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Abstract

In this paper, we present a mathematical theory for Marr’s
primal sketch. We first conduct a theoretical study of
the descriptive Markov random field model and the gen-
erative wavelet/sparse coding model from the perspective
of entropy and complexity. The competition between the
two types of models defines the concept of ““sketchability”,
which divides image into texture and geometry. We then pro-
pose a primal sketch model that integrates the two models
and, in addition, a Gestalt field model for spatial organiza-
tion. We also propose a sketching pursuit process that co-
ordinates the competition between two pursuit algorithms:
the matching pursuit [8] and the filter pursuit [12], that seek
to explain the image by bases and filters respectively. The
model can be used to learn a dictionary of image primi-
tives, or textons in Julesz’s language, for natural images.
The primal sketch model is not only parsimonious for im-
age representation, but produces meaningful sketches over
a large number of generic images.

1. Introduction

Objects in natural scenes appear at a wide range of scales
and our perception changes over distance. Looking at Fig.1,
we perceive merely a texture impression for the twigs and
leaves at far distance, but as they appear in larger size or
near distance, we start to notice the individual twigs and
then see the shapes of branches and trunks. In this paper,
we adopt an artist’s notion by calling the image portion with
distinguishable elements as sketchable, e.g., represented by
primitive shapes, and the portion without distinguishable el-
ements is said to be non-sketchable. When we walk in such
a scene, the resolutions and scales may evolve continuously
in raw images (at retina) as a Gaussian pyramid represen-
tation could account for. However, abrupt model switching
must be happening in our inner perception (at visual cortex),
which are quantum jumps between the percepts of texture
and shape/geometry.

Now we come to a long standing puzzle in vision: how
do we divide texture and geometry? In other words, can

we define a mathematical quantity for “sketchability”? Fur-
thermore, as the sketchable and non-sketchable portions are
intimately blended in generic images, what is a generic im-
age model that can account for both patterns seamlessly?
These questions are fundamental to vision, and the answers
to these questions have significant implications to a range
of other important vision problems raised at three levels of
studies: mathematics, neuroscience, and psychophysics.
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Figure 1: Scaling and sketchability illustration.

1. Markov random field theory vs. wavelet/sparse coding
theory. There are two prevailing mathematical theories for
image modeling. One is the descriptive Markov random
field (MRF) theory originated from statistical mechanics.
It represents a visual pattern by pooling the responses of a
bank of filters over space and the statistics of the responses
define a so-called Julesz ensemble[11] — a perceptual equiv-
alence class, which is in turn equivalent to the MRF mod-
els [12]. The second theory for image modeling is genera-
tive wavelet/sparse coding theory originated from harmonic
analysis. It represents images by elements selected from
a dictionary of image bases (primitives or token) [10] like
wavelets [3], ridgelets [1] etc. However, the two theories
are almost disjoint at present. By defining sketchability, we
shall quantify the regimes that the two theories work the
best and integrate them seamlessly.

2. Filters vs. bases in V1. It is well known that V1 cells
in primate visual cortex have Gabor like functions, but it is
puzzling what roles the cells play in visual representation,
as a Gabor function can be used as filters for pooling in-
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Figure 2: Sketching pursuit. (a) Input image. (b) Primal sketch with each element represented by bar or circle. (c)
Sketchable pixels (25%) generated by placing primitives at the elements. (d) Synthesized image with non-sketchable pixels
filled in by texture using sketchable pixels as boundary condition. (e) Collection of primitives or textons.

formation to form the texture perception [7] or be used as
a linear base for representing the image primitive [10]. We
believe that the V1 cells can switch between the two roles
when a critical sketchability condition occurs.

3. Marr’s primal sketch. In his monumental book [9],
Marr proposed primal sketch by extending a number of psy-
chological theories, such as texture/texton theory [6] and
Gestalt psychology. The primal sketch was supposed to be
a first level inner representation of generic images, in terms
of image primitives, such as bars, edges, terminators etc.
However, despite many inspiring observations, Marr pro-
vided neither an explicit mathematical model nor a rigorous
definition for the dictionary of textons and primitives. Thus
a solid model for primal sketch still eludes us.

Image Size 300%240
Sketch Pixels 18,185 ~ 25%
Primitive Number 230
Primitive Width 7
Primitive Parameters | 2,350 ~ 3.5%
MREF parameters 5*7*13 =455

Table 1: The parameters in our primal sketch model for the
horse riding image in Fig.2.

