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Abstract This paper presents a numerical study of the
bottom-up and top-down inference processes in hierar-

chical models using the And-Or graph as an example.
Three inference processes are identified for each node
A in a recursively defined And-Or graph: the α(A) pro-

cess detects node A directly based on image features,
the β(A) process computes node A by binding its child
node(s) bottom-up and the γ(A) process predicts node

A top-down from its parent node(s). All the three pro-
cesses contribute to computing node A from images in
complementary ways. The objective of our numerical

study is to explore how much information each pro-
cess contributes and how these processes should be in-
tegrated to improve performance. We study them in

the task of object parsing using And-Or graph formu-
lated under the Bayesian framework. Firstly, we isolate
and train the α(A), β(A) and γ(A) processes separately

by blocking the other two processes. Then, information
contributions of each process are evaluated individu-
ally based on their discriminative power, compared with

their respective human performance. Secondly, we inte-
grate the three processes explicitly for robust inference
to improve performance and propose a greedy pursuit

algorithm for object parsing. In experiments, we choose
two hierarchical case studies: one is junctions and rect-
angles in low-to-middle-level vision and the other is hu-

man faces in high-level vision. We observe that (i) the
effectiveness of the α(A), β(A) and γ(A) processes de-
pends on the scale and occlusion conditions, (ii) the

α(face) process is stronger than the α processes of fa-
cial components, while β(junctions) and β(rectangle)
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work much better than their α processes, and (iii) the
integration of the three processes improves performance

in ROC comparisons.
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1 Introduction

1.1 Motivations and objectives

In the literature of object detection, recognition and

parsing, hierarchical models and contextual information
are widely used and shown to improve performance (Ge-
man et al, 2002; Riesenhuber and Poggio, 1999; Ullman

et al, 2002; Schneiderman and Kanade, 2002; Todorovic
and Ahuja, 2008b; Wu et al, 2009; Sudderth et al, 2008;
Felzenszwalb et al, 2009; Fidler et al, 2008; Torralba,

2003; Divvala et al, 2009). In hierarchical models, we
observe that certain nodes, such as the human face,
are often interpreted in a top-down fashion. One does

that because it is much more effective to detect the
full human face than individual facial components. In
contrast, some other nodes such as junctions and hand-

writing digits are more effectively computed through
bottom-up binding. For example, it is very difficult to
detect rectangles directly. Instead, we can detect paral-

lel lines or L-junctions first and then bind those compat-
ible parallel lines or compatible L-junctions under some
constraints. Furthermore, if we take scale and occlusion

into account, one may have to adapt different comput-
ing strategies for different object instances. Fig.1 shows
three cases in detecting human faces: the first case is

a normal situation in which human faces are at middle
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Fig. 1 Motivation of the α, β and γ inference processes using human face detection as an example. There are three cases of human

faces appearing in the top image, each of which entails a different inference process, termed the α(face), β(face) and γ(face) processes
respectively, as illustrated in the bottom panel. General identifications of the three processes are illustrated in Fig.2 and formal
definitions of the three processes are introduced in Sec.1.2.

resolution without occlusion, the second contains hu-
man faces at higher resolution but with occlusion and

the third contains human faces at extremely low resolu-
tion. Intuitively, these three cases entail three different
inference processes as illustrated in the bottom of Fig.1:

human faces in the first case can be detected directly
based on image data features, but those features work
for the first case would fail in the second and the third

cases due to occlusion and low resolution respectively.
Human faces in the second case can be computed by
binding those detectable facial components such as eyes

and mouth, etc., and those in the third case can be pre-
dicted from their detectable surrounding contexts such
as the head-shoulders. It is natural to ask the following

three questions.

(i) What inference processes, bottom-up and top-down,
can be identified for nodes in hierarchical models?

(ii) How much information does each of them con-
tribute for different nodes?

(iii) How should they be integrated to improve detec-

tion performance?

