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Abstract

This article proposes an active basis model, a shared sketch algorithm, and a compu-

tational architecture of sum-max maps for representing, learning, and recognizing de-

formable templates. In our generative model, a deformable template is in the form of

an active basis, which consists of a small number of Gabor wavelet elements at selected

locations and orientations. These elements are allowed to slightly perturb their locations

and orientations before they are linearly combined to generate the observed image. The

active basis model, in particular, the locations and the orientations of the basis elements,

can be learned from training images by the shared sketch algorithm. The algorithm se-

lects the elements of the active basis sequentially from a dictionary of Gabor wavelets.

When an element is selected at each step, the element is shared by all the training images,

and the element is perturbed to encode or sketch a nearby edge segment in each training

image. The recognition of the deformable template from an image can be accomplished

by a computational architecture that alternates the sum maps and the max maps. The

computation of the max maps deforms the active basis to match the image data, and

the computation of the sum maps scores the template matching by the log-likelihood of

the deformed active basis.

Keywords: Deformable template; Generative model; Shared sketch algorithm; Sum maps and
max maps; Wavelet sparse coding.
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1 Introduction

Deformable template is an important element in object recognition [19, 24, 12, 3, 21, 1]. In this
article, we propose a generative model, a model-based algorithm, and a computational architecture
for representing, learning and recognizing deformable templates.

1.1 Form of representation

Figure 1: Active basis. Each basis element is illustrated by a thin ellipsoid at certain location and
orientation. The upper half shows the perturbation of one basis element. By shifting its location
or orientation or both within a limited range, the basis element (illustrated by a black ellipsoid)
can change to other Gabor wavelet elements (illustrated by the blue ellipsoids).

We call our model the active basis model. An active basis consists of a small number of Gabor
wavelet elements at selected locations and orientations. These elements are allowed to slightly
perturb their locations and orientations before they are linearly combined to generate the observed
image. Figure (1) illustrates the basic idea. The lower half of Figure (1) shows an active basis, where
each element is illustrated by a thin ellipsoid at a certain position and with a certain orientation.
The upper half of Figure (1) illustrates the perturbation of one basis element. Intuitively, each
Gabor wavelet element can be considered a “stroke.” The template is formed by a composition of
a number of strokes. These strokes can be slightly perturbed, so that the template is deformable.

Figure (2) shows a real example. It displays 7 images of cars at the same scale and in the
same pose. These images are defined on a common image lattice, which is the bounding box of the
cars. These images are represented by an active basis consisting of 60 Gabor wavelet elements, as
displayed in the first block of Figure (2). Each wavelet element is represented symbolically by a bar
at the same location and with the same length and orientation as the wavelet element. The length
of each element is about 1/10 of the length of the image patch. These elements do not have much
overlap and are well connected. They form a common template or an average sketch of the training
image patches. The 60 elements of the active basis in the first block of Figure (2) are allowed to
locally change their locations and orientations to code each observed image, as illustrated by the
remaining 7 blocks of Figure (2). Within each block, the left plot displays the observed car image,
and the right plot displays the 60 Gabor wavelet elements that are actually used for encoding the
corresponding observed image. They form the deformed active basis that sketches the observed
image.
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Figure 2: Active basis formed by 60 Gabor wavelet elements. The first block displays the 60
elements, where each element is represented by a bar. For each of the other 7 blocks, the left plot
is the observed image, and the right plot displays the 60 Gabor wavelet elements resulting from
locally shifting the 60 elements in the first block to fit the corresponding observed image.

1.2 Scheme of learning

Figure 3: Shared sketch algorithm. A selected element (colored ellipsoid) is shared by all the train-
ing images. For each image, a perturbed version of the element seeks to sketch a local edge segment
near the element by a local maximization operation. The elements of the active basis are selected
sequentially according to the Kullback-Leibler divergence between the pooled distribution (colored
solid curve) of filter responses and the background distribution (black dotted curve). The diver-
gence can be simplified into a pursuit index, which is the sum of the transformed filter responses.
The sum essentially counts the number of edge segments sketched by the perturbed versions of the
element.

The active basis, in particular, the locations and the orientations of the basis elements, can
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be learned from training image patches by the shared sketch algorithm. The algorithm selects
the elements of the active basis sequentially from a dictionary. The dictionary consists of Gabor
wavelets at a dense collection of locations and orientations. Figure (3) illustrates the selection of
three elements by learning from a sample of training images of cars. When an element is selected,
the element is shared by all the training images in the sense that a perturbed version of this
element is added to improve the encoding of each image. Specifically, the element is perturbed to
a location and orientation that achieves the local maximum response within a small neighborhood
of the selected element, that is, the perturbed version of the selected element seeks to sketch a
nearby edge segment in each training image. For instance, when the green element is selected, it is
attracted to the nearby edge in each training image. The same is true for the red element and the
blue element.

For each element, a distribution of filter responses is pooled over all the training images at
the perturbed locations and orientations. The elements are selected in an order according to
the Kullback-Leibler divergence between the pooled distribution (solid curve) and a background
distribution (dotted curve). The background distribution is pooled over natural images. With
proper parametrization, the Kullback-Leibler divergence can be reduced to a pursuit index that
drives the selection of the elements. This index takes the form of the sum of the transformed filtered
responses, summed over all the training images. The transformation is an increasing function that
discounts large filter responses. So the pursuit index can be interpreted as a voting of the training
images, and the index favors the element whose perturbed versions sketch as many edge segments
as possible. After an element is selected, its perturbed version explains away a small part of each
training image, and thereby inhibits nearby Gabor wavelet elements from coding the same part of
the image. So the selected elements of the active basis are well spaced, and usually form a clear
template.

The active basis displayed in Figure (2) is learned by the shared sketch algorithm. It is worth
noting that for the last two examples in Figure (2), the strong edges in the background are not
sketched, because these edges are not shared by other examples, and such edges are ignored by the
shared sketch algorithm.

1.3 Architecture of inference

After learning the active basis from training images, the detection and recognition of the deformable
template from a testing image can be accomplished by a computational architecture of sum-max
maps. This architecture alternates between sum maps and max maps. The sum maps result from
local filtering operations for detecting edge segments and shapes. The max maps result from local
maximization operations that track shape deformations. Figure (4) illustrates this architecture.
It starts from convolving the image with Gabor filters at all the locations and orientations. The
filtered images become the first layer of the sum maps, or SUM1 maps, because each Gabor filter
is a local summation operator. In Figure (4), the thin ellipsoids in the SUM1 maps illustrate the
local filtering or summation operation. Then a layer of max maps, or MAX1 maps, is computed
by applying a local maximization operator to the SUM1 maps. In Figure (4), the arrows in the
MAX1 maps illustrate that the local maximization is taken over small perturbations of the Gabor
wavelets. This local maximization tells us how to deform the active basis to match the image data.

On top of that, a sum map, or SUM2 map, is computed by applying a local summation operator
to the MAX1 maps. Specifically, we scan the active basis template over the whole image lattice,
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Figure 4: Sum-max maps. The SUM1 maps are obtained by convolving the input image with Gabor
filters at all the locations and orientations. The ellipsoids in the SUM1 maps illustrate the local
filtering or summation operation. The MAX1 maps are obtained by applying a local maximization
operator to the SUM1 maps. The arrows in the MAX1 maps illustrate the perturbations over
which the local maximization is taken. The SUM2 map is computed by applying a local summation
operator to the MAX1 maps, where the summation is over the elements of the active basis. This
operation computes the log-likelihood of the deformed active basis, and can be interpreted as a
shape filter.

and for each pixel of the SUM2 map, we compute a weighted sum of the values of the MAX1 maps,
where the summation is over the locations and orientations of the elements of the active basis
centered at this pixel. So this is another layer of filtering operation, and can be considered a shape
filter. It computes the log-likelihood of the deformed active basis. In Figure (4), the car template
in the SUM2 map illustrates the active basis centered at one pixel. We scan this template over all
the pixels to obtain the SUM2 map, which scores the template matching.

The SUM2 map is obtained by a local summation operator of fixed shape. However, because
the local summation is applied to the MAX1 maps, shape deformation is automatically accounted
for, and the template matching score is invariant to shape deformation.

Besides the log-likelihood scoring for template matching, we also develop a non-probabilistic
scoring method based on active correlation between the template and the image. Essentially, the
active basis defines the notions of “average” and “correlation” of image patches that are invariant
of local shape deformations.

What is described above is a bottom-up scoring process for object detection. After an object is
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detected, a top-down sketching process is triggered. This process deforms the template at the de-
tected location, to match the deformable template to the image. This is accomplished by retrieving
the locations and orientations of the corresponding Gabor wavelets that achieve the local maxima
in the computation of the MAX1 maps.

1.4 Review of literature

This work is a continuation of our search for generative models of visual patterns, as well as our
attempt to understand these models within a common information-theoretical framework [22].

For a long time, we have been trying to understand what is beyond the Olshausen and Field’s
linear sparse coding model [15]. The work of Viola and Jones [20] based on adaboost [8] motivated
us to apply Olshausen and Field’s representation to modeling specific image ensembles of object
categories, instead of the generic ensemble of natural images. This led us to retool our previous
work on textons [26], in particular, to parallelize the matching pursuit algorithm of Mallat and
Zhang [14] in order to pursue a sparse coding for multiple training images simultaneously.

While the Olshausen and Field’s model is intended to explain the role of simple cells in primary
visual cortex or V1, the theory of Riesenhuber and Poggio [17] holds that the V1 complex cells
perform local maximum pooling of responses of simple cells. This motivated us to add local pertur-
bations to the locations and orientations of the linear basis elements in the Olshausen and Field’s
model, so that the linear basis becomes active, and the active basis becomes a deformable template
[24]. This connects the Olshausen and Field’s model to shape models such as active contours [11]
and active appearance model [3]. In the context of the active basis model, the local maximum
pooling of Riesenhuber and Poggio can be interpreted as deforming the active basis to explain the
image data.

The active basis model is a simplest instance of the and-or graph [28] in the compositional
framework [10]. The and-or grammar naturally suggests that one can further compose multiple
active bases to represent more articulate shapes. Such a recursive active basis leads to a recursive
architecture of sum-max maps for inference.

2 Representation, Learning, and Inference

This section presents the active basis representation, and describes the shared sketch algorithm and
the sum-max maps. We leave theoretical underpinnings and justifications to the next section.

2.1 Gabor wavelets and sparse coding

A dictionary of Gabor wavelets. To fix notation, a Gabor function [4] is of the form G(x, y) ∝
exp{−[(x/σx)2 + (y/σy)2]/2}eix, where σx < σy. We can translate, rotate, and dilate G(x, y)
to obtain a general form of Gabor wavelets: Bx,y,s,α(x′, y′) = G(x̃/s, ỹ/s)/s2, where x̃ = (x′ −
x) cos α + (y′ − y) sin α, ỹ = −(x′ − x) sinα + (y′ − y) cos α. (x, y) is the central position, s is the
scale parameter, and α is the orientation. The Gabor wavelets give reasonable fit to the receptive
fields of the simple cells in V1 [4].

The central frequency of Bx,y,s,α is ω = 1/s. Bx,y,s,α = (Bx,y,s,α,0, Bx,y,s,α,1), where Bx,y,s,α,0

is the even-symmetric Gabor cosine component, and Bx,y,s,α,1 is the odd-symmetric Gabor sine
component. We always use Gabor wavelets as pairs of cosine and sine components. We normalize
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both the Gabor sine and cosine components to have zero mean and unit `2 norm. For each Bx,y,s,α,
Bx,y,s,α,0 and Bx,y,s,α,1 are orthogonal to each other.

Let D be the domain of image lattice. The dictionary of Gabor wavelet elements is Dictionary =
{Bx,y,s,α,∀(x, y, s, α)}, where (x, y, s, α) are densely sampled: (x, y) ∈ D with a fine sub-sampling
rate (e.g., every 1 pixel or every 2 pixels), and α ∈ {aπ/A, a = 0, ..., A− 1} (e.g., A = 15).

Filtering operation. For an image I defined on domain D, the projection coefficient of I
onto Bx,y,s,α,η, or the filter response, is 〈I, Bx,y,s,α,η〉 =

∑
x′,y′ I(x

′, y′)Bx,y,s,α,η(x′, y′). We write
〈I, Bx,y,s,α〉 = (〈I, Bx,y,s,α,0〉, 〈I, Bx,y,s,α,1〉). The local energy is |〈I, Bx,y,s,α〉|2 = 〈I, Bx,y,s,α,0〉2 +
〈I, Bx,y,s,α,1〉2. |〈I, Bx,y,s,α〉|2 measures the local spectrum of I. The local maxima of |〈I, Bx,y,s,α〉|2
can be used to detect edges in I.

Whitening normalization. To make filter responses comparable between different training im-
ages, we need to normalize them. Let

σ2(s) =
1

|D|A
∑
α

∑

(x,y)∈D

|〈I, Bx,y,s,α〉|2, (1)

where |D| is the number of pixels in I, and A is the total number of orientations. σ2(s) measures
the power spectrum of I around frequency 1/s. For each input image I, we normalize |〈I, Bx,y,s,α〉|2
by changing it to |〈I, Bx,y,s,α〉|2/σ2(s). This is a whitening normalization, because it makes the
power spectrum flat over s.

Linear additive model that explains the image data. A deeper perspective than local filtering
is offered by the sparse coding theory of Olshausen and Field [15], where Bx,y,s,α serves as a
representational, instead of operational, element. Specifically, for an image I, we can represent it
by

I =
n∑

i=1

ciBi + U, (2)

where Bi = Bxi,yi,si,αi , (ci) are the coefficients, and U is the unexplained residual image. Recall
that each Bi is a pair of Gabor cosine and sine components. So Bi = (Bi,0, Bi,1). Accordingly,
ci = (ci,0, ci,1) and ciBi = ci,0Bi,0 + ci,1Bi,1. The set of Gabor wavelet elements (Bi, i = 1, ..., n)
are selected from the dictionary. If the (Bi, i = 1, ..., n) are orthogonal, i.e., if they do not overlap
in spatial domain or frequency domain, then ci = 〈I, Bi〉.