In this paper, we propose a mathematical theory of pri-
mal sketch and define sketchability. The theory consists of
four components.

(1). A primal sketch model for natural images, which in-
tegrates the MRF and wavelet theories. An example is illus-
trated in Fig.2 and Table 1. The input image is of 300 x 240
pixels, of which 18, 185 pixels (or 25%) are considered by
our model as “sketchable” and are shown in Fig.2.c, which
is modeled by 2, 350 parameters. They are mostly located at
the object boundaries as well as distinguishable features on
objects. Each element is represented by a primitive selected
from a dictionary (Fig.2.e).

Then the non-sketchable pixels (75%) are modeled by
MRF models which condition on the sketchable pixels —
so it is seamless. As all distinguished features are explained
by the image primitives, the texture can be modeled and

synthesized easily with a number of 455 parameters or less.
The parameters are for 7 filters for 5 image patches and each
pools a 1D histogram of filter responses in 13 bins. The
synthesized image in Fig.2.d shows vivid texture, e.g., the
grass under the fence. This model is parsimonious and the
sketch in Fig.2.b capture the essence of perception. Similar
results have been obtained for a large set of generic images.

(2). A definition of sketchability is given based on the
log likelihood ratio between the MRF model and linear
sparse coding model. Intuitively, a position with strong fil-
ter response is selected as sketchable primitive, whereas an
area with many weak filter responses are pooled to represent
texture.

(3). A sketching pursuit process, which combines the
matching pursuit procedure (Mallat and Zhang, 1993) for
the sketchable part by adding one base at a time, and the
filter pursuit procedure (Zhu, Wu, and Mumford 1997) for
the non-sketchable part by adding one filter at a time. The
matching pursuit and filter pursuit compete to explain the
image in the sense of maximizing the log-likelihood under
the guidance of the above sketching model.

(4). Learning a dictionary of primitives (or textons)
in image sketch. Traditional image bases, such as Gabor,
DoG, LoG, are found to be ineffective as the matching pur-
suit example shows in Fig.3. Our model can be used to
learn a dictionary of primitives and textons (see Fig.6) from
a large number (> 100) of images.

2. ThePrimal Sketch M oddl

2.1. Two mathematical schemesfor modeling

The objective of image modeling can be formulated as seek-
ing a model p(I) that approaches an underlying frequency
f(I) of the natural image ensemble, in the sense of min-
imizing the Kullback-Leibler divergence or MLE from an
observed image I on sufficiently large lattice A — Z2

p* = argmin KL(f[[p) = arg maxlog p(I), I~ f(I).

p is pursued in a series of nested probability families which
are general enough to approximate f to any precision.
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Figure 3: Matching pursuit (Mallat and Zhang, 1993): (b) and (d) are symbolic sketch using bars and circles for the K
pursued Gabor and LoG bases from dictionary Dp. (c) and (e) are the reconstructed images with K = 100 and K = 300
bases respectively. These bases not only miss the texture and blur object boundaries, but also do not summarize our percept.

QoCQlc-~-CQK—>Qf.

There are two mathematical theories/schemes for aug-

menting the probability family €2, which we shall combine
into our model.
1. The generative scheme and wavelet theory. Genera-
tive models interpret images by hidden “causes” of famil-
iar structures, such as sparse coding [10], or wavelet [3].
They adopt a dictionary of base functions, D = {bm,y,l,'r‘ :
Vx,y,l,r}.Each base b represents a known image structure
and has x, y for its center, [ for its type, such as Gabor, LoG,
DoG, and r for attributes like orientation and scale.

Then the model interprets an image as a linear superpo-
sition of K base fun}c{tions selected from the dictionary,

I=) ab;+n, b; €D, (1)

where «; is the coezfﬁéient of b; and n is the residue image.
Let B = {by,...,bg} and @ = {a, ..., ax } denote the
selected bases and coefficients.
With B and o, we write the model of I as

K
pI;B,a,0?) = exp{~|[T = a:bil[*/20°}.
i=1

2)

1
V2mro?
We define the penalized log-likelihood as

lsk(B7a702) :logp(I;B,a,UQ) —eK. 3

The penalty term can be interpreted from the AIC, MDL,
and Bayesian perspectives. From MDL perspective, € can
be viewed as the coding cost for each base. Then B, o, o'
can be estimated by max1m121ng ls(B, a, 0%). We define
lsk be the maximum. —lbk can be interpreted as the min-
imum coding length using this generative wavelet/sparse
coding regime.