In this paper, we present a framework to study these
three questions in the task of object parsing. We formu-

late object parsing under the Bayesian inference frame-
work. We choose the And-Or graph (AoG) (Zhu and
Mumford, 2006) as our hierarchical model to represent

object grammar. The AoG is a recursive structure. First
of all, we identify three inference processes for each node
A in an AoG, termed the α(A), β(A) and γ(A) pro-

cesses. The three processes account for the three cases
as the human face example has shown in Fig.1. Then,
through scaling and masking image patches of node A,

we isolate and train the three processes separately by
blocking the other two processes and evaluate their in-
formation contributions individually by both comput-

ers and humans based on their discriminative power.
Secondly, we integrate the three processes explicitly
for robust inference to improve performance and pro-

pose a greedy pursuit algorithm for object parsing. We
choose two hierarchical case studies in our object pars-
ing experiments, one is junctions and rectangles in low-

to-middle-level vision and the other is human faces in
high-level vision. We observe that (i) the effectiveness
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of the α(A), β(A) and γ(A) processes depends on the

scale and occlusion conditions, (ii) the α(face) process
is stronger than the α processes of facial components,
while β(junctions) and β(rectangle) work much better

than their α processes, and (iii) the integration of the
three processes improves performance in ROC compar-
isons. In our on-going work, we are studying how these

numerical observations lead to improved computational
efficiency through scheduling.

In the following, we shall briefly introduce the AoG

and the α, β and γ inference processes, and then give
an overview of the numerical study.

1.2 Overview of the AoG and the α, β and γ processes

The AoG representation is a hierarchical model recur-
sively defined for effective visual knowledge representa-
tion which embodies a stochastic context sensitive im-

age grammar (SCSG) (Zhu and Mumford, 2006). The
SCSG combines the reconfigurability of stochastic con-
text free grammar (SCFG) with the contextual con-

straints of graphical Markov random field (MRF) mod-
els. Generally, an AoG can represent the structural, ge-
ometric, appearance, and probabilistic information for

an object category. There are three types of nodes in
an AoG (see Fig.4): And-nodes represent decomposition
and are denoted by solid circles, Or-nodes represent al-

ternative structures and are denoted by dash circles and
terminal nodes link to image data and are denoted by
solid rectangles. Each And-node in the AoG can also
directly terminate to image data (through a terminate

node) when it is at low resolution. Traditional hierar-
chical models do not have Or-nodes and allow only leaf
nodes to link to image data (Riesenhuber and Poggio,

1999; Aycinena et al, 2008). We will introduce the def-
inition of the AoG in Sec.2.1.

The α, β and γ processes in AoG. Fig.2 shows a por-
tion of an AoG using the face example discussed in Fig.1
where node A represents human face, node P represents

head-shoulder and node Ci’s represent facial compo-
nents (i = 1, 2, 3). As an AoG is recursively defined, we
can consider the α, β and γ processes of And-node A

in Fig.2 without loss of generality.
Definition 1: (the α process). The α(A) process

handles situations in which node A is at middle res-

olution without occlusion. Node A can be detected
directly (based on its compact image data) and alone
(without taking advantage of surrounding context) while

its children or parts are not recognizable alone in cropped
patches. An example of α(face) process is shown in the
left-bottom panel of Fig.1. Most of the sliding window

detection methods in computer vision literature belong
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Fig. 2 Illustration of identifying the α(A), β(A) and γ(A) in-

ference processes for each And-node A in an AoG (see texts
in Sec.1.2 for detail definitions). The α(A) process is directly
based on the compact image data of node A (either bottom-up

or top-down), the β(A) process generates hypotheses of node A
by bottom-up binding the α processes of some child node(s) (for
example, ({α(C1), α(C2)} → β(A)), and the γ(A) process pre-
dicts hypotheses of node A from the α processes of some parent

node(s) (for example, α(P ) → γ(A) or β(A) → γ(C3) in a top-
down fashion). In computing, each process has two states: “on”
or “off”, for example, α(C3) process is off and we show it in grey.
As an AoG is defined recursively, each And-node has its own α,

β and γ processes (except that the root node’s γ processes and
the β-processes of leaf nodes are always off).

to this process. It can be viewed as either bottom-up

or top-down. By bottom-up, it means that discrimina-
tive models are used to train the α process, such as the
Adaboost classifiers (Viola and Jones, 2004). By top-

down, it means that generative models are used, such
as the active basis model (Wu et al, 2009).

