step size at time t. The step size is decreased over time and the decreasing

schedule is either pre-determined as in [17] or determined adaptively as in [28].

Each iteration with given γt uses a Metropolis step. Let Q(x, y) be the proposal

probability for moving from x to y, then the acceptance probability is

α(x, y) = min
(

1,
Q(y,x)πγ(y)
Q(x,y)πγ(x)

)
(2.6)

= min

(
1, Q(y,x)

Q(x,y)
π(y)
π(x)

γtφ(x)
γt
φ(y)

)
.

Intuitively, if γtφ(x) < γtφ(y), then the probability of visiting y is reduced. For the purpose

of exploring the energy landscape, the GWL algorithm improves upon conventional meth-

ods, such as the simulated annealing [14] and tempering [19] process. The latter sample

from π(x)
1
T and do not visit the bins with equal probability even at high temperature.

In performing gradient descent, we employ Armijo line search to determine the step

size; if the model space Ω is a manifold in Rn, we perform projected gradient descent,

as shown in Figure 5. To avoid erroneously identifying multiple local minima within the

same basin (especially when there is large flat regions), we merge local minima identified

by gradient descent based on the following criteria: (1) the distance between two local

minima is smaller than a constant ε; or (2) there is no barrier along the straight line

between two local minima.

Figure 6 (a) illustrates a sequence of Markov chain states xt, ..., xt+9 over two energy

basins. The dotted curves are the level sets of the energy function.

2.3. Constructing the ELM. Suppose we have collected a chain of samples x1, . . . , xN
from the GWL algorithm. The ELM construction consists of the following two processes.

1, Finding the energy barriers between adjacent basins. We collect all consecutive

MCMC states that move across two basins Dk and Dl,

Xkl = {(xt, xt+1) : xt ∈ Dk, xt+1 ∈ Dl} (2.7)
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Xt

Xt+1 Xt+2

Xt+3 Xt+4 Xt+5
Xt+6

Xt+7

Xt+8
Xt+9

B1
B2

Barrier(B1,B2)

Fig. 6. Sequential MCMC samples xt, xt+1, . . . , xt+9. For each sam-

ple, we perform gradient descent to determine which energy basin the
sample belongs to. If two sequential samples fall into different basins

(xt+3 and xt+4 in this example), we estimate or update the upper-

bound of the energy barrier between their respective basins (B1 and
B2 in this example).

a0

b0

a1
b1

a2

b2

a3

b3D
K

D
L

Fig. 7. The ridge descent algorithm is used for estimating the energy

barrier between basins Dk and Dl initialized at consecutive MCMC
samples a0 = xt, b0 = xt+1 where a0 ∈ Dk and b0 ∈ Dl.

we choose (a0, b0) ∈ Xkl with the lowest energy

(a0, b0) = argmin(a,b)∈Ωkl
[min(E(a), E(b))] .

Next we iterate the following step as Figure 7 illustrates

ai = argmina {E(a) : a ∈ Neighborhood(bi−1) ∩Dk}
bi = argminb {E(b) : b ∈ Neighborhood(ai) ∩Dl}

until bi−1 = bi. The neighborhood is defined by an adaptive radius. Then bi is the

energy barrier and E(bi) is the energy level of the barrier. A discrete version of this ridge

descent method was used in [29].

2, Constructing the tree structure. The tree structure of the ELM is constructed from

the set of energy basins and the energy barriers between them via an iterative algorithm

modified from the hierarchical agglomerative clustering algorithm. Initially, the energy
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basins are represented by leaf nodes that are not connected, whose y-coordinates are de-

termined by the local minima of the basins. In each iteration, the two nodes representing

the energy basins D1, D2 with the lowest barrier are connected by a new parent node,

whose y-coordinates is the energy level of the barrier; D1 and D2 are then regarded as

merged, and the energy barrier between the merged basin and any other basin Di is

simply the lower one of the energy barriers between D1/D2 and Di. When all the energy

basins are merged, we obtain the complete tree structure. For clarity, we can remove

from the tree basins of depth less than a constant ε.

2.4. Estimating the mass and volume of nodes in the ELM. In the ELM, we can

estimate the probability mass and the volume of each energy basin. When the algorithm

converges, the normalized value of γij approaches the probability mass of bin Bij :

P̂ (Bij) =
γij∑
kl γkl

→ β(i, j), almost surely.

Therefore the probability mass of a basin Di can be estimated by

P̂ (Di) =
∑
j

P̂ (Bij) =

∑
j γij∑
kl γkl

(2.8)

Suppose the energy E(x) is partitioned into sufficiently small intervals of size du.