Sparse coding means that for a typical natural image I, one can usually select a small number n

of elements from the dictionary, so that a linear combination of these elements can represent I with
a small residual U . Of course, for different images, one usually selects different sets of elements.
The wavelet sparse coding representation (2) reduces an image of tens of thousands of pixels to
a small number of wavelet elements or strokes. Using the sparse coding principle, Olshausen and
Field [15] were able to learn from natural image patches a dictionary of Gabor-like wavelet elements
that closely resemble the properties of the receptive fields of the simple cells in V1.

Matching pursuit that explains away the image data. The matching pursuit algorithm of Mallat
and Zhang [14] is a commonly used method for fitting model (2). Each step of matching pursuit
explains away a small part of image data by selecting a wavelet element, which then inhibits
nearby neighboring elements from being included in the linear representation. This idea is used in
the shared sketch algorithm.
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2.2 Representation: active basis model

The sparse coding model (2) is intended to model the whole ensemble of natural images, where for
different I, one may represent them with completely different wavelet elements (Bi, i = 1, ..., n) with
different n. In the active basis model, we apply the sparse coding model (2) to image ensembles of
various object categories. Then for each category, we require that the images share the same set
of wavelet elements (Bi, i = 1, ..., n). These elements form a common template. However, when we
use (Bi, i = 1, ..., n) to encode each individual image, we allow the template to slightly deform, by
allowing the elements or strokes to perturb their locations and orientations.

Let {Im,m = 1, ..., M} be a set of training image patches defined on a common rectangle lattice
D. We assume that D is the bounding box of the objects in {Im}, and these objects are from the
same category and in the same pose. We shall relax this assumption later.

Our method is scale specific. We fix s so that the length of Bx,y,s,α (e.g., 17 pixels) is fixed. We
can learn templates at multiple scales and then combine them.

The active basis model is a composition of strokes that are perturbable:

Composition : Im =
n∑

i=1

cm,iBm,i + Um, (3)

Perturbations : Bm,i ≈ Bi, i = 1, ..., n, (4)

where Bi ∈ Dictionary, Bm,i ∈ Dictionary, (cm,i, i = 1, ..., n) are the coefficients, and Um is the
unexplained residual image. To define the perturbation Bm,i ≈ Bi, suppose

Bi = Bxi,yi,s,αi , (5)

Bm,i = Bxm,i,ym,i,s,αm,i , (6)

then Bm,i ≈ Bi if and only if there exists (dm,i, δm,i) such that

xm,i = xi + dm,i cosαi, (7)

ym,i = yi + dm,i sinαi, (8)

αm,i = αi + δm,i, (9)

dm,i ∈ [−b1, b1], δm,i ∈ [−b2, b2]. (10)

That is, we allow Bi to shift its location along its normal direction, and we also allow Bi to shift
its orientation. See Figure (1) for an illustration. We call (dm,i, δm,i) the activity or perturbation
of Bi in image Im. b1 and b2 are the bounds for the allowed activities (e.g., b1 = 6 pixels, and
b2 = π/15).

In the above notation, the active basis B = (Bi, i = 1, ..., n) forms a deformable template. The
deformed active basis is Bm = (Bm,i, i = 1, ..., n) ≈ B. See Figure (2) for an illustration.

It is important to distinguish between B and Bm. B is the common “average” template shared
by all the examples {Im}. Bm is the image specific template that only describes Im. B is learned
from all the training images {Im}, and it can generalize to testing images, because the basis elements
in B are active.

Because we fix the scale s in the representation (3) to (10), the linear superposition
∑n

i=1 cm,iBm,i

only explains the frequency band of Im around the frequency ω = 1/s, while leaving the remaining
frequency components to the unexplained Um. Um can be further explained by templates at other
scales.
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2.3 Learning: shared sketch algorithm

Given the set of training images {Im, m = 1, ..., M}, the shared sketch algorithm sequentially selects
Bi and perturbs it to Bm,i ≈ Bi to sketch each image Im. The basic idea is to select Bi so that its
perturbed versions {Bm,i,m = 1, ...,M} sketch as many edge segments as possible in the training
images {Im}.

Description of the shared sketch algorithm

Input : Training images {Im,m = 1, ..., M}.

Output : Common template B = (Bi, i = 1, ..., n), and deformed template Bm = (Bm,i, i = 1, ..., n)
that sketches Im for m = 1, ...,M .

1. Convolution: For each m = 1, ..., M , and for each B ∈ Dictionary, compute [Im, B] =
h(|〈Im, B〉|2). Set i ← 1.

2. Local maximization: For each putative candidate Bi ∈ Dictionary, do the following: For
each m = 1, ..., M , choose the optimal Bm,i that maximizes [Im, Bm,i] among all possible
Bm,i ≈ Bi.

3. Selection: Choose that particular candidate Bi whose corresponding
∑M

m=1[Im, Bm,i] achieves
the maximum among all possible Bi ∈ Dictionary. Record this Bi and retrieve the corre-
sponding optimal Bm,i ≈ Bi for m = 1, ..., M .

4. Non-maximum suppression: For each m = 1, ...,M , if [Im, Bm,i] > 0, then for every B ∈
Dictionary such that corr(B, Bm,i) > ε, set [Im, B] ← 0.

5. Stop if i = n. Otherwise let i ← i + 1, and go back to 2.

In the above description, h() is a monotone increasing (or non-decreasing) transformation that
discounts large value of |〈Im, B〉|2. [Im,B] records the response of B to Im. It can change during
the algorithm because of the non-maximum suppression.

For two Gabor elements B1 and B2, corr(B1, B2) =
∑1

η1=0

∑1
η2=0〈B1,η1 , B2,η2〉2 measures their

correlation or overlap in spatial and frequency domains. B1 and B2 are orthogonal as long as they
do not overlap in either spatial domain or frequency domain. The non-maximum suppression step
suppresses those B that overlap with the selected Bm,i. ε (e.g., ε = .1) is the tolerance of the
overlap between selected basis elements in the deformed active basis.

See Figure (3) for an illustration of the above algorithm.
Comparison with edge detection. The algorithm can be considered a parallel version of edge

detection simultaneously applied to multiple images. For a putative Bi, the local maximization step
seeks to sketch a local edge segment in image Im by a perturbed version Bm,i ≈ Bi. The selection
step seeks to find Bi with the strongest overall response

∑M
m=1[Im, Bm,i], which pools the edge

strengths from the training images around Bi. After Bi is selected, we retrieve the corresponding
Bm,i, and let Bm,i suppress or inhibit nearby overlapping Gabor elements B by setting the response
[Im, B] ← 0. So for each image Im, the selected (Bm,i, i = 1, ..., n) are approximately orthogonal to
each other.
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If M = 1 and if we forbid perturbations in locations and orientations by setting b1 = b2 = 0,
then the algorithm reduces to usual edge detection.

For M > 1, the shared sketch algorithm seeks to accomplish the following two tasks: (1)
Eliminating the background edges. (2) Averaging the foreground shapes.

Transformation of responses. To understand the transformation h(), let us consider a simplified
discontinuous one: h(r) = 1r>ξ, where ξ is a threshold for edge detection. More specifically, h(r) = 1
if r > ξ, and h(r) = 0 otherwise. Then

∑M
m=1 h(rm,i) simply counts the number of detected edge

segments in the training images {Im, m = 1, ..., M}. That is, we select Bi and perturb it to {Bm,i},
so that {Bm,i} sketch as many edge segments as possible.

In this article we entertain the following designs of continuous transformations. The learned
templates are not very sensitive to the choice of the transformation.

(1) Sigmoid transformation. The transformation is characterized by a saturation level ξ (e.g.,
ξ = 6),

h(r) = sigmoid(r) = ξ

[
2

1 + e−2r/ξ
− 1

]
, (11)

which increases from 0 to ξ, and h′(0) = 1.
(2) Whitening transformation. Let q(r) be the marginal distribution of r = |〈I, Bx,y,s,α〉|2 where

I is a random sample from the ensemble of natural images. Let F (t) = q(r > t), i.e., the probability
that r > t under q(r). The non-linear whitening transformation is

h(r) = whiten(r) = − log F (r). (12)

On top of the whitening normalization in Subsection (2.1), the non-linear whitening transformation
(12) makes the marginal distribution of |〈I, Bx,y,s,α〉|2 the same as that of the white noise.

(3) Thresholding transformation. A crude but simple approximation to whiten(r) is

h(r) = threshold(r) = min(r, T ), (13)

where T is a threshold (e.g., T = 16).
Scoring template matching. Let B = (Bi, i = 1, ..., n) be the template. For each training image

Im, the template matching is scored by

MATCH(Im,B) =
n∑

i=1

(λi[Im, Bm,i]− log Z(λi)) . (14)

λi can be calculated directly from
∑M

m=1[Im, Bm,i] in the selection step. Z() is a non-linear function.
This template matching score is actually a log-likelihood ratio for an exponential family model, and
the weight vector Λ = (λi, i = 1, ..., n) is estimated by maximum likelihood method. See the next
section for details.

Active correlation. We can also use a linear score for template matching:

MATCH(Im,B) =
n∑

i=1

θi[Im, Bm,i], (15)

where h(r) = whiten(r)1/2 or h(r) = threshold(r)1/2, and Θ = (θi, i = 1, ..., n) is a unit vector,
with ‖Θ‖2 =

∑n
i=1 θ2

i = 1. The elements are still selected by the shared sketch algorithm, with the
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aforementioned new definition of h(). To estimate Θ, we first calculate θi =
∑M

m=1[Im, Bm,i]/M ,
then we normalize Θ = (θi, i = 1, ..., n) to be a unit vector.

The template matching score (15) can be considered the active correlation between the template
B and the image Im, where B is deformed to Bm = (Bm,i, i = 1, ..., n) before the inner product
is calculated. We may also consider (15) as the inner product between Im and the vector V =∑n

i=1 θiBi. V is an active vector because Bi can be perturbed to Bm,i when we correlate V with
Im. V can be considered an active average of the images {Im}.

2.4 Inference: sum-max maps

After training the active basis model, specifically, after selecting B = (Bi = Bxi,yi,s,αi , i = 1, ..., n),
and computing the weight vector Λ = (λi, i = 1, ..., n) or Θ = (θi, i = 1, ..., n), we can use the
trained model to detect and then sketch the object in a testing image.

Let I be a testing image defined on a lattice D. Here we use the notation D to denote the
lattice of I instead of the bounding box of the template B, which is usually smaller than D. We
assume that the bounding box of the template B is centered at origin (x = 0, y = 0). We can scan
the template over D, and at each position (x, y) ∈ D, we fit the active basis model to the image
patch of I within the bounding box (or the scanning window) centered at (x, y), and calculate the
template matching score according to Equation (14) or (15).

Pseudo-code for inference algorithm

Input : Template B = (Bi = Bxi,yi,s,αi , i = 1, ..., n), Λ = (λi, i = 1, ..., n), and testing image I.

Output : Location (x̂, ŷ) of the detected object, and the deformed template (Bx̂i,ŷi,s,α̂i
, i = 1, ..., n)

that sketches I.

Up-1 For all (x, y) ∈ D, and for all α, compute the SUM1 maps:

SUM1(x, y, s, α) = |〈I, Bx,y,s,α〉|2.

Up-2 For all (x, y) ∈ D, and for all α, compute the MAX1 maps:

MAX1(x, y, s, α) = max
d ∈ [−b1, b1]
δ ∈ [−b2, b2]

SUM1(x + d cosα, y + d sinα, s, α + δ). (16)

Let (d̂, δ̂) be the value of (d, δ) that achieves the maximum in (16). Let x̂ = x + d̂ cosα,
ŷ = y + d̂ sinα, and α̂ = α + δ̂. Record TRACK1(x, y, s, α) = (x̂, ŷ, α̂).

Up-3 For all (x, y) ∈ D, compute the SUM2 map:

SUM2(x, y) =
n∑

i=1

[λih(MAX1(x + xi, y + yi, s, αi))− log Z(λi)] .

Up-4 Compute the MAX2 score: MAX2 = max(x,y)∈D SUM2(x, y).

Down-4 Retrieve (x̂, ŷ) that achieves the maximum in the computation of Up-4.
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Down-3 Retrieve (x̂ + xi, ŷ + yi, αi) in the computation of MAX1(x + xi, y + yi, s, αi) for i = 1, ..., n
in Up-3.

Down-2 Retrieve (x̂i, ŷi, α̂i) = TRACK1(x̂+xi, ŷ+yi, s, αi), for i = 1, ..., n, where the TRACK1 maps
are defined in Up-2.

Down-1 Retrieve the coefficients in the computation of SUM1(x̂i, ŷi, s, α̂i) for i = 1, ..., n in Up-1.

Bottom-up detection and top-down sketching. The inference algorithm consists of two processes.
The first process is a bottom-up detection process, which calculates SUM1, MAX1, SUM2, MAX2
scores consecutively. The following are the questions that these scores seek to answer:

SUM1 maps: Is there an edge segment at this location and orientation?
MAX1 maps: Is there an edge segment at a nearby location and orientation? Where is it?
SUM2 map: Is there a certain composition of edge segments that form the template at this

location?
MAX2 score: Is there a certain composition within the whole image?
These maps are soft scores, not hard decisions. They are computed in a bottom-up process,

SUM1 → MAX1 → SUM2 → MAX2.
This is to be followed by a top-down retrieving process, which retrieves the central location of

the template and then retrieves the locations and orientations of the basis elements of the deformed
template. The following are the questions to be answered:

Back to MAX2 score: If there is a template, where is it?
Back to SUM2 map: What are the locations and orientations of the elements of the template

before deformation?
Back to MAX1 maps: What are the nearby locations and orientations that these elements are

perturbed to?
Back to SUM1 maps: What are the coefficients of these perturbed elements?
The top-down retrieving process follows the sequence MAX2 → SUM2 → MAX1 → SUM1.