Definition 2: (the β process). When node A is
at high resolution, it is more likely to be occluded in
a scene. Node A itself is not detectable in terms of the

α(A) process due to occlusion. A subset of node A’s
child nodes can be detected in cropped patches (say,
their α processes are activated). Then, the β(A) process

computes node A by binding the detected child nodes
bottom-up under some compatibility constraints. An
example of β(face) process is illustrated in the middle-

bottom panel of Fig.1. Most of component (Biederman,
1987; Heisele et al, 2007), fragment (Ullman et al, 2002)
or part (Amit and Trouvé, 2007; Schneiderman and

Kanade, 2002) based methods, the constellation models
(Fei-Fei et al, 2006; Fergus et al, 2007) and the pictorial
models (Felzenszwalb and Huttenlocher, 2005) belong

to this process.
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Fig. 3 Illustration of integrating the α(face), β(face) and γ(face) in the human face AoG for face detection. The three inference
processes are effective in complementary ways relatively depending on the scale and occlusion conditions. The typical situations shown

here are common to other object categories.

Definition 3: (the γ process). The γ(A) process

handles situations in which node A is at very low res-
olution. Node A can not be detected alone in isolation
based on α(A), and neither can its parts. Then, the

β(A) process also fails. An example of γ(face) process
is illustrated in the right-bottom panel of Fig.1. So, in-
formation outside of the local window must be incorpo-

rated. The γ(A) process predicts node A top-down
from a parent node whose α process is activated. In this
paper, we let the parent node pass contextual informa-

tion, such as information from some sibling nodes or
other spatial context. Most of the context-based meth-
ods (Torralba, 2003; Hoiem et al, 2008; Fink and Per-

ona, 2003) belong to this process.

For node A, all the three inference processes, α(A),
β(A) and γ(A), contribute to computing it from images
in complementary ways. The effectiveness of each pro-

cess depends on the scale and occlusion conditions. As
shown in Fig.3, the three cases of human faces shown
in Fig.1 can be handled by the α(face), β(face) and

γ(face) respectively. Intuitively, for robust inference we
should integrate them. As an AoG is a recursive struc-
ture, the three inference processes are also defined re-

cursively and each And-node has its own α, β and γ
inference processes (except that the γ process of the
root node and the β processes of leaf nodes are always

disabled).

Motivation for training the α, β and γ processes sepa-

rately. In this paper, we train the three processes sepa-
rately based on their respective isolated training data.
We introduce the isolation method in Sec.4.1. Here, we

propose the motivation and necessity to do that. Sup-
pose we want to learn a human face classifier (ie. the
α(face) process). There are two choices in selecting pos-

itive examples: (i) only face examples like those pointed
by the α(face) arrow in Fig.3, or (ii) a set of human face
examples mixing all those shown in the right middle box

in Fig.3. In the literature, people often get positive ex-
amples by cropping image patches only based on the
labelled bounding boxes. When labelling the bounding

box for an object instance, however, one often already
takes advantage of all the information coming from the
α, β and γ processes. Often, most of existing work of-

ten trained a classifier based on a set of mixed positive
examples (especially, mixing the α case and the γ case).
Then, the learned classifier could be contaminated de-

pending on the mixing rate implicitly (Torralba and
Murphy, 2007; Fink and Perona, 2003; Avidan, 2006).
We can explain the contamination. Generally, whether

a feature is selected into a classifier depends on how
different the feature responses of positive examples and
those of negative examples are. The feature responses

of a set of mixing positive examples do not reflect the
true discriminative power of the feature, however.
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1.3 Overview of the numerical study

Our numerical study consists of the following four steps.