This scheme augments the model family 2 by increasing
the number of variables,i.e., K. A greedy, but powerful,
algorithm is matching pursuit[8]. For each step, it selects a
base from the dictionary Dp so that the reconstruction error
decreases the most, or equivalently, the likelihood (B, &)
increases the most. It starts from the white noise model.

At step K + 1, it chooses a new base bx1 € Dp, and
thus augments the set from B and « to

B =BU{bgkyi}, and ay = aU{axi1}.
The increase of the log-likelihood is
AB(K + ].) = l(B+,a+) —
In fact,
Ap(K +1) = a%41/20° —e =< bri1,n >> /20> —€. (5)

I(I;B, ). “4)

It stops when Ap(K + 1) < 0.
pursuit criterion is to choose
(bK+1,0éK+1)* = argmaXAB(K+ 1). (6)

Fig.3 displays an example of matching pursuit. Two
drawbacks are obvious. (1) The bases miss the texture and
blur object boundaries. (2) The symbolic sketches do not
represent the objects well, compared with Fig.2.b
2. The descriptive scheme and MRF theory. Descriptive
image models interpret images at the signal level, e.g., raw
pixel intensities, by pooling statistics using features, e.g.,
filters. A typical work is the FRAME model for texture[12],
which pools feature statistics by a dictionary of filters D =
{Fyyir : Vz,y,l,r}. Interestingly these filters have ex-
actly the same form as the image bases in dictionary Dp,
but they play a different role.

Suppose we select a set of K filters F = {F}, ..., Fx} C
Dr. For each filter, we compute a 1D histogram by pooling
the filter responses around a local neighborhood 9(z, y) on
image I, and denote it by

ha 1, (2) = Z

(&med(z,y)
d() is the Dirac delta function, and ) we, = 1 are the
weights. We keep the location index z,y for inhomoge-
neous patterns. In practice, we may divide the image into
several regions by clustering the histograms. We denote the
histograms by vectors (after discretization)

hoyir(2)y H={hgyir:VF: 1, € F}.

Therefore, Matching

we (2= < Fe i I>).

hyyir =

The statistics H define a Julesz ensemble[11]
QH) ={I: hL;z,y,l,7) =hy y1,r,VFs 1, € F}

TEEE ‘:
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b. K =0

a. input
Figure 4: Filter pursuit (Zhu, Wu, Mumford,1997): adding K filters in a FRAME model by minimax entropy. The filters
pool the statistical information (histograms) to yield a texture impression — we call it perceptually equivalent reconstruction.

When K is large or H is sufficient, any image I € Q(H)
from the ensemble is said to be perceptually equivalent re-
construction to the observed image. The Julesz ensemble
is shown to be equivalent to the FRAME model of Gibbs
form[11]
PLE.B) = Zexp{ D Beyin(< FoyrrnI>)} (D)
Fy y1,r€F

The potential 3, ,;,(2) is a 1D function on the filter
response 2 =< Fy ., I > and it depends on location for
inhomogeneous patterns. We denote them by vector 3, , ; .
and collect themin 3 = {8, , ;. : VFy 1, € F}. Bisa
dual representation of the pooled statistics H.

Similar to generative model, we define the penalized
likelihood

lnsk(FnB) = logp(LFa/B) —€eK. 3
The € can be interpreted as the coding cost for each filter.
F and 3 can be estimated by maximizing /,,sx (F,3). We
define Znsk as the maximum.

This descriptive scheme augments the model family 2
by increasing the number of filters K and statistics . It starts
from the white noise model. For each step it selects a filter
from the dictionary D so that [(F, 3) increases the most.

At step K + 1, it chooses a new filter Fix 1 € Dp, and
thus augments the sets from F and 3 to

F+ =FuU {FK+1}7 and ,8+ = {ﬂl?"'?ﬂKvﬂKJrl}'

The increase of the log-likelihood is

Ap(K +1) =logp(LFy,B,) —logp(LF,B8). (9)

Let J € Q(H) be a “reconstruction” image with K fil-
ters, and h 11 (J) is the local histogram of J pooled by the
new filter Fixy1. Let hg () be the local histogram of
Fi 1 on the original image I. Then approximately,