Based on the probability mass, we can then estimate the size1 of the bins and basins in

the model space Ω. A bin Bij with energy interval [uj , uj + du) can be seen as having

energy uj and probability density αe−uj (α is a normalization factor). The size of bin

Bij can be estimated by

Â(Bij) =
P̂ (Bij)

αe−uj
=

γij
αe−uj

∑
kl γkl

The size of basin Di can be estimated by

Â(Di) =
∑
j

Â(Bij) =
1∑
kl γkl

∑
j

γij
αe−uj

(2.9)

Further, we can estimate the volume of a basin in the energy landscape which is

defined as the amount of space contained in a basin in the space of Ω× R.

V̂ (Di) =
∑
j

∑
k:uk≤uj

Â(Bik)× du =
du∑
lm γlm

∑
j

∑
k:uk≤uj

γik
αe−uk

(2.10)

where the range of j depends on the definition of the basin. In a restricted definition,

the basin only includes the volume under the closest barrier, as Figure 8 illustrates. The

volume above the basins 1 and 2 is shared by the two basins, and is between the two

energy barriers C and D. Thus we define the volume for a non-leaf node in the ELM

to be the sum of its childen plus the volume between the barriers. For example, node C

has volume V (A) + V (B) + V (AB).

If our goal is to develop a scale-space representation of the ELM by repeatedly smooth-

ing the landscape, then basins A and B will be merges into one basin at certain scale,

and volume above the two basins will be also added to this new merged basin.

1Note that the size of a bin/basin in the model space is called its volume by [30], but here we will

use the term “volume” to denote the capacity of a basin in the energy landscape.
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Fig. 8. The volume of basins. Assuming that du is sufficiently small,

the volume of an energy basin can be approximated by the summa-

tion of the estimated volume at each energy interval.

Fig. 9. Characterizing the difficulty of learning in the ELM. For

two learning tasks with ELM I and ELM II, the colored bar show

the frequency that a learning algorithm converges to the basins, from
which two Error-recall curves are plotted. The difficulty of learning

task, with respect to this algorithm, can be measured by the area

under the curve within an acceptable maximum error.

Note that the partition of the space into bins, rather than basins, facilitates the

computation of energy barriers, the mass and volume of the basins.

2.5. Characterizing the difficulty (or complexity) of learning tasks . It is often desirable

to measure the difficulty of the learning task by a single number. For example, we

compare two ELMs in Figure 9. Learning in the landscape of ELM I looks easier than

that of ELM II. However, the difficulty also depends on the learning algorithms. Thus

we can run the learning algorithm many times and record the frequency that it converges

to each basin or minimum. The frequency is shown by the lengths of the colored bars

under the leaf nodes.

Suppose that Θ∗ is the true model to be learned. In Figure 9, Θ∗ corresponds to nodes

X in ELM I and node A in ELM II. In general, Θ∗ may not be the global minimum or not

even a minimum. We then measure the distance (or error) between Θ∗ and any other local
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minima. As the error increases, we accumulate the frequency to plot a curve. We call it

the Error-Recall curve (ERC), as the horizontal axis is the error and the vertical axis is the

frequency of recall the solutions. This is like the ROC (receptor-operator characteristics)

curves in Bayesian decision theory, pattern recognition and machine learning. By sliding

the threshold εmax which is maximum error tolerable, the curve characterizes the difficulty

of the ELM with respect to the algorithm.

A single numeric number that characterizes the difficulty can be the area under the

curve (AUC) for a given εmax. this is illustarted by the shadowed area in 9.(c) for ELM

II. When AUC is close to 1, the task is easy, and when AUC is close to 0, learning is

impossible.

In a learning problem, we can set different conditions which correspond to a range

of ELMs. The difficulty measures of these ELMs can be visualized in the space of the

parameters as a difficulty map. We will show such maps in experiment III.

2.6. MCMC moves in the model space. To design the Markov chain moves in the model

space R, we use two types of proposals in the metropolis-Hastings design in equation (2.6).

1, A random proposal probability Q(x, y) in the neighborhood of the current model

x.

2, Data augmentation. A significant portion of non-convex optimization problems

involve latent variables. For example, in the clustering problem, the class label of each

data point is latent. For such problems, we use data augmentation [23] to improve the

efficiency of sampling. In order to propose a new model y = xt+1, we first sample the

values of the latent variables Zt based on p(Zt|xt) and then sample the new model xt+1

based on p(xt+1|Zt). The proposal y = xt+1 is then either accepted or rejected based on

the same acceptance probability in Equation 2.6.

Note that, however, our goal in ELM construction is to traverse the model space

instead of sampling from the probability distribution. When enough samples are collected

and therefore the weights γij become large, the reweighted probability distribution would

be significantly different from the original distribution π(x) and the rejection rate of

the models proposed via data augmentation would become high. Therefore, we use

the proposal probability based on data augmentation more often at the beginning and

increasingly rely on random proposal when the weights become large.