I. Isolating the processes. To measure their indi-
vidual information contributions, we isolate the α(A),
β(A) and γ(A) processes by scaling and masking the

image patch of node A based on the labeling informa-
tion to match their definitions stated in Sec.1.2. Fig.7
illustrates the isolation procedure in Sec.4.1. The label-

ing information used in this paper is the manually la-
beled parse graphs (say, instances of the AoG represen-
tation) which are available in the LHI image database
(Yao et al, 2007). Based on the isolation, we generate

the training and evaluation dataset for each process in
Sec.4.2.

II. Learning. The three processes are trained sepa-
rately and the learning procedure is based on the MLE

framework. In this paper, we choose the recently pro-
posed active basis model (Wu et al, 2009) as the α(A)
process in Sec.4.3. For the β(A) and γ(A) processes,

both of them include two components, one is the α
processes of node A’s child nodes (for β(A)) or parent
node(s) (for γ(A)) and the other is the relation model

which constrains the configuration of all the nodes ap-
peared in the β(A) or γ(A) process. We consider three
types of relations in the configuration, relative loca-

tions, scales and orientations respectively. They are pa-
rameterized as Gaussian distributions and learned from
the training dataset in Sec.4.4 and Sec.4.5.

III. Evaluation of the information contribution. We

evaluate the individual information contribution of each
process based on their discriminative power and we also
study the human performance of the three processes in-

dividually in Sec.5. The evaluation procedure is similar
to the decision tree framework (Breiman et al, 1984).
The information contribution of each process is defined

as the impurity reduction obtained by applying it in the
evaluation dataset. In the human study, we use the psy-
chology toolbox (Brainard, 1997) to set up our experi-

mental environments. In order to reduce the amount of
data to be observed by human subjects, we use the false
positives in the computer experiments as the negative

samples in the human study. We control the observing
time as a additional isolation method for humans.

IV. Integration for improving performance. As illus-
trated in Fig.1 and Fig.3, we know that all the α(A),

β(A) and γ(A) processes contribute to detecting node
A in complementary ways which depend on the scale
and occlusion conditions. Given an input image, the

objective of object parsing is to output the parse graph
of each object instance of node A (for example the hu-
man face) on the fly and we often do not know the

specific situation of node A in advance. We formulate

object parsing using AoG under the Bayesian frame-

work in Sec.2. For robust inference, we integrate the
α(A), β(A) and γ(A) processes explicitly and propose
a greedy pursuit algorithm for object parsing under the

Bayesian framework in Sec.3. The experimental results
show performance improvement from the integration.

1.4 Related work and our main contributions

In hierarchical models, bottom-up and top-down are

two basic computing mechanisms and are often used
with three strategies:

(i) pure bottom-up inference which passes messages
in a feed-forward manner in the hierarchy, start-

ing from data-driven features (Riesenhuber and
Poggio, 1999; Serre et al, 2007; Aycinena et al,
2008).

(ii) pure top-down inference which passes messages in
a feed-back manner in the hierarchy, starting from
template matching (Todorovic and Ahuja, 2008a;

Demirci et al, 2009).
(iii) one pass of bottom-up inference followed by one

phase of top-down inference (Tu et al, 2005; Epshtein

et al, 2008; Borenstein and Ullman, 2008; Levin
and Weiss, 2009; Demirci et al, 2006).