The process deforms the template to sketch the observed image.
Shape filter. The SUM2 map in Up-3 scores template matching. The computation of SUM2

can be considered a shape filter for template matching. Like Gabor filters, it is also a local
weighted summation operator. See Figure (4) for an illustration. The shape filter in Up-3 has
fixed (xi, yi, αi, i = 1, ..., n). But it is computed on the MAX1 maps instead of SUM1 maps, so it
is invariant to shape deformation.

For an input image, we can apply the above algorithm at multiple resolutions of the input
image. Then we can choose the resolution that achieves the maximum MAX2 score as the optimal
resolution.

Comparison with Riesenhuber and Poggio’s cortex-like structure. The above sum-max structure
is inspired by the cortex-like structure of Riesenhuber and Poggio [17]. The differences are as
follows: (1) The TRACK1 maps are recorded in Up-2 step together with the MAX1 maps. The
TRACK1 maps link the locations and orientations of the MAX1 maps back to the locations and
orientations of the SUM1 maps where the local maxima are achieved. (2) A SUM2 operator is used
for template matching. This operator is learned from training images. (3) A top-down sketching
process is triggered after the bottom-up detection process. The top-down process is guided by the
TRACK1 maps. (4) The selected wavelet elements in the deformed active basis inhibit nearby
overlapping elements, especially in the learning stage.
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2.5 Shared sketch algorithm based on sum-max maps

The shared sketch algorithm in Subsection (2.3) can be expressed more precisely in terms of the
sum maps and max maps.

Pseudo-code for shared sketch algorithm

Input : Training images {Im,m = 1, ..., M}.

Output : Template B = (Bi = Bxi,yi,s,αi , i = 1, ..., n), weight vector Λ = (λi, i = 1, ..., n), and
deformed template Bm = (Bm,i = Bxm,i,ym,i,s,αm,i , i = 1, ..., n) that sketches Im for m =
1, ..., M .

1. Convolution: For each m = 1, ...,M , for all (x, y) ∈ D, and for all α, compute the SUM1 maps
SUM1m(x, y, s, α) = |〈Im, Bx,y,s,α〉|2, in the same way as in the Up-1 step of the inference
algorithm.

2. Local maximization: For each m = 1, ..., M , for all (x, y) ∈ D, and for all α, compute the
MAX1 maps:

MAX1m(x, y, s, α) = max
d ∈ [−b1, b1]
δ ∈ [−b2, b2]

SUM1m(x + d cosα, y + d sinα, s, α + δ), (17)

and record TRACK1m(x, y, s, α), in the same way as in the Up-2 step of the inference algo-
rithm.

For each m = 1, ...,M , set SUM2m ← 0. Set i ← 1.

3. Selection: Find (xi, yi, αi) by maximizing
∑M

m=1 h(MAX1m(x, y, s, α)) over all (x, y, α).

Compute λi from
∑M

m=1 h(MAX1m(xi, yi, s, αi)).

Update SUM2m ← SUM2m + λih(MAX1m(xi, yi, s, αi))− log Z(λi) for each m = 1, ...,M .

4. Non-maximum suppression: Retrieve (xm,i, ym,i, αm,i) = TRACK1m(xi, yi, s, αi) for each
m = 1, ...,M , similar to the Down-2 step of the inference algorithm.

If MAX1m(xi, yi, s, αi) > 0, then for all those (x, y, α) such that corr(Bxm,i,ym,i,s,αm,i , Bx,y,s,α)
> ε, set SUM1m(x, y, s, α) ← 0.

Re-compute the MAX1 maps according to (17).

5. Stop if i = n. Otherwise let i ← i + 1, and go back to Step 3.

The above algorithm can be easily mapped to computer code. The following are remarks on
implementing it:

(1) In updating the SUM1 maps and the MAX1 maps in Step 4, we only need to update the
parts of the maps that are affected.

(2) The correlation corr(Bxm,i,ym,i,s,αm,i , Bx,y,s,α) in Step 4 only depends on (xm,i − x, ym,i −
y, αm,i−α). We can store a correlation function corr(∆x,∆y, ∆α) = corr(Bx+∆x,y+∆y,s,α+∆α, Bx,y,s,α)
before running the algorithm.
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Multiple alignment score. The SUM2m score evaluates the matching of Im to the learned tem-
plate B according to Equation (14). The total score

∑M
m=1 SUM2m measures the overall alignment

of multiple training images. This multiple alignment score is very useful for unsupervised learning,
where the objects in the training images are of unknown locations, scales, and categories. The
alignment score

∑M
m=1 SUM2m is the criterion that determines these hidden variables.

We would like to point out a subtle difference between the computation of SUM2m score in the
learning algorithm and the computation of SUM2 map in the inference algorithm. In the learning
algorithm, there is a non-maximum suppression step, where Bm,i suppresses nearby overlapping
elements. This is necessary for selecting the basis elements. In the inference algorithm, we omit
this step for efficiency. This is because the elements selected by the learning algorithm are already
well spaced due to the non-maximum suppression in learning, so there is not much need for non-
maximum suppression in inference.

3 Theoretical Underpinning

This section presents theoretical underpinnings of the model and the algorithms presented in the
previous section. Readers who are more interested in applications and experiments can jump to
the next section.

3.1 Probability distribution on image intensities

With multiple training images {Im,m = 1, ...,M} represented by Equations (3) to (10), we can pool
the probability distribution of {(cm,i, i = 1, ..., n)} as well as the distribution of {Um} over m =
1, ..., M . With these two distributions, we can obtain the distribution of Im, or more specifically,
the distribution of Im given Bm, p(Im | Bm). With the probability density p(Im | Bm), both
learning and inference can be based on maximizing the likelihood function.

We first simplify the notation using matrices and vectors. Im can be treated as a |D|×1 column
vector, where |D| is the number of pixels. B = (Bi,0, Bi,1, i = 1, ..., n) can be treated as a |D| × 2n

matrix, where each Bi,η (η = 0, 1) is a |D|×1 vector. Each Bm can be treated as a |D|×2n matrix
in the same way. We can write C = (cm,0, cm,1, i = 1, ..., n)′ as a 2n × 1 vector. Thus in matrix
notation, Equation (3) becomes Im = BmCm + Um.

Linear decomposition. We assume that BmCm is the projection of Im onto the subspace spanned
by the column vectors of Bm, so Cm = (B′

mBm)−1B′
mIm. If Bm is orthogonal, then Cm = B′

mIm.
Um resides in the |D| − 2n dimensions that are orthogonal to the columns of Bm. There is no loss
of generality in such an assumption, because if Um is not orthogonal to Bm, we can always project
Um onto Bm, and let BmCm absorb this projection. We can write Um = B̄mC̄m, where B̄m is a
|D| × (|D| − 2n) matrix whose columns are orthogonal to those of Bm, and C̄m is a (|D| − 2n)× 1
vector. Thus, Im = BmCm + B̄mC̄m. There is a one-to-one linear mapping between Im and
(Cm, C̄m). B̄m and C̄m can be made implicit in statistical modeling.

Shape and texture. Now we are ready to specify the probability density p(Im | Bm). For the
linear representation Im = BmCm + B̄mC̄m,

p(Im | Bm) = p(Cm, C̄m)|Jm| = p(Cm)p(C̄m | Cm)|Jm|, (18)

where |Jm| is the absolute value of the determinant of the Jacobian matrix of the linear transfor-
mation from Im to (Cm, C̄m). p(Cm) is the distribution of the coefficients for coding the foreground
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shape, and p(C̄m | Cm) is the distribution of the residual background texture given the foreground
coefficients. The distribution p(Im | Bm) is fully determined by p(Cm) and p(C̄m | Cm).

Let q(Im) be a reference distribution. Similar to Equation (18), we can write q(Im) = q(Cm)q(C̄m |
Cm)|Jm| with the same Jacobian Jm. We want to construct p(Im | Bm) by modifying q(Im). Specif-
ically, we assume that p(C̄m | Cm) = q(C̄m | Cm), i.e., the conditional distribution of the residual
background in p(Im | Bm) is assumed to be the same as that in q(Im). Then

p(Im | Bm) = q(Im)
p(Cm)
q(Cm)

= q(Im)
p(cm,1, ..., cm,n)
q(cm,1, ..., cm,n)

, (19)

where we substitute p(Cm) for q(Cm) to construct a density p(Im) from q(Im).
The model (19) combines both texture and shape. q(Im) models the background texture, and

Bm and p(Cm) model the foreground shape. The foreground shape pops out from the background
texture, as modeled by the probability ratio p(Cm)/q(Cm).

Density substitution and maximum entropy. The form (19) is a density substitution scheme
that has been used in projection pursuit [9]. It is also valid if Cm is a non-linear differentiable
reduction of Im, or if Cm is discrete. Such a form enables us to build a probability model on image
intensities instead of features. Such a generative model makes it possible to select the features by
explaining away the image data. Model (19) can be justified by the maximum entropy principle
[16]: p(Im | Bm) is the distribution that is closest to q(Im) in terms of Kullback-Leibler divergence
among all the distributions that share the same p(Cm).

Choices of reference distribution. We assume q(Im) to be stationary. The following are some
choices of q(Im):

(1) Gaussian white noise distribution. This is the distribution that is often assumed in linear
additive model, and is implicitly assumed in the least squares criterion for model fitting. Under this
reference distribution, q(cm,1, ..., cm,n) is multivariate Gaussian. If (Bm,i, i = 1, ..., n) are orthogonal
to each other, then (cm,i, i = 1, ..., n) are independent. We call this the orthogonal-independence
property.

(2) Non-Gaussian marginal approximation to the distribution of natural image patches. This is
the distribution q(Im) that we shall use in this paper. In particular, we assume that the marginal
distributions of 〈Im, Bx,y,s,α〉 are all the same as that in natural images. Such a marginal distribution
is highly non-Gaussian, with a heavy tail that allows occasional strong edges. We also assume that
q(Im) inherits the orthogonal-independence property from Gaussian white noise. Such a distribution
is the simplest modification of the Gaussian white noise distribution, and it provides a better model
than the Gaussian white noise for the background Um, by allowing strong edges in Um.

Figure (5) shows the two natural images that we use for pooling the marginal distribution of
Gabor filter responses. The left one is a rural scene, which has more textures. The right one is an
urban scene, which is more regular.

Figure (6) displays the marginal histogram of sigmoid(|〈Im, Bx,y,s,α〉|2) pooled over all (x, y, α)
from the two natural images in Figure (5). It is a long-tailed distribution. The small bump at
the end is caused by the saturation of the sigmoid transformation. Different scales s produce very
similar histograms.

A more formal model for q(Im) is the Markov random field model that Zhu and Mumford [27]
developed for natural images. For this model, the orthogonal-independence property is approxi-
mately true.
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Figure 5: Two 768 × 1024 natural images that are used to pool the marginal distribution of filter
responses.
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Figure 6: The density of sigmoid(|〈Im, Bx,y,s,α〉|2) pooled over all (x, y, α) from the two natural
images in Figure (5).

(3) The Markov random field distribution that matches the marginal distributions of filter
responses of the observed image Im. Such a model has been developed by Zhu, Wu, and Mumford
[29]. The marginal distributions are pooled from the observed image Im over (x, y) ∈ D, instead of
the above two natural images. This model is related to the adaptive background to be discussed
in Subsection (3.6).

Log-likelihood and Kullback-Leiber divergence. To learn B and {Bm ≈ B,m = 1, ..., M}, we can
maximize the average log-likelihood ratio

1
M

M∑

m=1

log
p(Im | Bm)

q(Im)
=

1
M

M∑

m=1

log
p(cm,1, ..., cm,n)
q(cm,1, ..., cm,n)

. (20)

The average log-likelihood ratio converges to KL(p(Cm)||q(Cm)) as M →∞, provided that p(Cm)
can be consistently estimated from the training images. Here KL(p||q) denotes the Kullback-Leibler
divergence from p to q. In order to maximize the log-likelihood ratio, we want to choose B and
deform it to {Bm ≈ B} to maximize KL(p(Cm)||q(Cm)), so that the maximum contrast is achieved
between the foreground shape and the background texture. KL(p(Cm)||q(Cm)) also measures the
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coding gain achieved by coding Cm by p(Cm) instead of q(Cm), while continuing to code the residual
background by q(C̄m|Cm).

It is impossible to select B and {Bm} all at once. In the next subsection, we present an
algorithm that sequentially pursues Bi and perturbs it to {Bm,i}.

3.2 Coupling matching pursuit with projection pursuit

In this subsection, we describe a shared matching pursuit process for selecting the basis elements
B = (Bi, i = 1, ..., n). The process couples matching pursuit [14] with projection pursuit [9]. The
shared sketch learning algorithm is an approximation to it.

The matching pursuit is a process that sequentially adds elements Bm,i, i = 1, ..., n to improve
the encoding of image Im. It has the following form:

1. For m = 1, ...,M , set Um ← Im. Set i ← 1.

2. For m = 1, ...,M , choose Bm,i. Let cm,i = 〈Um, Bm,i〉.
3. For m = 1, ..., M , update Um ← Um−cm,iBm,i. Represent Im = cm,1Bm,1+...+cm,iBm,i+Um.