2.7. ELM convergence analysis. The convergence of the GWL algorithm to a station-

ary distribution is a necessary but not sufficient condition for the convergence of the

ELMs. As shown in Figure 10, the constructed ELMs may have minor variations due to

two factors: (i) the left-right ambiguity when we plot the branches under a barrier; and

(ii) the precision of the energy barriers will affect the internal structure of the tree.

In experiments, firstly we monitor the convergence of the GWL in the model space.

We run multiple MCMC initialized with random starting values. After a burn-in period,

we collect samples and project in a 2-3 dimensional space using Multi-dimensional scal-

ing. We check whether the chains have converged to a stationary distribution using the

multivariate extension of the Gelman and Rubin criterion [12][6].

Once the GWL is believed to have converged, we can monitor the convergence of the

ELM by checking the convergence of the following two sets over time t.
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Fig. 10. Two ELMs generated from two MCMC chains C1 and C2

initialized at different starting points after convergence in 24, 000

iterations.

(a) (b)

Fig. 11. Monitoring the convergence of ELMs generated from two

MCMC chains C1 and C2 initialized at different starting points. (a)

The number of local minima found vs number of iterations for C1

and C2. (b) the distance between the two ELMs vs. number of

iterations.

(1) The set of leaf notes of the tree StL in which each point x is a local minimum

with energy E(x). As t increase, StL grows monotonically until no more local

minimum is found, as is shown in Figure 11.(a).

(2) The set of internal nodes of the tree StN in which each point y is an energy barrier

at level E(y). As t increases, we may find lower barrier as the Markov chain

crosses different ridge between the basins. Thus E(y) decreases monotonically

until no barrier in StN is updated during a certain time period.

We further calculate a distance measure between two ELMs constructed by two

MCMCs with different initialization. To do so, we compute a best node matching be-

tween the two trees and then the distance is defined on the differences of the matched

leaf nodes and barriers, and penalties on unmatched nodes. We omit the details of this
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definition as it is not important for this work. Figure 11.(b) shows the distance decreases

as more samples are generated.

3. Experiment I: ELMs of Gaussian Mixture Models. In this section, we com-

pute the ELMs for learning Gaussian mixture models for two purpuses: (i) study the

influences of different conditions, such as separability and level of supervision; and ii)

compare the behaviors and performances of popular algorithms including K-mean clus-

tering, EM (Expectation-Maximization), two-step EM, and Swendson-Wang cut. We

will use both synthetic data and real data in the experiments.

3.1. Energy and Gradient Computations. A Gaussian mixture model Θ with n com-

ponents in d dimensions have weights αi, means µi and covariance matrices Σi for

i = 1, . . . , n. Given a set of observed data points {zi, i = 1, ...,m}, we write the en-

ergy function as

E(Θ) = − logP (zi : i = 1 . . .m|Θ)− logP (Θ) (3.1)

= −
m∑
i=1

log f(zi|Θ)− logP (Θ). (3.2)

P (Θ) is the product of a Dirichlet prior and a NIW prior. Its partial derivatives are

trivial to compute. f(zi|Θ) =
∑n
j=1 αjG(zi;µj ,Σj) is the likelihood for data zi, where

G(zi;µj ,Σj) = 1√
det(2πΣj)

exp
[
− 1

2 (zi − µj)T Σ−1
j (zi − µj)

]
is a Gaussian model.

For a sample zi, we have the following partial derivatives of the log likelihood for

calculating the gradient in the energy landscape.

a), Partial derivative with respect to each weight αj :

δ log f(zi)

δαj
=

G(zi;µj ,Σj)∑K
k=1 αkG(zi, µk,Σk)

.

b), Partial derivative with respect to each mean µj :

δ log f(zi)

δµj
=

αjG(zi;µj ,Σj)∑K
k=1 αkG(zi;µk,Σk)

Σ−1
j (µj − zi).

c), Partial derivative with respect to each covariance Σj :

δ log fmm(zi)

δΣj
=

αjG(zi;µj ,Σj)∑K
k=1 αkG(zi;µk,Σk)

1

2

[
δ

δΣj
logαjG(zi;µj ,Σj)

]
=

αjG(zi;µj ,Σj)∑K
k=1 αkG(zi;µk,Σk)

1

2

[
−Σ−Tj + Σ−Tj (zi − µj) (zi − µj)T Σ−Tj

]
During the computation, we need to restrict the Σj matrices so that each inverse

Σ−1
j exists in order to have a defined gradient. Each Σj is semi-positive definite, so

each eigenvalue is greater than or equal to zero. Consequently we only need the minor

restriction that for each eigenvalue λi of Σj , λi > ε for some ε > 0. However, it is possible

that after one gradient descent step, the new GMM parameters will be outside of the

valid GMM space, i.e. the new Σt+1
j matrices at step t+1 will not be symmetric positive
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definite. Therefore, we need to project each Σt+1
j into the symmetric positive definite

space with the projection

Psymm(Ppos(Σ
t+1
j )).