In the recent vision literature, it is well acknowl-
edged that both bottom-up and top-down inference pro-

cesses contribute to object detection, recognition and
parsing, and they should be combined (Lee and Mum-
ford, 2003; Jin and Geman, 2006). Despite many efforts,

it has been unclear how to combine bottom-up and
top-down inference processes in a robust and effective
way. The first numerical evaluation of top-down versus

bottom-up is the ROC comparisons addressed in (Han
and Zhu, 2009). Our previous work on compositional
boosting (Wu et al, 2007) proposed to separate the im-

plicit testing (ie, the α process) and explicit testing (ie,
the β process) and then combine them under the com-
positional boosting. This paper presents a more general

framework and formulation to integrate the bottom-up
and top-down inference processes (say, the α, β and γ
processes) in an explicit way so that we can compare

different kinds of integrations numerically, benefitting
from the isolation and separate training procedures.

Our contributions. In comparison to previous work, this

paper has the following novel aspects:

(i) It presents a numerical study of the bottom-up

and top-down inference processes in hierarchical
models using the AoG as an example. To the best
of our knowledge, it is the first time this is done

in the vision literature.



6

P

A

C1 C2 C3

tA

tP

And node

Terminal node

Or  node

O

F

C4

tF

tA

<C1,C2>

tP

Three inference processes of node A

<P, A>

<C1,C3> <C2,C3>

(A)

(A)

(A)

detecting

binding 

predicting

A

A

A

C1
t C2

t C3
t C4

t

C1
t C2

t

C3
t

Fig. 4 Illustration of the And-Or graph (AoG) representation. There are three types of nodes: And-nodes for decompositions, Or-
nodes for alternative structures and terminal nodes for image data link. In an AoG, all And-nodes can directly terminate to image
data through a terminate node when it is at low resolution. In traditional hierarchical models, only leaf nodes can link to image data.

The α, β and γ processes are specified for each And-node A in an AoG as illustrated in the right panel.

(ii) It trains the identified α, β and γ processes sepa-

rately to reduce contamination by using an isola-
tion procedure. It evaluates information contribu-
tions of the identified α, β and γ processes individ-

ually in both computer and human experiments.
(iii) It proposes a pursuit algorithm for object parsing

using AoG which integrates the α, β and γ pro-

cesses explicitly under the Bayesian framework for
robust inference. The algorithm presents a way to
link discriminative learning to the Bayes.

(iv) It observes that the effectiveness of the α, β and γ
processes depends on the scale and occlusion con-
ditions. The α(face) process is stronger than the α

processes of facial components, while β(junctions)
and β(rectangle) work much better than their α
processes.

(v) Potentially, these numerical studies could shed some
lights on how to schedule the α, β and γ processes
of different nodes in an AoG, especially when we

have a big AoG with hundreds of nodes.

1.5 Paper organization

The remainder of this paper is organized as follows.

In Sec.2, we define the AoG representation and for-
mulate object parsing using AoG under the Bayesian
framework. In Sec.3, we propose a greedy pursuit algo-

rithm for object parsing and connect the identified α, β

and γ processes with the Bayesian inference explicitly.

In Sec.4, we present the isolation method and separate
learning procedures for the three processes. In Sec.5, we
propose the method of evaluating the information con-

tribution of each process. In Sec.6, we show two series
of experiments, one is for the information contribution
evaluation of the three process and the other is for the

object parsing experiments. Finally, in Sec.7, we sum-
marize the paper and discuss some on-going work of the
scheduling problem.

2 Problem formulation

In this section, we introduce the AoG for object rep-
resentation (Zhu and Mumford, 2006) and formulate
object parsing using AoG under the Bayesian frame-

work. Then, we derive the α, β and γ processes in the
Bayesian formula.

2.1 The AoG representation

Fig.4 shows a fragment of an AoG. An AoG embodies
a stochastic context sensitive image grammar and is
specified by a quadruple,

G = (VN , VT , E,P) (1)

VN = Vand ∪ Vor is a set of nonterminal nodes with

an And-node set Vand representing decompositions (shown
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Symbol Interpretation

Λ image lattice

IΛ an image I defined on the lattice Λ

G = (VN , VT , E,P) a 4-tuple representing SCSG G embedded in the AoG

VN = Vand ∪ Vor a set of nonterminal nodes including a And-node set Vand and a Or-node set Vor, a nonterminal
node is represented by a capital letter, such as O ∈ Vor, P,A,C1 ∈ Vand.