4. If i = n, stop. Otherwise, set i ← i + 1, go back to Step 2.

We need to add the following three components to the above matching pursuit process.
(1) The selection of Bm,i given Bi. The original matching pursuit algorithm selects Bm,i =

arg maxB |〈Um, B〉|2 in Step 2, where the maximization is over all B ∈ Dictionary, so that Bm,i

achieves the best fit to the unexplained residual image Um. In shared matching pursuit process,
however, the Bm,i are constrained to be perturbed versions of a commonly shared Bi. Therefore,
for each putative Bi, we need to select Bm,i = arg maxB≈Bi |〈Um, B〉|2.

(2) The updating of p(Im). After computing cm,i = 〈Um, Bm,i〉 in each iteration i, we can pool
a distribution pi(c) from {cm,i,m = 1, ..., M}. We can use such pooled densities p1(c), ..., pn(c) to
construct the density p(Im).

Specifically, we update p(Im) sequentially using projection pursuit. Let p0(Im) = q(Im), i.e.,
the distribution of background texture. At each iteration i, after selecting {Bm,i,m = 1, ...,M},
we need to update pi−1(Im) to pi(Im). We can apply the density substitution scheme of projection
pursuit, and let

pi(Im) = pi−1(Im)
pi(cm,i)

qi−1(cm,i)
, (21)

where qi−1(c) is the density of cm,i = 〈Um, Bm,i〉 under the current model pi−1(Im). This density
substitution scheme is very similar to the model construction scheme of Equation (19), except
that we use pi−1(Im) as the current reference distribution, and we only substitute the density of
cm,i = 〈Um, Bm,i〉 under pi−1(Im). cm,i = 〈Um, Bm,i〉 can also be written as cm,i = 〈Im, B̃m,i〉,
where B̃m,i can be constructed from Bm,1, ..., Bm,i−1 and Bm,i. So pi(Im) is a legitimate density
function.

(3) The selection of Bi. We select Bi sequentially by the maximum likelihood principle. The
increase in the average log-likelihood is

1
M

M∑

m=1

log
pi(Im)

pi−1(Im)
=

1
M

M∑

m=1

log
pi(cm,i)

qi−1(cm,i)
,
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which converges to KL(pi(c)||qi−1(c)). So we want to select Bi that achieves the maximum
KL(pi(c)||qi−1(c)). That is, KL(pi(c)||qi−1(c)) is the pursuit index that drives the selection of
Bi. Intuitively, this means that we want to select Bi so that the distribution of the responses of
the perturbed versions {Bm,i ≈ Bi} is most different from what is predicted by the current model
pi−1(Im).

With the above components (1), (2), and (3) incorporated into the matching pursuit process, we
will eventually reach the model p(Im) = q(Im)

∏n
i=1 pi(cm,i)/qi−1(cm,i). This is an approximation to

the model (19) in the previous subsection. See Figure (3) for an illustration of the shared matching
pursuit process.

The computational burden in the shared matching pursuit process lies in the computation of
qi−1(c) in Equation (21), which requires Monte Carlo sampling from pi−1(Im). If we have negative
training images, we can re-weight these negative examples after each iteration, and use these re-
weighted examples as samples from pi−1(Im).

3.3 Shared sketch algorithm

We can simplify the shared matching pursuit process into a shared sketch algorithm.
Non-maximum suppression. After selecting Bm,i and computing cm,i = 〈Um, Bm,i〉, we need to

update Um ← Um − cm,iBm,i, i.e., Bm,i explains away part of Um or Im. This can be considered
a soft inhibition. If an element B has a high correlation with Bm,i, in other words, if B heavily
overlaps with Bm,i in both spatial domain and frequency domain, then such a redundant B can
add little to further explaining Im, in that after updating Um ← Um − cm,iBm,i, |〈Um, B〉|2 can
be very small. Therefore, we may simply enforce that, for each Im, the selected elements of
Bm = (Bm,i, i = 1, ..., n) do not overlap with each other, or the selected (Bm,i, i = 1, ..., n) are
orthogonal to each other. Then, after Bm,i is selected, we let Bm,i suppress any B that overlaps
with Bm,i. For such non-overlapping (Bm,i, i = 1, ..., n), cm,i = 〈Um, Bm,i〉 = 〈Im, Bm,i〉. In
practice, we allow small correlations between the elements (Bm,i, i = 1, ..., n).

Such a hard inhibition has the advantage that it forces the selected elements to be well spaced
and form a clean template.

Background density. Let the reference distribution q(Im) be the non-Gaussian marginal ap-
proximation to the distribution of natural images, as explained in Subsection (3.1). Then (cm,i, i =
1, ..., n) are independent for orthogonal (Bm,i, i = 1, ..., n), a property inherited from white noise.
Therefore, qi−1(c) = q(c), which is the marginal distribution of cm,i under q(Im). Because q(Im)
is stationary, q(c) is the same for all cm,i, i = 1, ..., n. Hence, the pursuit index is KL(pi(c)||q(c)),
where, again, pi(c) is the density pooled from {cm,i, m = 1, ..., M}.

If we stop the process after n iterations, then the resulting model is

p(Im | Bm) = q(Im)
n∏

i=1

pi(cm,i)
q(cm,i)

. (22)

q(c) can be pooled from natural images before we start the shared sketch algorithm. We do not
need negative examples beyond q(c). See Subsection (3.1) and Figure (6).

3.4 Parametrization by exponential family model

Parametric model. We can further simplify the Kullback-Leibler divergence by assuming the fol-
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lowing exponential family model:

p(c; λ) =
1

Z(λ)
exp{λh(r)}q(c), (23)

where λ > 0 is the parameter, r = |c|2, and

Z(λ) =
∫

exp{λh(r)}q(c)dc = Eq[exp{λh(r)}] (24)

is the normalizing constant. h(r) is an increasing function, so p(c; λ) puts more probability than
q(c) on those c with large r. The above model can be justified by the maximum entropy principle
[16].

Let p(r; λ) and q(r) be the densities of r = |c|2 under p(c; λ) and q(c) respectively, then
p(c; λ)/q(c) = p(r;λ)/q(r) = exp{λh(r)}/Z(λ).
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Figure 7: The function µ(λ), where h(r) is the sigmoid transformation.

Estimating pi. We estimate q(c) by pooling a histogram from natural images. See Figure (6).
We estimate pi(c) from {cm,i = 〈Im, Bm,i〉,m = 1, ..., M} by fitting the density p(c;λi) to {cm,i}.
Specifically, let us define the mean parameter

µ(λ) = Eλ[h(r)] =
∫

h(r)
1

Z(λ)
exp{λh(r)}q(r)dr. (25)

Figure (7) shows the function µ(λ). We estimate the parameter λi by solving the following esti-
mating equation

µ(λi) =
1
M

M∑

m=1

h(rm,i), (26)

where rm,i = |cm,i|2, so that λ̂i = µ−1(
∑M

m=1 h(rm,i)/M). This is done by inverting the function
in Figure (7). λ̂i is the maximum likelihood estimate that maximizes

∑M
m=1 log[p(cm,i;λi)/q(cm,i)]

over λi [16]. We estimate pi(c) by p(c; λ̂i).
To avoid over-fitting, we impose an upper bound on λ (e.g., λ < 5). That is, in the rare case

where no value of λ below the upper bound satisfies the estimating equation (26), we then let the
estimated λ be this upper bound. The upper bound plays a role mostly in single image learning,
which we shall discuss at the end of this subsection.
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Both log Z(λ) in Equation (24) and µ(λ) in Equation (25) are one-dimensional monotone func-
tions. We can store their values over a grid of λ values below the upper bound mentioned above,
and use nearest neighbor linear interpolation for points in between. The solution to the estimating
equation (26) can be efficiently obtained by looking up the stored monotone function µ(λ).

Selecting Bi. The average log-likelihood ratio

1
M

M∑

m=1

log
p(cm,i; λ̂i)

q(cm,i)
= KL(p(c; λ̂i)||q(c)). (27)

It is an increasing function of
∑M

m=1 h(rm,i)/M . Therefore, we choose Bi and perturb it to {Bm,i}
by maximizing the pursuit index

∑M
m=1 h(rm,i).

Perturbing Bi to Bm,i. p(c; λi)/q(c) is a monotone increasing function of r = |c|2. This justifies
that, given Bi, we should perturb Bi to Bm,i to maximize |〈Im, Bm,i〉|2, subject to the approximate
non-overlapping constraint. Such Bm,i is the maximum likelihood estimate given Bi.

Thus, the estimation of λi, the perturbation of Bi to Bm,i, and the selection of Bi all follow the
maximum likelihood principle.

Template matching score. The resulting model is

p(Im | Bm) = q(Im)
n∏

i=1

pi(cm,i)
q(cm,i)

= q(Im)
n∏

i=1

1
Z(λ̂i)

exp{λ̂ih(|〈Im, Bm,i〉|2)}. (28)

To score the template matching, we can compute the log-likelihood ratio

log
p(Im | Bm)

q(Im)
=

n∑

i=1

[
λ̂ih(|〈Im, Bm,i〉|2)− log Z(λ̂i)

]
. (29)

From a classification perspective, (h(|〈Im, Bm,i〉|2), i = 1, ..., n) are the features that tell apart
the positive examples from p and the negative examples from q. See also Tu [18] for a related
model.

Single image learning. Because of the parametrization in the form of the exponential family
model, we can learn the model from a single image. This enables us to initialize unsupervised
learning by fitting the model to a single image. For single image learning, we set b1 = b2 = 0, i.e.,
we do not allow any activity. In that case, the estimated common template B is the same as the
deformed template Bm. However, after learning B in this way, we immediately re-set b1 and b2 to
their normal values for detection purpose. The B with re-set (b1, b2) is an active basis that can
generalize to other images. The upper bound imposed on λi helps avoid overfitting in single image
learning. The current upper bound (λi < 5) still appears too large for single image learning, and
can be further reduced.

3.5 Transformation and normalization

The following are explanations why we use the sigmoid and whitening transformations for h(r).
Sigmoid transformation. The saturation in the sigmoid transformation can be justified by

mixture distributions.
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Let pon(r) be the density of r = |〈I, Bx,y,s,α〉|2 when the Gabor wavelet Bx,y,s,α is on an edge.
Let poff(r) be the density of r when the Gabor wavelet is off the edge. We assume that pon(r)
has a much longer tail than poff(r). Let q(r) and pi(r) be the densities of r = |c|2 under q(c)
and pi(c) respectively. It is reasonable to assume that q(r) = (1 − ρ0)poff(r) + ρ0pon(r), and
pi(r) = (1 − ρi)poff(r) + ρipon(r). That is, both q(r) and pi(r) are mixtures of the same on-
distribution and off-distribution, with ρi > ρ0 > 0. As r → ∞, log[pi(r)/q(r)] → log(ρi/ρ0) > 0,
i.e., a positive constant. So we may assume the following log-linear model: log[pi(c)/q(c)] =
log[pi(r)/q(r)] = λih(r) + constant, where λi > 0, and h(r) reaches a fixed saturation level as
r →∞. This justifies the saturation in the sigmoid transformation.

Whitening transformation. The whitening transformation makes q(Im) closer to the white noise
distribution, which is a simpler null hypothesis. It also leads to explicit expressions of µ(λ) and
log Z(λ).

Let F (t) = q(r > t), i.e., the probability that r > t under q(r) or q(Im). The reason we
call h(r) = − log F (r) the whitening transformation is that Pr(h(r) > t) = Pr(− log F (r) > t) =
Pr(F (r) < e−t) = e−t, i.e., h(r) follows Exponential distribution with unit expectation. This is
the distribution of r if q(Im) is Gaussian white noise. This is because the local energy r is the
sum of the squares of the Gabor sine response and Gabor cosine response, and both of them follow
independent Normal distributions if q(Im) is Gaussian white noise. So their sum of squares follows
a χ2

2 distribution, which is the Exponential distribution. The distribution has expectation 1 because
we normalize the image to have unit σ2(s). See Equation (1).

The whitening transformation changes a long-tailed distribution q(r) to a short-tailed Expo-
nential distribution. With the whitening transformation, under p(c; λ) of Equation (23), h(r) ∼
Exp(1− λ), which is an Exponential distribution with µ(λ) = 1/(1− λ). Z(λ) = 1/(1− λ). λi can
be estimated by λ̂i = 1−M/

∑M
m=1 h(rm,i).

Normalization schemes. Before applying the transformation, we need to normalize the filter
responses by dividing them by the average energy or power spectrum σ2(s) in Equation (1). How-
ever, there can be various schemes for computing σ2(s), due to various choices of the domain D

within which we pool the average. The following are some options: (1) Let D be the domain of
the whole image. This is the simplest option. However, the bounding box of the training images
may be much smaller than the image domain of the testing image, and that causes inconsistency
in learning and testing. The following two options solve the inconsistency problem: (2) When we
scan the template over the testing image, we normalize the filter responses by the average pooled
within the scanning window of the template. (3) For both training and testing images, for each
Bx,y,s,α, we normalize its response by the average pooled within a local window centered at (x, y).

For the experiments in this paper, we have implemented option (2) for Experiments 2, 5a, and
5b in the detection stage. We use option (3) for Experiment 1.3. We use the simple option (1) in
Experiments 3, 5c, 6, and 10, which are of illustrative nature.