The function Psymm(Σ) projects the matrix into the space of symmetric matrices by

Psymm(Σ) =
1

2
(Σ + (Σ)

T
).

Assuming that Σ is symmetric, the function Ppos(Σ) projects Σ into the space of symmet-

ric matrices with eigenvalues greater than ε. Because Σ is symmetric, it can be decom-

posed into Σ = QΛQT where Λ is the diagonal eigenvalue matrix Λ = diag{λ1, . . . , λn},
and Q is an orthonormal eigenvector matrix. Then the function

Ppos(Σ) = Q


max(λ1, ε) 0 . . . 0

0 max(λ2, ε) . . . 0
...

...
. . .

...

0 0 . . . max(λn, ε)

QT

ensures that Ppos(Σ) is symmetric positive definite.

3.2. Bounding the GMM space. From the m data points {zi, i = 1, . . . ,m}, we can

estimate a boundary of the space of possible parameter Θ if m is sufficiently large.

Let µo and Σo be the sample mean and sample covariance matrix of all m points. We

set a range for the means µj of the Gaussian components,

||µj − µo||2 < max
i
||zi − µo||2 + εm.

εm is a constant that we will select in experiments. To bound the covariance matrices

Σj , let Σo = QΛQT be the eigenvalue decomposition of Σo with Λ = diag{λ1, · · · , λn}.
We denote by L = max(λ1, . . . , λn)+ εm the upper bound of the eigen-values, and bound

all the eigenvalues of Σj by L.

Figure 12 (a,b) compare the MCMCs in unbounded and bounded spaces repsectively.

We sampled m = 70 data points from a 1-dimensional, 4-component GMM and ran the

MCMC random walk for ELM construction algorithm. The plots show the evolution of

the locations of µ1, ..., µ4 over time. Notice that in Figure 12 (a), the MCMC chain can

move far from the center and spends the majority of the time outside of the bounded

subspace. In Figure 12 (b), by forcing the chain to stay within the boundary, we are able

to explore the relevant subspace more efficiently.

3.3. Experiments on Synthetic Data. We start with synthetic data with k = 3 compo-

nent GMM on 2 dimensional space, draw m samples and run our algorithm to plot the

ELM under different settings.

1) The effects of separability. The separability of the GMM represents the overlap

between components of the model and is defined as c = min
(

||µi−µj ||√
nmax(σ1,σ2)

)
. This is often

used in the literature to measure the difficulty of learning the true GMM model.

Figure 13 shows three representative ELMs with the separability c = 0.5, 1.5, 3.5

respectively for m = 100 data points. This clearly shows that at c = 0.5, the model is

hardly identifiable with many local minima reaching similar energy levels. The energy
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(a) unbounded GMM space (b) bounded GMM space

Fig. 12. We sampled 70 data points from a 1-dimensional 4-
component GMM and ran the MCMC random walk for ELM con-

struction algorithm in the (a) unbounded (b) bounded GMM space.

The plots show the evolution of the location of the centers of the 4
components over time. The width of the line represents the weight

of the corresponding component.

Fig. 13. ELMs for m = 100 samples drawn from GMMs with low,
medium and high separability c = 0.5, 1.5, 3.5 respectively. The circle
represents the probability mass of the basins.



MAPPING ENERGY LANDSCAPES OF NON-CONVEX LEARNING PROBLEMS 15

Fig. 14. ELMs with of synthesized GMMs (separability c = 1.0,
nSamples = 100) with {0%, 5%, 10%, 50%, 90%} labelled data points.

Fig. 15. Number of local minima versus the percentage of labelled
data points for a GMM with separability c = 1.0.

landscape becomes increasingly simple as the separability increases. When c = 3.5, the

prominent global minimum dominates the landscape.

2) The effects of partial supervision. We assign ground truth labels to a portion

of the m data points. For zi, its label `i indicates which component it belongs to. We set

m = 100, separability c = 1.0. Figure 14 shows the ELMs with 0%, 5%, 10%, 50%, 90%

data points labels. While unsupervised learning (0%) is very challenging, it becomes

much simpler when 5% or 10% data are labeled. When 90% data are labeled, the ELM

has only one minimum. Figure 15 shows the number of local minima in the ELM when

labeling 1, . . . , 100 samples. This shows a significant decrease in landscape complexity

for the first 10$ labels, and diminishing returns from supervised input after the initial

10%.