VT a set of terminal nodes having one-to-one correspondence with And-nodes in Vand, a terminal
node is represented by t with a subscript of its corresponding And-node, such as tP , tA, tC1

E = Eor ∪ Edec ∪ Et ∪ Erel a set of edges including four types, a switching edge set Eor, a decomposition edge set Edec, a

terminal edge set Et and a relation edge set Erel

V ch
and, V

prt
and ⊂ Vand subsets of And-nodes which have child node(s) and parent node(s) respectively

ch(), prt() children node set and parent node set of a And-node such as ch(A), prt(A) ⊂ Vand

X(), x() a vector of attributes of a And-node such as X(A) or a terminal node such as x(tA) respectively,
often including the relative location, scale and orientation information

pg = (V pg
N , V pg

T , Epg , p(pg)) a parse graph which is an instance of the AoG or a valid configuration of the grammar G
C(pg) = {t, x(t) : t ∈ V pg

T } a configuration which is collapsed from a parse graph to an image lattice

α(A; θ) α inference process of an And-node A ∈ Vand, also use α(A) for simplicity

β(A|c;ϕ) β inference process of an And-node A ∈ Vand given a (complete or partial) child node set
c ⊆ ch(A)

γ(A|P ;φ) γ inference process of an And-node A ∈ Vand given a parent node P ∈ prt(A)

Tst() a general notation for the α, β or γ process as a test function during evaluation

IC(Tst) information contribution of Tst() (say, α, β or γ process)

D+
α (A), D−

α (A) positive and negative dataset for α process of node A

D+
β (A|c), D−

β (A|c) positive and negative dataset for β process of node A given a child node set c

D+
γ (A|P ), D−

γ (A|P ) positive and negative dataset for γ process of node A given a parent node P

wα
A, w

β(c)
A , w

γ(P )
A the α, β and γ weights

wbind
c , w

predict
P the compatibility weight in binding in w

β(c)
A and the compatibility weight in prediction in w

γ(P )
A

wA = wα
A + w

β(c)
A + w

γ(P )
A the pursuit index in our algorithm

Table 1 The table of main notations used in this paper

by solid circles in Fig.4) and an Or-node set Vor repre-
senting alternative structures (shown by dash circles in

Fig.4). A nonterminal node is denoted by capital let-
ters, for example, P,A,C1 ∈ Vand, O ∈ Vor.

VT is a set of terminal node (shown by rectangles
in Fig.4). In an AoG, each And-node can directly ter-
minate to image data through a terminal node when

it is at low resolution. In traditional hierarchical mod-
els, however, only leaf nodes can link to image data. A
terminal node is denoted by lowercase t with the sub-

script letter of the corresponding nonterminal node, for
example, tA, tC1 ∈ VT .

E = Eor∪Edec∪Et∪Erel is a set of edges including
four types:

(i) Eor = {< O,A >: O ∈ Vor, A ∈ Vand} is a set
of vertical switching edges which link Or-nodes to
corresponding And-nodes as alternatives.

(ii) Edec = {< A,C >: A ∈ Vand, C ∈ ch(A), ch(A) ̸=
∅} is a set of vertical decomposition edges which con-
nect And-nodes to their child And-nodes. ch(A) ⊂
Vand denotes the set of child nodes of node A.

(iii) Et = {< A, tA >: A ∈ Vand, tA ∈ VT } is a set of
vertical terminating edges which connect And-nodes

to their corresponding terminal nodes.

(iv) Erel = {< A,F >: A,F ∈ Vand, prt(A) ∩ prt(F ) ̸=
∅} is a set of horizontal relation edges which connect

among And-nodes at the same layer, often pairwise.
prt(A), prt(F ) ⊂ Vand denotes the sets of parent
nodes of nodes A and B respectively.