3.6 Adaptive texture background

Marginal histograms. In model (28), p(Im | Bm) = q(Im)
∏n

i=1 pi(cm,i)/q(cm,i), where q(c) is the
marginal distribution of filter responses pooled over the two natural images in Subsection (3.1).
In scoring an image Im, the log-likelihood ratio score is computed by

∑n
i=1 log[pi(cm,i)/q(cm,i)],

according to Equation (29). We can change the generic q(c) to a background texture model fitted
specifically to Im. Specifically, for each image Im, and for each orientation α, let qm,α(c) be the

21



Figure 8: For each image Im, at each orientation, an adaptive q is pooled from the Gabor filter
responses at all the pixels in this image. Such adaptive q’s capture texture information in image
Im. Each pi is paired with an adaptive q at the orientation that is the same as Bm,i.

marginal distribution (or histogram) pooled from {〈Im, Bx,y,s,α〉, ∀(x, y)}. Then we can score the
image Im by

∑n
i=1 log[pi(cm,i; λ̂i)/qm,αi(cm,i)], where αi is the orientation of Bm,i. See Figure (8)

for an illustration.
The marginal histogram qm,α captures texture information in Im, and provides the adaptive

image-specific background for scoring the template matching. Such spatially pooled histograms
have been commonly used in literature. For instance, [29] develops a Markov random field model
for textures based on such histograms. In fact, the above scheme amounts to assuming the model
p(Im | Bm) = qm(Im)

∏n
i=1 pi(cm,i)/qm,αi(cm,i), where qm(Im) is the Markov random field model

[29] fitted to Im by matching to the marginal histograms of Im. Therefore, the active basis model
for shape leads to a natural justification for the Markov random field model for texture.

Template matching score against adaptive background. Just like we can further parameter-
ize pi(c) by the exponential family model p(c; λi) as defined in Equation (23), qm,α can also be
parameterized in the same form. Let

hα(Im) =
1
|D|

∑

(x,y)∈D

h(|〈Im, Bx,y,s,α〉|2)

be the spatially pooled average at orientation α. we can fit a model qm,α(c) = p(c;λm,α) to
match hα(Im). The maximum likelihood estimate λ̂m,α = µ−1(hα(Im)). Then we compute the
log-likelihood ratio score or SUM2 score by

SUM2m =
n∑

i=1

log
p(cm,i; λ̂i)

p(cm,i; λ̂m,αi)

=
n∑

i=1

{
[
λ̂ih(|〈Im, Bm,i〉|2)− log Z(λ̂i)

]

−
[
λ̂m,αih(|〈Im, Bm,i〉|2)− log Z(λ̂m,αi)

]
}, (30)

where αi is the orientation of Bm,i. Experiments on classification suggest that the score (30) has a
slight advantage over the original score (29).
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3.7 Active mean vector and active correlation

We can replace the log-likelihood score log[p(Im | Bm)/q(Im)] in Equation (29) by the correlation
between Im and the vector Vm =

∑n
i=1 θiBm,i, which is defined as

〈Im|Vm〉 =
n∑

i=1

θiwhiten(|〈Im, Bm,i〉|2)1/2. (31)

We assume that Im is normalized. The reason we use whitening transformation defined by Equation
(12) is that after such a transformation, the distribution of the natural images is closer to white
noise. Geometrically, the white noise distribution is close to the uniform distribution over a high
dimensional sphere. Image patches (after normalization and whitening transformation) from the
same object category form a cluster on this sphere. Such a simple picture makes the concept of
correlation geometrically meaningful. The correlation score (31) can be considered the length that
Im projects on Vm. In (31), we filter out the local phase information, because phase is irrelevant
for shape. We call (31) the active correlation between Im and the vector V =

∑n
i=1 θiBi, because

we perturb V to Vm in order to best correlate it with Im.
For the training images {Im,m = 1, ...,M}, we want to find the vector V =

∑n
i=1 θiBi that best

correlates with {Im,m = 1, ..., M}, by maximizing the sum of the active correlation scores:

m∑

i=1

〈Im | Vm ≈ V 〉 =
n∑

i=1

[
θi

M∑

m=1

whiten(|〈Im, Bm,i〉|2)1/2

]
. (32)

The algorithm for learning B = (Bi, i = 1, ..., n) and Θ = (θi, i = 1, ..., n) is described in Subsection
(2.3). The resulting V =

∑n
i=1 θiBi can be consider the mean shape of {Im,m = 1, ..., M}. We call

it the active mean vector. Geometrically, V points to the center of the cluster formed by {Im,m =
1, ..., M}. The active mean vector is a non-linear average that involves dimension reduction and
perturbation of basis elements. It can be used in the K-mean clustering as we shall show in
Subsection (6.1).

4 Supervised Learning, Detection, and Classification

This section applies the learning and inference algorithms to supervised learning, detection, and
classification.

4.1 Learning with given bounding boxes

In supervised learning, we assume that the training images are defined on the same image lattice
which is the bounding box of the objects in these images.

In the experiments in this article, we hand pick the number of basis elements, n. In prin-
ciple, it can be automatically determined by comparing

∑M
m=1 h(rm,i)/M with the average of

h(MAX1(x, y, s, α)) in natural images or in the observed image Im, or equivalently, by enforc-
ing a lower bound on the estimated λi, so that if λi is below this lower bound, we then stop the
algorithm. As suggested by the experiments on classification, the choice of n is not critical.

We also hand pick the resize factor of the training images. Of course, in each experiment, the
same resize factor is applied to all the training images.
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Parameter values. The following are the parameter values that we use in all the experiments
in this paper (unless otherwise stated). Length of Gabor wavelets = 17. In some experiments, we
also combine templates of Gabor wavelets at different scales. (x, y) is sub-sampled every 2 pixels or
1 pixel. The sub-sampling rate for experiments in all the subsections of this Section (4) is 2. The
orientation α takes A = 15 equally spaced angles in [0, π]. The orthogonality tolerance is ε = .1.
The threshold T = 16 in the threshold transformation (13). The saturation level ξ = 6 in the
sigmoid transformation (11). The shift along the normal direction dm,i ∈ [−b1, b1] = [−6, 6] pixels.
In some experiments, we also make this range smaller, such as b1 = 3 or 2 pixels. The shift of
orientation δm,i ∈ [−b2, b2] = {−1, 0, 1} × π/15.

Figure 9: Experiment 1.1. The 37 training images are 82 ×164 (height × length). The first
block displays the learned active basis consisting of 60 elements. Each element is symbolized by
a bar. The rest of the blocks display the observed images and the corresponding deformed active
bases. The images are displayed in the descending order of the log-likelihood ratio, which scores
the template matching.

Experiment 1. In Experiment 1.1, we take h(r) = threshold(r), as defined by Equation (13),
so that there is no need to pool q(r). This simple choice was used in our ICCV paper [23]. We
apply the shared sketch algorithm to a training set of M = 37 car images. The car images are
82× 164 (height × length). Figure (9) displays the results, where n = 60. The first block displays
the learned active basis B = {Bi, i = 1, ..., n = 60}, where each Bi is represented symbolically by a
bar at the same location and with the same length and orientation as Bi. The intensity of the bar
that symbolizes Bi is the average

∑M
m=1 h(MAX1m(xi, yi, s, αi))/M . For the remaining M pairs

of plots, the left plot shows Im, and the right plot shows Bm = (Bm,i, i = 1, ..., n). The intensity
of the bar that symbolizes Bm,i is the squared root of h(|〈Im, Bm,i〉|2). These M examples are
arranged in descending order by the SUM2m scores output by the algorithm. We can see that all
the examples with non-typical poses are in the lower end.

Figures (10) - (13) display more examples, where the results are obtained by the same algorithm.
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Figure 10: Experiment 1.2. The 15 images are 179 × 112. Number of elements is 50. h() is sigmoid
transformation.

Figure 11: Experiment 1.3. The 9 images are 122 × 120. Number of elements is 40. h() is
sigmoid transformation. The filter responses are normalized locally within a 20 × 20 window. See
Subsection 3.5 for a discussion of normalization schemes.

Figure 12: Experiment 1.4. The 12 images are 120 × 167. Number of elements is 50. h() is
threshold transformation.

Different choices of h() and different normalization schemes produce similar results.
Negative experience in Experiment 1. This experiment requires that the training images are

roughly aligned and the objects are in the same pose. If this is not the case, our method cannot
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Figure 13: Experiment 1.5. The 11 images are 133 × 140. Number of elements is 50. h() is sigmoid
transformation.

learn clean templates. Also, our method does not do well on objects with strong textures, such as
zebras, leopards, tigers, giraffes, etc. The learning algorithm tends to sketch edges in textures.

In Section (5), we shall show that our method can be extended to learning from non-aligned
images. In Section (6), we shall show that our method can be used to find clusters in training
images.

4.2 Detection by inference algorithm

This section studies the detection task using the inference algorithm based on sum-max maps.

(a) (b) (c)

Figure 14: Experiment 2.1. (a) Template learned from training images in Experiment 1.1. h()
is the sigmoid transformation. Size of template is 82 ×164. (b) Testing image. The inference
algorithm is run over 15 resolutions, from 50 × 67 to 751 × 1001. (c) Superposed with sketch of
the 60 elements of the deformed active basis at the optimal resolution and location.

Experiment 2. In Experiment 2.1, we learn the template from training images in Experiment
1.1, with h() being the sigmoid transformation. Figure (14.a) displays the learned template. The
bounding box is 82 × 164. Then we use the learned template to detect the car in the testing
image, which is shown in Figure (14.b). We run the inference algorithm over 15 resolutions of
the testing image, from 50 × 67 to 751 × 1001. Figure (14.c) displays the superposed sketch of
(Bx̂i,ŷi,s,α̂i , i = 1, ..., n = 60) at the optimal resolution.

In the inference algorithm, the filter responses are normalized by the average response within
the 82 ×164 sliding window of the template. To handle flat regions in sky and ground where the
average responses are very small, we enforce a lower bound on the averages, which is 1% of the
maximal average within the testing image. When scanning the template over the image, we may
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allow the template to be partially outside the image. We only need to set the filter responses of
those elements that are outside the image to be 0.
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Figure 15: Experiment 2.1. (a) MAX2 scores at resolutions 1 to 15. (b) SUM2 map at the optimal
resolution.

Figure (15) displays the MAX2 scores over the 15 resolutions, as well as the SUM2 map at the
optimal resolution that achieves the maximum MAX2 score over these 15 resolutions.

Figure 16: Experiment 2.2. Testing image.

Figure (16) displays the observed image in Experiment 2.2. The deformable template is learned
in Experiment 1.2. The bounding box is 179× 112. We run the inference algorithm on 10 resolutions
of the testing image, from 150 × 110 to 286 × 190.

Figure (17) displays the superposed sketch at each of the 10 resolutions. Figure (18) displays
the MAX2 scores over the 10 resolutions. There are two peaks, corresponding to the two human
figures in the testing image.

In Experiment 2.3, we learn templates using Gabor wavelets of 5 different scales from the
training images in Experiment 1.3, and then combine them for detection. The lengths of the Gabor
wavelets at these 5 scales are 17, 25, 33, 39, 49 respectively. Figure (19) displays the 5 templates.
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Figure 17: Experiment 2.2. Superposed sketch of 50 elements of the deformed active basis at each
of the 10 resolutions, from 150 × 110 to 286 × 190. The bounding box is 179 × 112.
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Figure 18: Experiment 2.2. MAX2 scores at resolutions 1 to 10.

Figure 19: Experiment 2.3. Learned templates using Gabor wavelets of lengths 17, 25, 33, 39, 49
respectively.

The number of elements at the lowest scale is 40. The numbers of elements at other scales are
inverse proportional to the corresponding scales. The filter responses are normalized within the
whole templates.

For each template, we apply the inference algorithm over 15 resolutions of the testing image,
which is shown in Figure (20). We then combine these 5 templates by summing over their SUM2
maps. The MAX2 score is computed from this combined SUM2 map.

Figure (21) displays the superposed templates of the 5 scales, at the detected location and
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Figure 20: Experiment 2.3. Testing image. For each template, we run the inference algorithm over
15 resolutions, from 110×140 to 341 × 434.

Figure 21: Experiment 2.3. Superposed with templates of 5 scales, at detected resolution and
location.

resolution of the testing image.
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Figure 22: Experiment 2.3. (a) MAX2 scores at resolutions 1 to 15. (b) Combined SUM2 map at
the optimal resolution.

Figure (22.a) displays the MAX2 scores over the 15 resolutions. (b) displays the combined
SUM2 map at the optimal resolution. The combined SUM2 map is the sum of the SUM2 maps of
the 5 templates.

Computationally, applying a larger Gabor filter to an image is the same as applying a smaller
Gabor filter to a lower resolution of the same image, although the former may have more numerical
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precision. In Experiment 2.3, we have not eliminated such a computational redundancy. We use
multi-scale Gabor wavelets and meanwhile we also search over multiple resolutions of the testing
image.

Negative experience in Experiment 2. Our method can sometimes be distracted by cluttered
edges or strong edges in the background. One may need to incorporate local appearance variables
such as textures and smoothness into the model.

4.3 Geometric transformation of template

Given a template B = (Bi = Bxi,yi,s,αi , i = 1, ..., n), we can transform this template by dilation,
rotation, and changing the aspect ratio. This amounts to simple transformations of (xi, yi, αi, i =
1, ..., n).

Figure 23: Experiment 3.1. The 27 images are 180 × 180. Number of elements is 60.

Figure (23) displays the bike template learned from 27 images, using the active basis model
with sigmoid transformation.

Figure (24) shows three examples of detection. We transform the template into a collection of
templates at different scales, orientations, and aspect ratios. After that, we use these templates
to detect the object by the inference algorithm, using the sum-max maps. We do not need to try
multiple resolutions, because we already scale the template. Finally, we choose the transformed
template that gives the best match in terms of the MAX2 score, and superpose the deformed
template on the input image.

Figures (25) and (26) show another example with the horse template.
Negative experience in Experiment 3. We encountered some difficulty with the bicycle template.

When the viewing distance is close, the size of one wheel can be larger than the size of the other
wheel, so a single scale factor does not give a very good fit. An additional difficulty is caused by
the fact that the frontal wheel may turn to a different direction than the back wheel.