3) Behavior of Learning Algorithms. We compare the behaviors of the following

algorithms under different separability conditions.

• Expectation-maximization (EM) is the most popular algorithms for learning

GMM in statistics.

• K-means clustering is a popular algorithm in machine learning and pattern recog-

nition.
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Fig. 16. The performance of the k-means, EM and 2-step EM algo-
rithms on the ELMs with 10 samples drawn from a GMM with low

separability (c = 0.5)

• Two-step EM is a variant of EM proposed in [9] who have proved a performance

guarantee under certain separability conditions. It starts with an excessive num-

ber of components and then prune them.

• The Swedsen-Wang Cut (SW-cut) algorithm proposed in [3] and [2]. This gen-

eralizes the SW method [22] from Ising/Potts models to arbitrary probabilities.

We modified EM, two-step EM and SW-cut in our experiments so that they minimize the

energy function defined in Equation 3.1. K-means does not optimize our energy function,

but it is frequently used as an approximate algorithm for learning GMM and therefore

we include it in our comparison.

For each synthetic dataset in the experiment, we first construct the ELM, and then ran

each of the algorithms for 200 times and record which of the energy basins the algorithm

lands to. Hence we obtain the visiting frequency of the basins by each algorithm, which

are shown as bars of varying length at the leaf nodes in Figures 16 and 17.

Figure 16 shows a comparison between the K-means, EM and two-step EM algorithms

for n = 10 samples drawn from a low (c = 0.5) separability GMM. The results are

scattered across different local minima regardless of the algorithm. This illustrates the

difficulty in learning a model from a landscape with many local minima separated by

large energy barriers.

Figure 17 show a comparison of the EM, k-means, and SW-cut algorithms for m = 100

samples drawn from low (c = 0.5) and high (c = 3.5) separability GMMs. The SW-

cut algorithm performs best in each situation, always converging to the global optimal

solution. In the low separability case, the k-means algorithm is quite random, while the

EM algorithm almost always finds the global minimum and thus outperforms k-means.

However, in the high separability case, the k-means algorithm converges to the true model

the majority of the time, while the EM almost always converges to a local minimum



MAPPING ENERGY LANDSCAPES OF NON-CONVEX LEARNING PROBLEMS 17

(a) EM (b) k-means (c) SW-cut

(d) EM (e) k-means (f) SW-cut

Fig. 17. The performance of the EM, k-means, and SW-cut algo-

rithm on the ELM. (a-c) Low separability c = 0.5. (d-f) High sepa-

rability c = 3.5.

with higher energy than the true model. This result confirms a recent theoretical result

showing that the objective function of hard-EM (with k-means as a special case) contains

an inductive bias in favor of high-separability models [25, 21]. Specifically, we can show

that the actual energy function of hard-EM is:

E(Θ) = − logP (Θ|Z) + min
q

(KL(q(L)||P (L|Z,Θ)) +Hq(L))

where Θ is the model parameters, Z = z1, . . . , zm is the set of observable data points,

L is the set of latent variables (the data point labels in a GMM), q is an auxiliary

distribution of L, and Hq is the entropy of L measured with q(L). The first term in the

above formula is the standard energy function of clustering with GMM. The second term

is called a posterior regularization term [11], which essentially encourages the distribution

P (L|Z,Θ) to have a low entropy. In the case of GMM, it is easy to see that a low entropy

in P (L|Z,Θ) implies high separability between Gaussian components.

3.4. Experiments on Real Data. We ran our algorithm to plot the ELM for the well-

known Iris data set from the UCI repository [5]. The Iris data set contains 150 points
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Fig. 18. ELM and some of the local minima of the Iris dataset.

in 4 dimensions and can be modeled by a 3-components GMM. The three components

each represent a type of iris plant and the true component labels are known. The points

corresponding to the first component are linearly separable from the others, but the

points corresponding to the remaining two components are not linearly separable.

Figure 18 shows the ELM of the Iris dataset. We visualize the local minima by plotting

the ellipsoids of the covariance matrices centered at the means of each component in 2

of the 4 dimensions.

The 6 lowest energy local minima are shown on the right and the 6 highest energy local

minima are shown on the left. The high energy local minima are less accurate models

than the low energy local minima. The local minima (E) (B) and (D) have the first

component split into two and the remaining two (non-separable) components merged

into one. The local minima (A) and (F) have significant overlap between the 2nd and

3rd components and (C) has the components overlapping completely. The low-energy

local minima (G-L) all have the same 1st components and slightly different positions of

the 2nd and 3rd components.

We ran the algorithm with 0, 5, 10, 50, 90, 100 percent of the points with the ground

truth labels assigned. Figure 19 shows the global minimum of the energy landscape for

these cases.