P is the probability defined over the space of all
valid parse graphs which are defined below.

In an AoG G, each Or-node O ∈ Vor has a switch-
ing variable indicating the occurring frequency of its

branches, denoted by p(A|O) (A ∈ VN ). Both And-
nodes A ∈ Vand and terminal nodes t ∈ VT have a vec-
tor of attributes denoted byX(A) and x(t) respectively.

For a subset v ⊂ Vand, we denote X(v) as the concate-
nation of attributes for And-nodes in the subset v. The
attributes include location, scale, orientation, etc. As il-

lustrated in the right panel of Fig.4, the attributes of an
And-node can be passed from attributes of other nodes
in three ways: (i) the corresponding terminal node di-

rectly, (ii) child And-node(s) during binding process or
(iii) parent node(s) during prediction process.

Parse graph. A parse graph, pg, is one instance of the
AoG by selecting variables at the Or-nodes and spec-

ifying the attributes for And-nodes through the three
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ways stated above. We have,

pg = (V pg
N , V pg

T , Epg, p(pg)) (2)

where V pg
N = V pg

and∪V pg
or (V pg

N ⊂ VN ) is the nonterminal

node set of the parse graph, V pg
T ⊂ VT is the terminal

node set and Epg = Epg
or ∪Epg

dec ∪Epg
t ∪Epg

rel (E
pg ⊂ E)

is the edge set. We have a parse tree if we omit the

horizontal relation edges Epg
rel ⊂ Epg in a parse graph.

p(pg) is the prior probability of parse graph pg,
measuring the occurring probability of each switching

edge < O,A >∈ Epg
or and the compatibility proba-

bilities among the attributes of And-nodes (pairwise
used in this paper) in V pg

and with vertical decomposi-

tion edge < P,A >∈ Epg
dec and horizontal relation edge

< Ci, Cj >∈ Epg
rel. So, we have,

p(pg) =
1

Z
exp{−E(pg)} (3)

where Z =
∑

pg exp{−E(pg)} is the partition function
and E(pg) is the total energy,

E(pg) =−
∑

<O,A>∈Epg
or

log p(A|O)

−
∑

<P,A>∈Epg
dec

log p(X(A)|X(P ))

−
∑

<Ci,Cj>∈Epg
rel

log p(X(Ci), X(Cj)) (4)

and p(A|O) is the switching probability estimated by
the occurring frequency in training data (Zhu and Mum-

ford, 2006), p(X(A)|X(P )) captures the top-down pre-
diction model and p(X(Ci), X(Cj)) captures the com-
patibilities in the bottom-up binding model. They will

be specified in the learning algorithm in Sec.4.
Given an input image I with domain defined on lat-

tice Λ, the inference of AoG is to construct a parse

graph for each object instance and its structure is not
predefined but inferred on the fly.

Configuration. A configuration C is the set of all ter-
minal nodes in a valid parse graph pg, flattened in an
image lattice.

C(pg) = {(t, x(t)) : t ∈ V pg
T } (5)

The image data likelihood of a parse graph pg, p(I|pg),
is measured based on the terminal nodes in V pg

T (since
they link to image data). Further, if there was no oc-

clusion between different terminal nodes (which is true
for roughly rigid object categories such as the human
face), we can factorize the likelihood as,

p(I|pg) = p(I|C(pg)) =
∏

t∈V pg
T

p(IΛt |t) (6)

where Λt ∈ Λ is the image domain occupied by the

terminal node t.
In inference, we do not need compute p(I|pg) ex-

actly, instead we measure the likelihood ratio between

p(I|pg) and a reference background model which is made
implicitly in our derivation.

2.2 Bayesian formulation of object parsing using AoG

An AoG represents the object grammar of an object
category. Given an input image IΛ, it contains an un-

known number K object instances at different scales.
Some object instances may be occluded. Each object in-
stance is represented by a parse graph pgk (k = 1, · · · ,K).