The above difficulty suggests that we should better split the bicycle template into two part-
templates, and allow each part-template to have its own geometric transformation. We shall explore
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(a) (b) (c)

Figure 24: Experiment 3.1. (a) The image size is 252 × 320. The scale factor is 1.4. The rotation
is 1 ×π/15. The aspect factor is 0.9. (b) The image size is 200 × 250. The scale factor is 1.4. The
rotation is 1 ×π/15. The aspect factor is 1. (c) The image size is 248 × 232. The scale factor is
1.2. The rotation is -1 ×π/15. The aspect factor is 0.6.

Figure 25: Experiment 3.2. The 30 images are 120 × 150. Number of elements is 40.

(a) (b)

Figure 26: Experiment 3.2. (a) The image size is 166 × 202. The scale factor is 1.2. The rotation
is 0. The aspect factor is 0.8. (b) The image size is 192 × 144. The scale factor is 1. The rotation
is 4 ×π/15. The aspect factor is 1.4.

the composition of multiple part-templates in Section (8).
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4.4 Classification

In this section, we evaluate our method on classification tasks and compare it with adaboost [8, 20]
and PCA in terms of the areas under the ROC curves, or the AUC scores.

Active basis, adaboost, and PCA. We learn the active basis B = (Bi, i = 1, ..., n) and estimate
Λ = (λi, i = 1, ..., n) from the training images. Then for each testing image Im, we compute its
score SUM2m according to Equation (29) or Equation (30). The latter scores the template against
the adaptive background. The testing step is accomplished by the inference algorithm. We fit
the active basis model with sigmoid transformation. The parameter values are taken to be their
default values specified in Subsection (4.1). The sigmoid transformation outperforms whitening
and threshold transformations.
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Figure 27: Experiment 4.1. AUC scores over the number of positive training examples for active
basis with adaptive background, adaboost, and PCA. The vertical bars are 90% confidence intervals.

We conduct cross validation experiments with 131 positive images of heads and shoulders, and
600+ negative images. The image size is 85 × 127. In total, there are 5 repetitions × 3 methods × 5
numbers of positive training examples (5, 10, 20, 40, 80). The number of negative training examples
is kept at 160. We pool q(r) from the negative training images for learning the active basis. The
learning does not require negative images beyond this one-dimensional marginal histogram.

Figure (27) plots the AUC scores against the numbers of positive training examples. The vertical
bars represent the 90% confidence intervals estimated from the 5 repetitions based on t-statistics.
The number of basis elements in active basis is 40.

The adaboost features are obtained by thresholding the MAX1 maps, i.e., 1MAX1(x,y,s,α)>c or
1MAX1(x,y,s,α)<c. For each (x, y, α), an optimal threshold c is searched over a grid of 50 equally
spaced points from the minimum to the maximum of {MAX1m(x, y, s, α)}. The number of adaboost
features is 80. In conducting this experiment, we noticed an issue in our previous implementation
of adaboost [23], where the threshold for each basis element is pre-trained on the training examples
with the uniform weights, and the adaboost only selects the basis elements. While this might
not be unfair because the h() function in active basis learning is fixed beforehand, in the current
implementation, the thresholds are trained during the adaboost iterations on re-weighted examples,
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and the adaboost is started from balanced uniform weights, i.e., the total weights of positives and
negatives are both 1/2.

For PCA, we first normalize each image to have marginal mean 0 and marginal variance 1. Then
we estimate the mean image and the principal components from all the positive training images. In
testing, we fit the learned mean image and the principal components to each testing image, and score
the image by the squared norm of the residual image. As for the number of principal components,
we use the first two components, which gives good performance among different choices. We may
let the number of components increase along with the increase of the sample size, but there seems
to be not much hope that PCA can be competitive with the other two methods. One needs to
extend it to active appearance model [3] to explicitly account for shape deformations in order to
achieve competitive performance.

0 10 20 30 40 50 60 70 80
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

# basis elements

te
st

in
g 

A
U

C

AUC vs the number of basis elements

 

 

40 examples
5 examples

Figure 28: Experiment 4.1. AUC scores of active basis with adaptive background versus the number
of elements.

Number of basis elements. Figure (28) plots the AUC scores of active basis with adaptive
background over the numbers of basis elements, where the numbers of training examples are 5 and
40 respectively. The optimal performance is attained around 30 elements. The performance does
not change much if we continue to increase the number of elements.

(a) (b) (c) (d) (e)

Figure 29: Experiment 4.1. Learned from the same training set with 40 positive examples. (a)
Active basis template (the first 30 basis elements). (b) Adaboost template (the first 30 elements).
(c) Mean positive image. (d) and (e) The first two principal components.

Figure (29) shows the active basis template and adaboost template sketched by the first 30
elements, as well as the mean image and the two principal components. They are all learned from
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the same 40 positive training images during one repetition of the cross validation experiment. For
adaboost templates, most features are of the type 1MAX1(x,y,s,α)>c.

Figure 30: Experiment 4.1. Learning active basis from the first 5 training images. The images are
85 × 127. Number of elements is 30.

As a further illustration, Figure (30) displays the active basis learning results from the first 5
positive images.

(a) (b)

Figure 31: Experiments 4.2 and 4.3. Active basis template (left) and adaboost template (right),
with 60 elements, learned from the same training set with 20 positive examples. (a) Horses data
set. (b) Butterflies data set.

Figure 32: Experiment 4.3. Learning active basis from the first 9 training images. The images are
100 × 150. Number of elements is 50.

We conduct the same experiments on a horse data set and a butterfly date set. Figure (31)
displays the active basis templates and adaboost templates learned from the same training sets.
Figure (32) displays the active basis learned from the first 9 positive images of butterflies.

Experiment 4 suggests that the active basis model is comparable to adaboost in classification
when the sample size is relatively small, despite the fact that it maximizes the log-likelihood ratio
instead of the classification margin. The active basis model does not need negative examples beyond
pooling a marginal histogram. In fact, the selection of the basis elements B = (Bi, i = 1, ..., n)
does not require negative examples at all. The marginal histogram is only used for estimating the
weight vector Λ = (λi, i = 1, ..., n).

For generative model to stay competitive with the discriminative approach when the sample
size is very large, we may need to represent the positive training set by a mixture of multiple
prototypes, as in [1]. See also Subsection (6.2) on learning prototype templates.

We still do not understand the relationship between generative and discriminative learning,
either empirically or theoretically. The generative learning maximizes the likelihood ratio, and
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tends to focus on typical positive examples inside the classification boundary. The discriminative
learning maximizes the class probability or margin, and tends to focus on marginal examples
that are close to classification boundary. In the pursuit of basis elements, the generative learning
does not re-weight positive examples, and the inhibition between basis elements is carried out
through residual images. In the discriminative learning, the inhibition is done by re-weighting the
training examples. It is unclear what the effect of the above-mentioned differences is on the learned
templates. It is even more unclear how these differences play out in unsupervised learning, which
involves inferring latent variables in training examples, or finding structures in the training set.

In what follows, we shall present some experiments which suggest that it is possible to learn
the active basis model in the situations that are not fully supervised.

5 Learning from Non-aligned Images

In this section, we study the problem of learning from images where the objects are of unknown
locations and scales.

5.1 Multiple image alignment

For the training image patches {Im,m = 1, ..., M} defined on the same bounding box, such as
those in the previous section, we can define the multiple alignment score (as compared to pairwise
alignment) by

ALIGN(Im,m = 1, ..., M) =
M∑

m=1

MATCH(Im,B), (33)

where B is the template learned from the image patches, and MATCH(Im,B) is the template
matching score defined by either (14) for log-likelihood or (15) for active correlation. The com-
putation is carried out by the shared sketch algorithm in Subsection (2.5), and ALIGN(Im, m =
1, ..., M) =

∑M
m=1 SUM2m, where the SUM2m scores are output by the algorithm.

When the training images {Im,m = 1, ..., M} are of different sizes, and the objects appear at
different locations in the training images, we need to infer the unknown locations. Let box(x, y) be
the rectangular bounding box of the template centered at (x, y). For an image I, let I[box(x, y)] be
the image patch cropped from the image I within box(x, y). We want to maximize the alignment
score

ALIGN (Im[box(xm, ym)],m = 1, ..., M) (34)

over {(xm, ym), m = 1, ..., M}, where (xm, ym) is the unknown location of the bounding box in Im.
The alignment score can be maximized by a greedy algorithm that iterates the following two

steps:
(1) Supervised learning: Given {(xm, ym), m = 1, ..., M}, estimate (B, Λ) from {Im[box(xm, ym)],

m = 1, ..., M} using the shared sketch algorithm in Subsection (2.5).
(2) Detection: Given (B,Λ), estimate (xm, ym) from each Im using the inference algorithm in

Subsection (2.4). (xm, ym) achieves the maximum of the SUM2 map.
Experiment 5a: In this experiment, we initialize the algorithm by specifying the bounding box

for the first training image. Then we estimate (B, Λ) from this single image patch. In learning from

35



Figure 33: Experiment 5a. The bounding box in the first image is given. The number of iteration
is 5. With the exception of horses example, the allowed displacement in location is up to 3 pixels,
and the sub-sampling rate is 1 pixel. For the horses example, the allowed displacement in location
is up to 6 pixels, and the sub-sampling rate is 2 pixels. (1) Cats: The size of the bounding box
is 136 × 140. The number of elements in the active basis is 60. (2) Wolves: The bounding box
is 117 × 117. Number of elements is 60. (3) Swans: The bounding box is 129 × 178. Number
of elements is 50. (4) Pigeons: The bounding box is 103 × 129. Number of elements is 30. (5)
Horses: The bounding box is 103× 158. Number of elements is 60. (6) Deers: The bounding box
is 143× 149. Number of elements is 50.

the single image patch, we set b1 = b2 = 0, that is, we do not allow the elements Bi to perturb.
After that, we re-set b1 and b2 to their default values, and iterate Step (2) and Step (1) described
above. In Experiment 5, with the exception of the horses example, the default value for b1, i.e.,
the allowed range of displacement in location, is 3 pixels, and the sub-sampling rate is 1 pixel. For
horses example, b1 = 6 pixels, and the sub-sampling rate is 2 pixels. The default value for b2, i.e.,
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the allowed range of displacement in orientation, is π/15, as before. The reason we make b1 smaller
than in the previous experiments is that with the adjustment of the overall locations and scales of
the objects, better alignment is expected to be achieved.

In Step (2), we search over 9 different resolutions, from 0.8 to 1.2 times the input image size
(enlarging the range to .6 to 1.4 can still result in meaningful templates). We crop Im[box(xm, ym)]
from the optimal resolution.

We run the algorithm for 5 iterations. Figure (33) displays some examples.

Figure 34: Experiment 5a. Multi-scale templates. The lengths of the Gabor wavelets are 17, 25,
33, 39 respectively. Cat: Number of elements at the lowest scale is 60. The numbers of elements
are inverse proportional to the scales. Swan: Number of elements at the lowest scale is 50.

We can also learn templates at different scales in the step of supervised learning, and combine
them in the detection step. Figure (34) displays two examples of multi-scale templates.

Experiment 5b. This is a repetition of Experiment 5a, except that we do not assume that the
bounding box of the object in the first image is given. We simply start from the template learned
from the whole image of the first example. Figure (35) displays two examples. In each example,
the first template is learned from the first image, and the template serves as the initialization of the
algorithm. The second template is produced after 5 iterations of the algorithm used in Experiment
5a.

Figure 35: Experiment 5b. In each example, the first template is the starting template. The second
template is learned after 5 iterations. The number of elements of the active basis is 30 in the left
example, and 60 in the right example.

Negative experience in Experiments 5a and 5b. When there are cluttered edges in the back-
ground, the detection step may fail to locate the objects. When the objects have large deformations
or pose changes, the learned template may not be clean, and may fail to sketch the objects in the
training images correctly. In Experiments 5b, if the objects do not occupy significant portions of
the training images, our method may fail to establish correct alignment.
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5.2 Learning part-templates

The algorithm in Experiment 5a can be used to learn part-templates from training images. In
Experiment 5c, we start from a large number of patches cropped from the training images, and for
each starting patch, we learn a template using the same iterative algorithm as in Experiment 5a.
The number of iterations is 3. Here we use active correlation (see Subsection (3.7)) instead of the
log-likelihood for learning and detection.

Then we select the first K templates with the highest alignment scores. We did not perform
spatial inhibition between the part-templates. After that, we double the sizes of the input images,
and use the same procedure to learn part-templates at a higher resolution.

Figure 36: Experiment 5c. The top three part-templates. The size of the bounding box is 100 ×
100. The number of elements is 40. The allowed activity in location is up to 3 pixels. The allowed
activity in orientation is up to π/15, as usual. The number of iterations is 3.

Figure (36) displays the top three part-templates learned from three car images. Because of the
large deformations in these three cars, it is impossible to learn a common template for the whole
cars, but it is still possible to learn meaningful part templates that correspond to frontal, middle
and rear parts of the cars.

Figure 37: Experiment 5c. The top two part-templates learned after the sizes of the input images
are doubled. The parameters are the same as in Figure (36)

Figure (37) displays the top two part-templates learned from these three images after we resize
these images by a factor of 2.

Negative experience in Experiment 5c. When the part-template is small relative to the whole
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objects, the method often fails to establish correct correspondence among the images.
The above difficulty suggests that we should add constraints for more reliable learning of the

parts. If the bounding boxes are given as in Experiment 1, we can restrict the ranges of movements
of parts in the training images, so that in the detection step, we do not need to search over the
whole images. If the bounding boxes are not given, we might simultaneously learn multiple parts
while restricting their relative positions. We leave it to future investigations.

5.3 Learning moving template from motion sequence

Our method can also be used to learn a moving deformable template from a video sequence. Let
(It, t = 1, ..., M) be a sequence of frames of an object shape that is moving at a speed v = (vx, vy).
We can estimate v and learn a template of the object shape simultaneously.