4. Experiment II: ELM of Bernoulli Templates. The synthetic data and Iris

data in experiment I are in low dimensional spaces. In this section, we experiment with

very high dimensional data for a learning task in computer vision and pattern recognition.

The objective is to learn a number of templates BTk, k = 1, ...,K for object recog-

nition. Figure 20 illustrates 10 templates of animal faces. Each template consists of a

number of sketches or edges in the image lattice, and is denoted by a Boolean vector

BTk = (sk1, sk2, . . . , skn) with n being the number of quantized positions and orienta-

tions of the lattice which is typically a large number 100 ∼ 1000. skj = 1 if there is a

sketch at location j, and skj = 0 otherwise. Images are generated from one of the K

templates with noise. Suppose zi = (ri1, r12, . . . , rin) is an image generated from tem-

plate BTk, then rij = skj with probability p and rij = 1 − skj with probability 1 − p.
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Fig. 19. Global minima for learning from the Iris dataset with 0,

5, 10, 50, 90, and 100% of the data labeled with the ground truth

values. Unlabeled points are drawn in grey and labelled points are
colorized in red, green or blue.

Thus we call BTk, k = 1, 2...,K the Bernoulli templates. For simplicity we assume p is

fixed for all the templates and all the locations.

The energy function that we use is the negative log of the posterior, given by E(Θ) =

− logP (Θ|zi : i = 1 . . .m) for m examples {zi}mi=1. The model parameter Θ consists of

the Boolean vectors BTk = (sk1, sk2, . . . , skn) and the mixture weights αk for k = 1, ...,K.

By assuming a uniform prior we have

P (Θ|zi : 1 = 1, ...,m) =

m∏
i=1

K∑
k=1

αkp
∑n
j=1 1(rij=skj)(1− p)

∑n
j=1 1(rij 6=skj),
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(a) cat (b) chilchilla (c) dog (d) elephant (e) goat

(f) lion (g) monkey (h) mouse (i) owl (j) rabbit

Fig. 20. Bernoulli templates for animal faces. These templates have

low overlap and are well separable.

(a) Sketch dictionary (b) Noisy dog

Fig. 21. (a) Quantized dictionary with 18 sketches for each cell in

the image lattice. (b) Sample from the dog animal face template

with noise level p = 0.1

In the following we present experiments on synthetic and real data.

4.1. Experiments on Synthetic Data. [1] proposes a Two-Round EM algorithm for

learning Bernoulli templates with a performance bound that is dependent on the number

of components K, the Beronouilli template dimension n, and noise level p. In this

experiment, we examine how the ELM of the model space changes with these factors.

We discretize the model space by allowing the weights to take values αi ∈ {0, 0.1, . . . , 1.0}.
In order to adapt the GWL algorithm to the discrete space, we use coordinate descent

in lieu of gradient descent.

We construct 10 Bernouilli templates which represent animal faces in Figure 20. Each

animal face is aligned to a grid of 9 × 9 cells. Each cell may contain up to 3 sketches.

Within a cell, the sketches are quantized to 18 discrete location and orientations. More

specifically, each sketch is a straight line connecting the endpoints or midpoints of the

edges of a square cell, and the 18 possible sketches in a cell are shown in Figure 21.(a).

They can well approximate the detected edges or Gabor sketches from real images. The
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(a) map (b) number of local minima

Fig. 22. ELM complexity for varying values of p and number of
samples m in learning the 10 Bernouilli Templates.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t)

Fig. 23. Bernoulli templates for mouse faces with high overlap and low separability.

Bernouilli template can therefore be represented as a n = 9× 9× 18 dimensional binary

vector. Figure 21.(b) shows a noisy dog face generated with noisy level p = 0.1.

We compute the ELMs of the Bernouilli mixture model for varying numbers of samples

m = 100, 300, . . . , 7000 and varying noise level p = 0, 0.05, . . . , 0.5, 0.55. The number of

local minima in each energy landscape is tabulated in Figure 22 (b) and drawn as a heat

map in Figure 22 (a). As expected, the number of local minima increases as the noise

level p increases, and decreases as the number of samples decreases. In particular, with

no noise, the landscape is convex and with noise p > 0.45, there are too many local

minima and the algorithm does not converge.

We repeat the same experiment using variants of a mouse face. We swap out each

component of the mouse face (the eyes, ears, whiskers, nose, mouth, head top and head

sides) with three different variants. We thereby generate 20 Bernouilli templates in

Figure 23, which have relatively high degrees of overlap. We generated the ELMs of



22 MARIA PAVLOVSKAIA, KEWEI TU, AND SONG-CHUN ZHU

Fig. 24. Number of local minima found for varying degrees of overlap

in the Bernoulli templates. Each marker corresponds to a Bernoulli

mixture model that consists of three of the 20 Bernoullie templates.

various Bernouilli mixture models containing three of the 20 templates and noise level

p = 0. In each Bernouilli mixture model, the three templates have different degrees of

overlap. Hence we plot the number of local minima in the ELMs versus the degree of

overlap as show in Figure 24. As expected, the number of local minima increases with

the degree of overlap, and there are too many local minima for the algorithm to converge

past overlap c = 0.5.