Ap(K+1) = %(hKJrl (1) —hg1(1)"V " (i1 () —hx11(T))

is the “reconstruction” error measured by Fx 1, where V
is the variance of hx 1 (conditioning on histograms of pre-
vious filters). V' can be estimated from J.
Therefore, Filter Pursuit criterion is to choose
(Fr4+1,Bx41)" =argmaxAp(K +1).  (10)
It stops when Ap(K +1) < 0.

c. K=2

d K=3 e K=7

Fig.4 displays an example of filter pursuit on homoge-
neous texture. With ' = 0, the sample image is white
noise. With K = 7 filters, the sampled image in Fig.4.e is
perceptually equivalent to the input image. The main draw-
backs of this model are (1) difficulties in synthesizing sharp
features, like shapes and geometry —i.e., the “sketchable”
features, and (2) computational complexity when filters of
large window sizes are selected for sketchable features.

For computational efficiency, we can use the following
approximation

log (I, F. ) ~ Iy + 1 (HL — Ho) V™ (H — Hy), (11)
where [ is the log-likelihood of the featureless white noise
model, Hj is the histograms computed from the white noise
model, and V' is the variance-covariance matrix of H that
can be estimated from the observed image.

2.2. Two entropy regimes and sketchability

It comes to our attention that the two schemes are effective
on two different entropy (complexity) regimes which are
complementary to each other. Thus by integrating the two
schemes, we can remove their “blind spots”, and resolve
the representational and computational difficulties in both
schemes.

The FRAME/Julesz model targets the high entropy
regime, whereas sparse coding targets the low entropy
regime. This is revealed in the following two propositions.
Proposition 1: Let f(I) be the true distribution that gen-
erates I, p(I) the FRAME model approching f(I) by mini-
mizing K L(f]||p). Then

KL(f||p) = entropy(p) — entropy(f) > 0.

That is, the entropy of the fitted FRAME model is always
no less than the entropy of f.

We rewrite reconstruction eqn (1) in a matrix form J =
BAandI =J + n. The images I and J are |A| x 1 vector
and B is a |A| x |Dp| constant matrix with each column
being a base function in D, and A is the | Dp| x 1 vector for
the coefficients. Due to sparsity, elements in A are mostly
close to zero except |a| = O(]A|/100) elements are non-
zero. Thus p(A) = p(«) has very low entropy, suppose we
bound it by entropy(p(A)) < C.

YFF.F.

COMPUTER
SOCIETY

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE



Proposition 2: In sparse coding model, with J = BA,
entropy (p(J)) + entropy(p(A | J))
= entropy(p(A)) + %log det(BB').

That is, the resulting p(J) has low entropy bounded by
C + const, and it cannot account for the images generated
from f(I) whose entropy is larger than this bound. In other
words, the sparse coding model puts all the non-sketchable
patterns into the residue n. This is very obvious in Fig. 3
where the texture background are not captured by the bases
at all.

Furthermore, if the sparse coding model is forced to re-
construct the texture n, then it becomes non-sparse and the
computation in that regime is NP-complete. So it is compu-
tationally impaired as well in this regime.

To summarize, the sparse coding (wavelet) model is ef-
fective in low entropy regime where images have order and
structures, such as the shape and geometry. We call this
regime as “sketchable”. The FRAME model is effective
in high entropy regime where images have less structures,
such as stochastic texture. We call this regime as “non-
sketchable”.

The intrinsic connection between the two models are re-
vealed by the following proposition. Here a filter is the same
asabase I, 1, = by 41,

Proposition 3: The FRAME model p(I; F, 3) is the equi-
librium distribution of the following PDE

1
dI(t) = 5 > By (S I(t), by >)dtxby ) p+dn(t),

beF
where 5’() is the derivative of the potential function.

In this dynamics, each step is a linear superposition of
bases by ;.- plus a small Brownian noise dn(t). This ad-
dtive form coincides with sparse coding model in eqn (1).
The difference is that this dynamics is iterative and non-
sparse.

The following theorem tells us the behavior of the en-
tropy with the change of scale/distance.

Theorem: Let I be an image defined on a lattice A, let p(I)
be the probability density of I. Let I, be a sub-sampled
version of T defined on the smaller lattice A,;. Then 1). the
overall entropy of I, is smaller than or equal to the entropy

of I.
entropy (p(Ls)) < entropy(p(I)).
2). the entropy rate (i.e., entropy per pixel) of I, is larger

than or equal to the entropy rate of I.

entropy (p(15))/|As| > entropy(p(T))/|A|.