At the true speed v = (vx, vy), let J(v)
t (x, y) = It(x + vxt, y + vyt), i.e., for frame t, we shift

the image lattice back by vt, then the object shapes in {J(v)
t , t = 1, ..., M} will be well aligned. If

we apply the shared sketch algorithm to {J(v)
t }, we shall learn a clean template that has a high

alignment score. We can try all possible v, and choose the v that achieves the maximum alignment
score, i.e., we maximize

ALIGN
(
J(v)

t , t = 1, ..., M
)

(35)

over v. This is actually a simpler problem than learning from non-aligned images.
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Figure 38: Experiment 6.1. Alignment scores at different speeds of the optimal direction.

In our experiment, we use active correlation (see Subsection (3.7)) to evaluate the alignment
score (35). Before computing this score, we need to perform background subtraction. First, we
compute the background SUM1: SUM10(x, y, s, α) =

∑M
t=1 SUM1t(x, y, s, α)/M . Then we modify

SUM1t(x, y, s, α) ← [SUM1t(x, y, s, α) − SUM10(x, y, s, α)]+, where [r]+ = r if r > 0 and [r]+ = 0
otherwise. For each v, we compute the alignment score of the background subtracted SUM1 maps
using the shared sketch algorithm.

Experiment 6. We learn the moving template from a sequence of 19 frames of size 204 ×
258. The image sequence is cropped from the PETS 2006 benchmark data [7]. We try 5 different
directions vx/vy, and at each direction, we try 7 different speeds. Figure (38) displays the alignment
scores at different speeds of the optimal direction.
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Figure 39: Experiment 6.1. Learned template and superposed sketch for each frame at the optimal
speed and direction. There are 19 frames of size 204 × 258, cropped from PETS 2006 benchmark
data. Number of elements is 70.

Figure (39) displays the learned template and the superposed sketch for each frame at the
optimal speed and direction.

Figure 40: Experiment 6.2. Learned template and superposed sketches at the optimal speed. The
image frames are 180 × 186. Number of elements is 80.

Figure (40) displays another example.

6 Clustering and Local Learning

In this section, we study the problem of clustering, where we need to learn multiple templates from
the training set, which is a mixture of different poses or different categories.

Unlike conventional clustering problem, we not only need to separate the examples into different
clusters, but we also need to learn the active basis for each cluster, i.e., find the dimensions that
characterize each cluster. These two tasks can be naturally integrated, and they actually depend
on each other.
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6.1 EM and K-mean

Mixture model and EM. Suppose there are K clusters, and each cluster k can be described by
an active basis model B(k) = (B(k)

i , i = 1, ..., n) and Λ(k) = (λ(k)
i , i = 1, ..., n). Let ρ(k) be the

probability that a training image Im comes from cluster k, k = 1, ...,K. So Im ∼ ∑K
k=1 ρ(k)p(k)(Im |

B(k)
m ), i.e., a mixture distribution, where each p(k)(Im | B(k)

m ) is modeled as in Subsection (3.1).
We can learn {ρ(k),B(k),Λ(k), k = 1, ...,K} by the EM algorithm [5]. For each image Im, we

define (z(k)
m , k = 1, ..., K) as an indictor vector, where z

(k)
m = 1 if Im comes from cluster k, otherwise

z
(k)
m = 0.

E-step. For each m = 1, ...,M and k = 1, ...,K, we impute

z(k)
m =

ρ(k) exp{SUM2(k)
m }

∑K
k=1 ρ(k) exp{SUM2(k)

m }
.

This is a soft classification based on the current models of the clusters, where each z
(k)
m becomes a

fraction. The SUM2(k)
m scores are obtained in the M-step.

M-step. For each k = 1, ...,K, we learn B(k) and Λ(k) according to the shared sketch algorithm
in Subsection (2.5). We only need to make the following changes to the original version of the
learning algorithm.

(1) In Step 3, find (xi, yi, αi) by maximizing
∑M

m=1 z
(k)
m h(MAX1m(x, y, s, α)), which is a weighted

sum.
(2) In Step 3, compute λ̂i by

λ̂i = µ−1

(∑M
m=1 h(rm,i)z

(k)
m

∑M
m=1 z

(k)
m

)
, (36)

that is, we match µ(λi) to the weighted average.
(3) At the end of the algorithm, attach a superscript (k) to the resulting SUM2m and B.

SUM2(k)
m can then be used in the E-step.

We initialize the algorithm by randomly generating {z(k)
m }, and then iterate the M-step and the

E-step. We stop the algorithm after a few iterations. Then we classify Im to the cluster k∗ that
maximizes z

(k)
m over all k = 1, ...,K.

(a) (b)

Figure 41: Experiment 7.1. Learned templates from a mixture of 106 training images in Experiment
4. Image size is 120 × 150. Number of elements in each template is 40. Number of iteration is 4.
(a) EM. (b) K-mean.

Experiment 7. Figure (41.a) displays the templates B(k), k = 1, 2, 3, learned from the mixture
of three subsets of positive images in Experiment 4. The EM algorithm can easily separate the
three clusters.
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(a) (b)

Figure 42: Experiment 7.2. Learned templates for 57 images of horses facing two different directions.
Image size is 120 × 150. Number of elements in each template is 50. (a) EM with 4 iterations. (b)
K-mean with 8 iterations.

Figure (42.a) displays the learned templates B(k), k = 1, 2 from a mixture of images of horses
facing different directions. The EM algorithm separates the two clusters.

K-mean clustering. Our K-mean clustering scheme is different than the conventional ones. The
mean vector is not a simple average. It is obtained by the shared sketch algorithm. The distance
is not simple Euclidean distance, but is defined in terms of active correlation.

We can pose the clustering problem as the following alignment problem: Find {(z(k)
m , k =

1, ..., K),m = 1, ..., M} to maximize

K∑

k=1

ALIGN
(
Im, z(k)

m = 1
)

, (37)

where ALIGN(Im, z
(k)
m = 1) is the alignment score of the k-th cluster. See Subsection (5.1) for the

definition of the alignment score. Here z
(k)
m are 0/1 variables instead of fractions. The computation

of the alignment score by the shared sketch algorithm also produces the template B(k) for the
k-th cluster. If we use active correlation to learn the template for each cluster and score the
alignment within each cluster, then the learned (B(k), Θ(k)) gives us an active mean vector V (k) =∑n

i=1 θ
(k)
i B

(k)
i for each cluster. The mean vector V (k) points to the center of the k-th cluster. The

K-mean algorithm is a greedy scheme that maximizes (37), and it iterates the following two steps:
(1) Given {(z(k)

m , k = 1, ..., K),m = 1, ..., M}, estimate the mean vector (B(k), Θ(k)) from
{Im, z

(k)
m = 1} for each k = 1, ..., K.

(2) Given {B(k), θ(k), k = 1, ..., K}, classify each image Im to a cluster k∗ that maximizes
〈Im | V (k)

m 〉 (see Equation (31)) over all k = 1, ..., K, where V
(k)
m is the deformed version of V (k) for

fitting image Im (see Subsection (3.7)). Set z
(k∗)
m = 1, and set z

(k)
m = 0 for k 6= k∗.

The implementation of this K-mean algorithm is similar to the EM algorithm. We only need
to make the following modifications:

(1) Change the E-step: let z
(k∗)
m = 1 if k∗ achieves the maximum of SUM2(k)

m among all k =
1, ..., K, and set the the rest of z

(k)
m to 0.

(2) Change the M-step: for each k = 1, ..., K, compute SUM2m and estimate B and Θ for each
cluster k using the shared sketch algorithm that maximizes the active correlation (see Equation
(32)).

Figure (41.b) and Figure (42.b) display the learned templates B(k), k = 1, ...,K using K-mean
algorithm. We initialize the algorithm with random {z(k)

m }.
We also did a third experiment where we mix the positive training examples of head-shoulder

images and negative training examples. The EM and K-mean algorithms can still separate out many
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of the positive training examples, although they also mistakenly include some negative examples
into the positive cluster.

Negative experience in Experiment 7. When the object shapes of different categories are not
very different, our method often fails to distinguish them if we start from random clustering.

The above difficulty is not caused by the model or the EM or K-mean iteration, but mainly
by the fact that random clustering gives poor initialization. We address this issue in the next
subsection.

6.2 Local learning of prototype templates

To address the problem of initializing EM or K-mean, we develop a local learning scheme. The word
“local” means being local in the high dimensional image space. It does not mean being local in the
two-dimensional image lattice. Here the measure of locality or similarity depends on the models
to be learned locally from similar examples. This naturally suggests an iterative procedure that
iterates between learning the local model from similar examples and identifying similar examples
based on the learned local model.

Local learning algorithm

Input: Training images {Im,m = 1, ...,M}.

Output: A prototype template (B(m), Λ(m)) around each image Im.

1. Initialize template (B(m), Λ(m)) by learning from the single image Im using the shared sketch
algorithm, with b1 = b2 = 0, i.e., no activity is allowed. Then restore b1 and b2 to their
normal values (e.g., b1 = 2 pixels, b2 = π/15).

2. Use (B(m), Λ(m)) to score all the images, using the inference algorithm based on the sum-max
maps. Find the K (e.g., K = 5) images with the highest SUM2 scores.

3. Re-learn (B(m),Λ(m)) from the K images identified in Step 2, using the shared sketch algo-
rithm.

4. Go back to Step 2, and stop after t iterations (e.g., t = 3).

In the above algorithm, Step 2 can be very fast, because it only involves a linear combination
of a small number of MAX1 scores for each image. Step 3 can also be fast because learning is done
on a small number of nearest neighbors. A more localized implementation is to enforce that Im

must be among the K neighbors, and Im may even receive higher weights than other neighbors.
In local learning, we reduce the range of allowed activity, in order to get tighter clusters.

Specifically, we set b1 = 2 pixels, instead of 6 pixels as in Experiment 1.
In Experiment 8.1, we learn local prototypes from a training set of 123 images of animal heads,

where K = 5. After learning all the 123 templates, we trim them to satisfy the constraint that the
K nearest neighbors of the remaining templates should not overlap (this may be too aggressive).
This leaves 15 exemplar templates.

Figure (43) shows the 15 templates. They are ordered by the alignment scores computed from
their respective K nearest neighbors.
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Figure 43: Experiment 8.1. The 15 locally learned prototypes. They are ordered by the alignment
scores computed from their respective nearest neighbors. Image size is 100 × 100. Number of
elements is 40. Number of iterations is 3 for learning each template. The allowed activity of
location is up to 2 pixels. The allowed activity of orientation is up to π/15.

Figure 44: Experiment 8.1. The top 5 templates and their neighbors.

Figure (44) shows the top 5 templates and their nearest neighbors.
Figure (45) shows another 4 templates and their nearest neighbors.
In Experiment 8.1, we pool q(r) from negative images in Experiment 4. Pooling q(r) from the

two natural images in Subsection (3.1) leads to slightly different result. For other experiments in
this paper, the two q(r) lead to essentially the same results.

The locally learned templates may represent distinct object categories, but they may also repre-
sent different poses of the same object category. Figure (46) shows two templates of cats of slightly
different poses.

In Experiment 8.2, we mix the images in Experiments 1.3 and 1.4, and the first 12 images in
Experiment 3.2. The image length is 120. All the images share the same central horizontal line.
The number of elements is 60. All the other parameters are the same as Experiment 8.1. The local
learning algorithm returns 3 prototypes after trimming. Figure (47) displays the three prototypes.
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Figure 45: Experiment 8.1. Some other templates and their neighbors.

Figure 46: Experiment 8.1. Templates of cats at two slightly different poses.

Figure 47: Experiment 8.2. The 3 representative templates locally learned. They are ordered by the
total alignment scores. The image length is 120. All the images share the same central horizontal
line. Number of elements is 60. All the other parameters are the same as Experiment 8.1

Figure (48) displays the three prototypes and their nearest neighbors.
In Experiment 8.3, we apply the same algorithm to 200 images of handwritten digits from the

MNIST data set [13], where we take the first 20 images for each digit. We obtain 21 locally learned
templates, as shown in Figure (49).

In Experiment 8.4, we perform local learning on 912 images of horses. Some of the images are
taken from the Weizmann data set [2] and the INRIA data set [6]. The number of nearest neighbors
K = 20. We sequentially select the templates {B(l), l = 1, ..., L} by maximizing a truncated log-
likelihood score

∑M
m=1 truncate(maxl SUM2(l)

m , T ), where SUM2(l)
m is the template matching score of

Im matched to template B(l), and maxl SUM2(l)
m is the score of Im matched to its closest template.

truncate(s, T ) = s if s > T , and truncate(s, T ) = 0 otherwise. That is, we only count the template
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Figure 48: Experiment 8.2. The 3 templates and their corresponding 5 nearest neighbors.

Figure 49: Experiment 8.3. The 21 locally learned templates. Number of images is 200. The images
are resized to 60× 60. Original images are taken from MNIST data set. Number of elements is 15.

Figure 50: Experiment 8.4. The 20 locally learned templates sequentially selected by maximizing
a truncated log-likelihood score. The number of nearest neighbors is 20. The 912 images are 84 ×
105. The number of elements is 40. Other parameters are the same as in the previous experiments.

matching scores where the images and the templates are good matches, in the hope that the selected
templates and the images matched to them form the cores of the clusters. In this experiment, we
let the number of elements be 40, and we set the threshold T = 80. Figure (50) shows the first 20
templates sequentially selected by maximizing the truncated log-likelihood score.

We are still unclear what is the principled way of selecting the locally learned templates. The
selected templates can be used to initialize the EM algorithm for fitting the mixture model (we
may also need to merge some of the similar clusters). It remains to be seen whether the mixture
model fit this way can help the classification task or not.
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7 Synthesis by Multi-scale Gabors and DoGs

Edges and regions can be considered two relative concepts in the frequency domain. While edges
can be captured by high frequency Gabor wavelets, the regional contrasts can be encoded by low
frequency wavelets, including the difference of Gaussian (DoG) wavelets. To account for both edges
and regions, we need to combine Gabor and DoG wavelet elements at multiple frequency bands.