4.2. Experiments on Real Data. We perform the Bernouilli templates experiment on

a set of real images of animal faces. We binarize the images by extracting the prominent

sketches on a 9x9 grid. Eight Gabor filters with eight different orientations centered in

the centers and corners of each cell are applied to the image. The filters with a strong

response above a fixed threshold correspond to edges detected in the image; these are

mapped to the dictionary of 18 elements. Thus each animal face is represented as a

18× 9× 9 dimensional binary vector. The Gabor filter responses on animal face pictures

are shown in Figure 25. The binarized animal faces are shown in Figure 26.

We chose 3 different animal types – deer, cat and mouse, with an equal number of

images chosen from each category (Figure 27). The binarized versions of these images

can be modeled as a mixture of 3 Bernouilli templates - each template corresponding to

one animal face type.

The ELM is shown in Figure 28 along with the Bernouilli templates corresponding to

three local minima separated by large energy barriers. We make two observations: 1. The

templates corresponding to each animal type are clearly identifiable, and therefore the

algorithm has converged on reasonable local minima. 2. The animal faces have differing

orientations across the local minima (the deer face on in the left-most local minimum is

rotated and tilted to the right and the dog face in the same local minimum is rotated

and lilted to the left), which explains the energy barriers between them.

Figure 29 shows a comparison of the SW-cut, k-means, and EM algorithm performance

as a histogram on the ELM of animal face Bernouilli mixture model. The histogram is

obtained by running each algorithm 200 times with a random initialization, then finding

the closest local minimum in the ELM to the output of the algorithm. The counts of
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Fig. 25. Animal face images and cor-
responding binary sketches indicates

the existence of a Gabor filter re-
sponse above a fixed threshold.

Fig. 26. Deer face sketches binarized
from real images.

Fig. 27. Animal face images of three categories.

the closest local minima are then displayed as a bar plot next to each local minimum. It

can be seen that SW-cut always finds the global minimum, while k-means performs the

worst probably because of the high degree of overlap between the sketches of the three

types of animal faces.

5. Experiment III: ELM of bi-clustering. bi-clustering is a learning process (see

a survey by [18]) which has been widely used in bioinformatics, e.g., finding genes with

similar expression patterns under subsets of conditions ([7, 13, 8]). It is also used in data

mining, e.g., finding people who enjoy similar movies ([27]), and in learning language

models by finding co-occurring words and phrases in grammar rules ([24]).

Figure 30.(a) shows a bi-clustering model (with multiplicative coherence) in the form

of a three layer And-Or graph. The underlying pattern S has two conjunction factors a

and b. a can choose from a number of alternative elements A1, A2, O1, O2 at probability

p1, ..., p4 respectively. Similarly, b can choose from elements O1, O2, B1, B2 with proba-

bility q1, ..., q4 respectively. It can be seen that a and b have shared elements O1, O2. For
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Fig. 28. ELM of the three animal faces dataset (dog, cat, and deer).

We show the Bernouilli templates corresponding to three local min-
ima with large energy barriers.

(a) SW-cut (b) EM (c) k-means

Fig. 29. Comparison of SW-cut, k-means, and EM algorithm per-

formance on the ELM of animal face Bernouilli mixture model.
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Fig. 30. (a) A bi-clustering model. (b) The co-occurrence matrix

with the theoretical frequencies of its elements.

comparison, we note that the clustering models in experiments I and II can be seen as

three-layer Or-And graphs with a mixture (Or-node) on the top and each component is

a conjunction of multiple variables.

From data sampled from this model, one can compute a co-occurrence matrix for the

two elements chosen by a and b, and the theoretical co-occurring frequency is shown in

Figure 30.(b). When only a small number of observations are available, this matrix may

have significant fluctuations. There may also be unwanted background elements in the

matrix. The goal of bi-clustering is to identify the bi-cluster (one of the two submatrixes

in Figure 30.(b)) from the noisy matrix. Note that this is a simple special case of the

bi-clustering problem and in general the matrix may contain many bi-clusters that are

not necessarily symmetrical.

We denote the bi-cluster to be identified by Θ = 〈A,B〉 where A is the set of rows

and B is the set of columns of the bi-cluster. Note that the goal of bi-clustering is not to

explain all the data but to identify a subset of the data that exhibit certain properties

(e.g., coherence). Therefore, instead of using likelihood or posterior probability to define

the energy function, we use the following energy function adapted from [24].