This suggests that when we look at an image at higher
resolution, we see more things (i.e., overall entropy in-
creases), but at the same time, things are getting sparser
(i.e., entropy rate decreases). This suggests that we need
an overcomplete dictionary to achieve more sparsity.

Definition of sketchability: Let I be a local image patch.
Let /.., be the penalized log-likelihood of the fitted FRAME
model, and let iy be the penalized log-likelihood of the fit-
ted linear sparse coding/wavelet model. Then the image
patch I is sketchable if fsk > [nsk. The sketchability is de-
fined as Iy, — [,k

Perhaps the most interesting situation is where the
sketchability is around 0. For example, when we are getting
close to a tree, there is a distance where the pattern of twigs
starts to jump back and forth between being non-sketchable
and being sketchable.

2.3. Theprimal sketch model

In light of the above analysis, we adopt the following primal
sketch model for early vision. It integrates and improves the
sparse coding and MREF in the following way.

1. The image lattice is divided, automatically, into two
disjoint parts: the sketchable Ag where structures occur
and the non-sketchable A, qy.

A = Agc U Apgr.

2. The sketchable part of I is explained by the sparse

coding model with an unknown number of K p bases,

B
IAsk = Z aib’i +n, bi € Dixn.

Note that we replgcé the generic base dictionary Dp by a
texton/primitive dictionary Dyy,,. Fig. 6 shows some typical
examples of the primitives in D;y,. These primitives have
much stronger contrast than the Gabors/LoG bases. They
are “‘expert” and one location is explained by one primitive.
Thus it will not have the blurring problem of Dp as Fig. 3
illustrated. In other words, Dy, gives much sparser repre-
sentation than Dp, and Dy, is much larger Dp.

The image follows the generative model in eqn (2),

j 1N Np(IAsk;B7a)' (12)

Again B, o denote the sets of bases and coefficients

B ={by,..,bg,}, a={a,...,arx,}

3. The non-sketchable part of I is explained by the in-
homogeneous Gibbs model (FRAME in eqn.7), using the
sketchable part Iy, as boundary conditions

Inpa ~ p(IAmk Ir. F, B). (13)
It is specified by the set of K filters and potentials,

F={F,...Fk.}, B=101,-Brp}

The filters are selected from generic dictionary F C Dp
and vary over space for inhomogeneity.

4. In the original sparse coding model, the base locations
and coefficients are assumed to be iid. Thus they don’t line
up well in space, see Fig. 3.b and d. To resolve this problem,
we introduce a new concept called Gestalt field similar to
the mixed random fields[4].

We organize the bases (like tokens) in a 2D attributed
graph G =< V, E >. Any vertex v € V is a primitive with
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two sets of variables: the attributes («, z,y, [, ) and up to
5 address variables (aq, ...,as) which are either empty or
point to neighbors of v and the type of connection, i.e, conti-
nuity, junction etc. Suppose we connect all the neighboring
pairs (s, t) and their relationship ¢ in edge set

E = {ej = (fj,Sj,tj) : Sj,tj S ‘/, _] = 1,2,...,N}.
Then we have the Gestalt field,

p(B, o) x exp{—A,Kp — Z Vo, (s5,t5)}.  (14)
e;€ER
1e(s,t) is the potential function of relationship ¢ on the
attributes of two bases, such as their relative distance and
angle.
Summarizing the sketchable (for textons), non-
sketchable (for texture), and Gestalt field in eqns.12, 13,
and 14, we obtain the primal sketch model,

p(I; B,a,F, ﬁ) = p(Bv a)p(IAsk; B, a)p(IAnsk

The above model may need MCMC method for global
inference. Here we propose a greedy method — called
sketching pursuit. Intuitively, the sketching pursuit pro-
cess coordinates the competition between filter pursuit and
matching pursuit, under the guidance of the primal sketch
model.

The sketching pursuit process.
Given the current B, « and F', 3,

1. Compute the log-likelihood increase for a primitive b*

Ap =

€Dtxn

2. Compute the log-likelihood increase for a filter F™*
AF = FrréaDXF Ing(:L Bv «, F+7 ﬁ+)7logp(17 B7 «, F7 ﬁ)

3. If Ar > Ap and Ar > ¢, then augment F and update 3.
(F,B) — (FU{F"},BU{B"}).

4. If Ap > Ar and Ap > ¢, then augment B and .
(B,a) — (BU{b*'},auU{a*}).

5. Stopif Ap < e and Ar < e. Otherwise repeat 1-4.

3. Algorithmsand experiments
3.1. Sketching pursuit and refinement

In the above sketching pursuit process, we expect that
matching pursuit will win first, and after most of the sketch-
able parts get sketched, filter pursuit will start to win, and
the non-sketchable parts will be filled in. In this paper, we
adopt the following algorithms in our experiment.