In Experiment 9, we select the wavelet elements of active basis from a dictionary of Gabor and
DoG wavelets at different scales. We use the same shared sketch algorithm with sigmoid pursuit
index, except that we normalize the filter responses by marginal variance. After selecting the ele-
ments and recording their responses, we use matching pursuit [14] to reconstruct the images. We
need to use matching pursuit for reconstruction because the selected elements are only approxi-
mately orthogonal to each other, so the projection coefficients and the reconstruction coefficients
are slightly different. The matching pursuit algorithm computes the reconstruction coefficients
from the projection coefficients.

Figure 51: Experiment 9.1. The selected Gabor elements (illustrated by bars) at 3 different scales
and the selected DoG elements (illustrated by circles, and larger circles are darker than smaller
ones). The lengths of the Gabor elements are 35, 25, and 17 pixels respectively. The sizes of the
DoG elements are 77 and 55 respectively. The allowed activity of location is 4 pixels for both Gabor
and DoG elements.

In Experiment 9.1, we use the same training images as in Experiment 1.3, except that we resize
these images to make them smaller. Figure (51) displays the selected Gabor and DoG elements.
The Gabor elements are illustrated by bars at different sizes. The DoG elements are illustrated by
circles. The radius of a circle is about half of that of the blob represented by the corresponding
DoG elements. Larger circles are darker than smaller ones.

Figure 52: Experiment 9.1. The first block displays all the 50 selected Gabor and DoG elements.
The smaller Gabors are illustrated by darker bars. The remaining blocks display the original images
and the corresponding reconstructed images. The image size is 102 × 100.

Figure (52) displays the reconstructed images. The DoG elements are necessary to account for
the large regional contrasts.
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Figure 53: Experiment 9.1. The first block displays all the 150 selected Gabor and DoG elements.
The remaining blocks display the reconstructed images and the corresponding residual images.

Figure (53) displays the reconstructed images with 150 wavelet elements. The reconstructed
images have more details than those in Figure (52). Alongside each reconstructed image, the
corresponding residual image is also displayed. One can still recognize the objects from the residual
images, suggesting that the model only explains away parts of the images.

Figure 54: Experiment 9.2. The first block displays all the 50 selected Gabor and DoG elements.
The remaining blocks display the original 95 × 100 images and the corresponding reconstructed
images.

Figures (54) - (57) display more examples. Ideally, the large Gabor and DoG elements gauge
the breadths of the edges, while the small Gabor elements gauge the sharpness of the edges. The
very large DoG elements may gauge the sizes of the regions, which are to be contoured by the
Gabor elements.

Despite the fact that DoG elements can account for the regional intensity contrast, we still need
to add local appearance variables to represent the local smoothness or textures in the interiors of
the regions.

8 Composing Multiple Part-Templates

For articulate objects, we need to represent them as compositions of part-templates at different
locations and resolutions.
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Figure 55: Experiment 9.3. The first block displays all the 40 selected Gabor and DoG elements.
The remaining blocks display the 100 × 70 original images and the corresponding reconstructed
images.

Figure 56: Experiment 9.4. The first block displays all the 40 selected Gabor and DoG elements.
The remaining blocks display the original 100 × 110 images and the corresponding reconstructed
images.

Figure 57: Experiment 9.5. The first block displays all the 50 selected Gabor and DoG elements.
The remaining blocks display the original 100 × 100 images and the corresponding reconstructed
images.

Recursive active basis and recursive sum-max maps. An active basis is a composition of multiple
Gabor wavelet elements, where each element is allowed to shift its location and orientation. We
can further compose multiple active bases, where each active basis serves as a part-template that is
allowed to change its overall location, orientation and scale. We call such a structure a “recursive
active basis,” which is a template that consists of multiple part-templates. The following experiment
illustrates the basic idea.
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(a) (b)

Figure 58: Experiment 10.1. (a) Input image of 330 × 496. (b) Superposed sketch. The bounding
box of the front wheel is 112 × 126. The bounding box of the back wheel is 86 × 76. The total
number of elements is 60.

Figure (58.a) displays an observed image of size 330 × 496 of Experiment 10.1. Figure (58.b)
displays the superposed sketch. The template is learned in Experiment 3.1 from the bicycle images.
See Figure (23). We split the bicycle template in Figure (23) horizontally into two part-templates.
The bounding box for the part-template of the front wheel is 112 × 126, and the bounding box
for the part-template of the back wheel is 86 × 76 (we give some extra margin to the bounding
box of each part-template at the splitting point). We allow the two part-templates to locally shift
horizontally, so these two part-templates make up a recursive active basis. We then fit the recursive
template to the tandem bike in Figure (58.a) and obtain the sketch in Figure (58.b).

Given the two part-templates, the inference can be accomplished by alternating the sum maps
and max maps as illustrated by Figure (59). Here we have two SUM2 maps, one for each part-
template. On top of each SUM2 map, there is also a MAX2 map. Then on top of the two MAX2
maps, a SUM3 maps is computed. After that a MAX3 score is obtained. These scores are computed
by a bottom-up process, and they answer the following questions:

SUM2 maps: Is there a part-template at this location?
MAX2 maps: Is there a part-template at a nearby location?
SUM3 map: Is there a certain composition of part-templates that form the whole template at

this location?
MAX3 score: Is there a composite template within the whole image?
If there is such a composite template, then a top-down process first retrieves the location of the

whole template, then retrieves the locations of the part-templates, and finally retrieves the elements
of the part-templates.

Inference by recursive sum-max maps

Input: Part-templates (B(j),Λ(j)), j = 1, 2. Their central locations (xj , yj) for j = 1, 2 in the
composite whole template. Testing image I.

Output: Detected location (x̂, ŷ) of the whole template in the testing image I, as well as the detected
locations (x̂j , ŷj) of the part-templates for j = 1, 2.

Up-1 For j = 1, 2, compute SUM2(x, y, j) using the inference algorithm of Subsection (2.4).
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Figure 59: Recursive sum-max maps. A SUM2 map is computed for each part-template. For each
SUM2 map, a MAX2 map is computed by applying a local maximization operator to the SUM2
map. Then a SUM3 map is computed by summing over the two MAX2 maps. The SUM3 map
scores the template matching, where the template consists of two part-templates that are allowed
to locally shift their locations.

Up-2 For all (x, y) and j = 1, 2, compute

MAX2(x, y, j) = max
−bx ≤ ∆x ≤ bx

−by ≤ ∆y ≤ by

SUM2(x + ∆x, y + ∆y, j), j = 1, 2. (38)

Up-3 For all (x, y), compute

SUM3(x, y) =
2∑

j=1

MAX2(x + xj , y + yj , j).

Up-4 Compute MAX3 = maxx,y SUM3(x, y).
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Down-4 Retrieve (x̂, ŷ) that achieves the maximum in Up-4.

Down-3 Retrieve (x̂ + xj , ŷ + yj) in Up-3 for j = 1, 2.

Down-2 Retrieve (x̂j , ŷj) so that

MAX2(x̂ + xj , ŷ + yj , j) = SUM2(x̂j , ŷj , j),

in the local maximization operation (38) in Up-2.

Down-1 Retrieve the perturbed elements of j-th part-template for j = 1, 2, as described in the inference
algorithm of Subsection (2.4).

The retrieval in Down-2 step can be implemented by storing the TRACK2 maps in Up-2 step.
In Experiment 10.1, in Step Up-2, we take bx = 20 pixels and by = 4 pixels. Let (x1, y1) and

(x2, y2) be the central positions of the bounding boxes for the two part-templates in the original
template learned from regular bicycles. Assume x1 < x2, we let x1 ← x1 − bx, x2 ← x2 + bx, and
let the two part-templates shift around the new centers (x1, y1) and (x2, y2).
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Figure 60: Experiment 10.1. MAX3 scores for different splitting points.

The MAX3 score in Up-4 measures the template matching, or the alignments of the two part-
templates to the images. This MAX3 score can be used to decide where we should split the original
bicycle template. Specifically, we can try different splitting points, and for each splitting point, we
compute the MAX3 score. Figure (60) displays the MAX3 scores for 10 different splitting points.
The result shown in Figure (58.b) is obtained at the splitting point that achieves the maximum
MAX3 score.

The recursive active basis can be considered a constellation model [21] whose constituent com-
ponents are active bases. The MAX2 and SUM3 maps may have been commonly used in part-based
models. Thanks to the work of Riesenhuber and Poggio [17], we are able to extend the SUM and
MAX operations down to the image intensities.

Account for large deformations. The recursive active basis and recursive sum-max maps can
account for the existence of parts, as illustrated in Experiment 10.1. They can also be used to deal
with large deformations.

Figure (61.a) displays the image of horse that we used in Experiment 3.2, where we change the
aspect ratio of the horse template to fit this image. From a 2D point of view, this amounts to
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(a) (b) (c)

Figure 61: Experiment 10.2. (a) The observed image of 166 × 202. (b) Superposed with sketch
where the horse template is split horizontally into two part-templates. The left part-template is
116 × 76. The right part-template is 104 × 92. These two part-templates are allowed to move
horizontally up to 10 pixels in each direction. (c) Superposed with sketch using the original horse
template. In other words, the two part-templates are not allowed to move relative to each other.

a large deformation that cannot be handled by a single-layer active basis model. We can use the
same method in Experiment 10.1 to split the original horse template into two part-templates, and
allow these two part-templates to move relative to each other. Figure (61.b) displays the result
of fitting the recursive active basis at the optimal splitting point. As a comparison, Figure (61.c)
displays the result using the original template. The original template does not fit the head and the
rear parts of the horse very well.

Experiment 10 on composing part-templates and Experiment 5c on learning part-templates are
only illustrative and very preliminary. There is still a long way to go to develop a simple and robust
scheme to learn multi-scale and multi-layer recursive active basis.

9 Discussion

The proposed approach is very simple for the vision tasks studied in this article. The model is not
much more complex than a wavelet expansion, except that local perturbations are added to the
wavelet elements. The learning algorithm is not much more complex than edge detection, except
that it is performed simultaneously on multiple images. The inference algorithm only involves two
consecutive filtering operations on top of Gabor filtering. One is a local max filtering and the other
is a local sum filtering.

We play with the active basis model in a variety of experiments. These experiments are merely
illustrative and explorative. Far more empirical experiences are needed to better understand the
limitations and inadequacies of the model and to improve it.

In retrospect, we find the following three principles relevant and helpful.

9.1 Sparsity

Olshausen and Field [15] propose this principle for understanding V1 simple cells, where a typical
natural image can be represented by a linear superposition of a small number of Gabor-like wavelet
elements at different scales, locations, and orientations, plus a small residual. The reason for such
a sparse representation is that edges are prominent and frequently occurring structures in natural
images.
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The active basis model can be considered a further step in sparse coding. In Olshausen-Field
representation, each image is encoded by a sparse set of localized and oriented wavelet elements
of various scales. This effects a key transition in representation, from raw image intensities to a
geometric representation in terms of locations, orientations, and scales of the wavelet elements.
We can further encode this geometric representation by a small number of templates, each being
a composition of locations, orientations, and scales. The reason for such a sparser representation
is that those templates are prominent and frequently occurring structures in natural images. In
Olshausen-Field representation, we need to allow for small residuals in image intensities. Similarly,
in this geometrical representation, we need to allow for small residuals in locations, orientations,
and scales. Such small residuals become the perturbations or activities of the elements of the active
basis model, so that the templates are deformable.

9.2 Compositionality

S. Geman et al. [10] propose this principle for vision. If we want a compositional representation of
image intensities and if we insist on linear representation for simplicity, then it is natural to adopt
wavelet representation because the wavelet elements are localized in both spatial and frequency
domains. The active basis model follows such a compositional scheme.

Zhu and Mumford [28] investigate the and-or graph as a recursive compositional scheme for
vision, where “and” accounts for compositions of constituent elements, while “or” accounts for
variations in the constituent elements. The active basis model is a simplest form of an and-or
graph, where “and” means composition of wavelet elements, and “or” means variations in the
locations and orientations of the elements. The and-or graph is a grammar that can be applied
recursively. The recursive active basis follows such a grammar.

The recursive architecture of sum-max maps is a variation on the theme of Riesenhuber and
Poggio’s cortex-like structure [17]. The sum-max maps form a natural hierarchical structure for
parsing an image according to the and-or grammar. The sum maps score the and-compositions, and
the max maps account for the or-variations. After bottom-up scoring for detection and classification,
the top-down retrieving produces the parsing of the image. See also the recent work of L. Zhu et
al. [25] on a recursive compositional scheme.

9.3 Invariance

Riesenhuber and Poggio [17] propose this principle for V1 complex cells. While the V1 simple cells
capture the essence of the image intensities via Olshausen-Field sparse coding, the local maximiza-
tion operation of the V1 complex cells filters out shape deformations, and makes the subsequent
processing invariant to shape deformations. Of course, invariance here is only approximate.

The Riesenhuber-Poggio scheme compares intensities of the MAX1 maps directly for template
matching. We modify their template matching scheme by a weighted sum of the MAX1 intensities
at highly selected locations and orientations. If the locations and orientations of the selected
wavelet elements are at the centers of the local perturbations that cause shape deformation, then
hopefully, the intensities of the MAX1 maps of these highly selected locations and orientations are
more invariant (and more indicative of the object shapes) than the intensities of other locations
and orientations.
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Reproducibility

All the experimental results reported in this paper can be reproduced by the Matlab and mex-C
code that we have posted on the webpage http://www.stat.ucla.edu/∼ywu/ActiveBasis.html.
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