E(Θ) =

s log s+
∑

x∈A,y∈B
ax,y log ax,y −

∑
x∈A

rx log rx −
∑
y∈B

cy log cy


− α

2
∑

x∈A,y∈B
ax,y − |A| − |B|

 .

In the above formula, ax,y is the element at row x and column y, rx is the sum of row x,

cy is the sum of column y, and s is the total sum of the bi-cluster. The first term in the

energy function measures the coherence of the bi-cluster, which reaches its minimal value

of 0 if the bi-cluster is perfectly multiplicatively coherent (i.e., the elements are perfectly

proportional). The second term corresponds to the prior, which favors bi-clusters that

cover more data; the −|A| − |B| term is added to exclude rows and columns that are

entirely zero from the bi-cluster.

We experimented with synthetic bi-clustering models in which a and b each have 10

alternative elements. We varied the following factors to generate a set of different models:
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(i) the levels of overlaps between a and b: 0, 1, ..., 10; and (ii) random background noises

at level p. We generated 1000 data points from each model and constructed the matrix.

For each data matrix, we ran our algorithm to plot the ELMs with different values of α,

the strength of the prior.

Figure 31 shows some of the ELMs with the overlap being 0%, 20%, 40% respectively,

the prior strength being α = 0.02, 0.06, . . . , 0.24, and the noise level p = 0.00. The

local maxima corresponding to the correct bi-clusters (either the target bi-cluster or its

transposition) are marked with solid red circles; the empty bi-cluster is marked with a

gray circle; and the maximal bi-cluster containing the whole data matrix is marked with

a solid green circle.

These ELMs can be divided into three regimes.

• Regime I: the true model is easily learnable; the global maxima correspond to

the correct bi-clusters and there are fewer than 6 local minima.

• Regime II: the prior is too strong, the ELM has a dominating minimum which

is the maximal bi-cluster. Thus the model is biased and cannot recover the

underlying bi-cluster.

• Regime III: the prior is too weak, resulting in too many local minima at similar

energy levels. The true model may not be easily learned, although it is possible

to obtain approximately correct solutions.

Thus we transfer the table in Figure 31 into a “difficulty map”. Figure 32(a) shows

the difficulty map with three regimes with a noise level p = 0.00; Figure 32(b) shows the

difficulty map with p = 0.02. Such difficulty maps visualize the effects of various condi-

tions and parameters and thus can be useful in choosing and configuring the biclustering

algorithms.

6. Conclusion and Discussion. We present a method for computing the energy

landscape maps (ELMs) in model spaces for cluster and bi-cluster learning, and thus

visualize for the first time the non-convex energy minimization problems in statistical

learning. By plotting the ELMs, we have shown how different problem settings, such

as separability, levels of supervision, levels of noise, and strength of prior impact the

complexity of the energy landscape. We have also compared the behaviors of different

learning algorithms in the ELMs.

Our study leads to the following problems which are worth exploring in future work.

(1) If we repeatedly smooth the energy function, adjacent branches in the ELM

will gradually be merged, and this produces a series of ELMs representing the

coarser structures of the landscape. These ELMs construct the scale space of the

landscape. From this scale space ELM, we shall be able to study the difficulty

of the underlying learning problem.

(2) One way to control the scale space of ELM is to design a learning strategy. It

starts with lower-dimensional space, simple examples, and proper amount of su-

pervision, and thus the ELM is almost convex. Once the learning algorithm

reaches the global minimum of this ELM, we increase the number of hard exam-

ples and dimensions and the ELM becomes increasingly complex. Hopefully, the

minimum reached in the previous ELM will be close to the global minimum of
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Fig. 31. Energy Landscape Maps for learning two bi-clusters with
0%, 20%, 40% overlap and hyperparameter α. Red: correct bi-

cluster; Grey: empty bi-cluster; Green: maximal bi-cluster.

(a) Noise p = 0.00 (b) Noise p = 0.02

Fig. 32. Difficulty map for bi-clustering (a) without noise (b) with

noise. Region I: the true model is easily learnable. Region II: the
true model cannot be learned. Region III: approximations to the

true model may be learned with some difficulty.
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ELM at the next stage. We have studied a case of such curriculum learning on

dependency grammars in [20].

(3) The clustering models are defined on Or-And graph structure (here, ’or’ means

mixture and ’and’ means conjunction of dimensions, and the bi-clustering models

are defined on And-Or graph. In general, it was shown that many advanced

learning problems are defined on hierarchical and compositional graphs, which

is summarized as multi-layers of And-Or graphs in [31]. Studying the ELMs

for such models will be more challenging but crucial for many learning tasks of

practical importance.
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