First, we whiten the image, so that the texture back-
grounds are closer to white noise, thus we can concentrate
on the sketchable parts by a simplified and fast sketching

IAsk; Fw@)

bmax logp(:L B+7 a4, F7 B)ilogp(]:v B7 «, F7 /B)

pursuit process. Recall that in the matching pursuit algo-
rithm, all candidate bases b € Dp are ranked from high to
low according to their coefficient « =< n,b >. The base
with the highest coefficient is selected each time. In con-
trast, in the sketching pursuit, each existing primitive in the
current set B, i.e., b, , 1, € B, will erect some preferences
in their neighborhood. For a candidate primitive b’ in its
neighborhood, we measure the possible type of neighbor-
ing relationship

0* = arg max e(b, b).

For example, b’ and b form a junction or continuity etc.
Then we rank a combination of ¥« (b, b’) and the coeffi-
cient of b’. Thus a primitive that fits to existing primitives
are given priority. This is consistent with the primal sketch
model p(I; B, o, F, 3).

The above fast sketching process is refined by a second
step. We replace the selected base functions by local seg-
ments of ridge functions estimated from the image patch un-
der the base window. We compute the profiles of primitives
by averaging along their main axis. The primitive windows
can extend or shorten slightly for better alignment. Some
gaps are filled and some isolated primitives are removed to
further minimize the energy of the Gestalt field.

Fig.8 shows two examples of the refinement effects. We
represent an elongated primitive by a line segment, Fig.8.b
is the results of the fast sketching process, which are refined
in Fig.8.c.

After the sketchable parts are identified, we then target
the non-sketchable parts. We first cluster the non-sketchable
pixels into a number of clusters or patches based on lo-
cal histograms of filter responses. Then we model each
patch by a Julesz ensemble or equivalently MRF model, and
synthesize the non-sketchable parts by randomly sampling
from the Julesz ensembles.

3.2. Dictionary of image primitivesor textons

Tl ——
ﬁ I
(a) Gabor Cosine  (b) local image (c) primitive

Figure 5: The comparison of a Gabor Cosine base, the orig-
inal local image which the Gabor base is supposed to fit,
and a primitive in the texton dictionary.

Our model can also be used to learn a large dictionary
Dixn of image primitives from a larger number of natural
images. Some are shown in Fig. 6. We use a simple al-
gorithm along with the sketching refinement process. We
start with Diy,, = Dp. After obtaining a raw sketch and
refine the windows, we collect the windowed image primi-
tive covered by a base b € Dp. If b is an elongated base,
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like Gabor cosine and Gabor sine, we average the intensi- 4. Discussion
ties of the primitive along the main axis. If b is an isotropic
base, like LoG or DoG, we average the intensities circularly

around its center. Then we add the image primitive to Diyy,.

In this paper, we present a primal sketch model that in-
tegrates three components: a descriptive texture model
(Julesz ensemble), a generative model with image primi-
tives (textons), and a Gestalt field.

The integration of the two modeling schemes merged
two powerful methodologies: MRF and wavelet theories.
This naturally leads to the answer for sketchability as a
model switching/selection problem in statistics.

Our work is interestingly related to the inpainting work
(Chan and Shen, 01 and others) which adopts an PDE for
filling in scrached pictures. The inpainting work is a vari-
ational method for minimizing the smoothness term. Our
method is more general in the potential formulation and
simulates the texture by sampling, instead of maximization.

DEmNEERAR

Figure 6: The primitives (or textons) collected across im-
ages. They are isotropic blobs, bars, step edges, (L, T, Y)-
junctions, and crosses.
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Figure 8: Results of the primal sketch model. (a) input image; (b) fast sketching pursuit result; (c) sketching refinement
result; (d) synthesized image from the model p(I; B, o, F, 3)).
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Figure 9: Results of the primal sketch model. First row: input image; Second row: sketching refinement result; Last row:
synthesized image from the model p(I; B, o, F, 3)).
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