For the human face parsing, Fig.1 shows a typical test-
ing image and the left-bottom panel in Fig.5 shows a
number of inferred parse trees of human face instances.

The goal of object parsing using AoG is to construct
a parse graph for each object instance in IΛ on the fly.
We seek a world representation W for image IΛ,

W = (K, {pgk}Kk=1) (7)

Under the Bayesian framework, we infer W by max-
imizing a posterior probability,

W ∗ = arg max
W∈Ω

p(W |IΛ) = arg max
W∈Ω

p(W )p(IΛ|W ) (8)

where Ω is the solution space.

The prior probability p(W ) is,

p(W ) = p(K)

K∏
k=1

p(pgk) (9)

where p(K) is the prior distribution for the number

of object instances (for example, an exponential model
p(K) ∝ exp{−λ0K}) and p(pgk) is the prior model of
a parse graph already addressed in Eqn.3 in Sec.2.1.

The likelihood p(IΛ|W ). Let Λpgk
be the image lat-

tice occupied by the parse graph pgk (1 ≤ k ≤ K).
Denote Λfg = ∪K

k=1Λpgk
as the foreground lattice and

Λbg = Λ \ Λfg as the remaining background lattice.
IΛ = (IΛfg

, IΛbg
). Let q(I) be the generic background

model which will be made implicit in our derivation.

The likelihood p(IΛ|W ) is,

p(IΛ|W ) = p(IΛfg
|W )q(IΛbg

)

=
p(IΛfg

|W )q(IΛbg
)q(IΛfg

)

q(IΛfg
)

= q(IΛ)
p(IΛfg

|W )

q(IΛfg
)

= q(IΛ)

K∏
k=1

p(IΛpgk
|pgk)

q(IΛpgk
)

(10)
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where p(IΛpgk
|pgk) means that the domain Λpgk

is ex-

plained away by the parse graph pgk and conversely,
q(IΛpgk

) explains the domain Λpgk
as background. These

models compete with each other to perform parsing.

So, Eqn.8 can be reproduced as,

W ∗ = arg max
W∈Ω

p(K)q(IΛ)
K∏

k=1

[p(pgk)
p(IΛpgk

|pgk)
q(IΛpgk

)
]

= arg max
W∈Ω

p(K)
K∏

k=1

[p(pgk)
p(IΛpgk

|pgk)
q(IΛpgk

)
] (11)

3 Object parsing in a greedy pursuit manner

In the literature, there are several ways to infer W ∗ in
Eqn.11, such as the data-driven Markov chain Monte

Carlo (DDMCMC) method used in (Tu and Zhu, 2002).
In this paper, our goal is to pursue object instances ap-
pearing in an input image and construct corresponding

parse graphs. Often, the number of object instances K
is typically not too large. So, we adopt the best-first-
search algorithm (Dechter and Pearl, 1985) directly to

pursue parse graphs sequentially by maximizing Eqn.11
in a greedy manner. Our pursuit inference algorithm
integrates the α β and γ processes and includes two as-

pects: (i) generating proposals (hypotheses) for possible
parse graphs and (ii) verifying parse graph proposals in
a greedy pursuit manner.

3.1 Connecting the α, β and γ processes with
Bayesian inference

We pursue parse graphs sequentially based on Eqn.11

starting from an empty W0 = ∅,

W0 = ∅ → W1 → · · · → Wk → · · · → WK = W ∗

At each step we pursue a parse graph and at the

step k (≥ 1) of pursuit, let Λk = Λ \ ∪k−1
i=1 Λpgi . We

pursue the k-th parse graph pgk by,

pg∗ = arg max
pg∈Ωpg

p(pg)p(IΛpg |pg) (12)

where Ωpg is the proposal space of parse graphs and we

omit k in pgk hereafter in the derivation for simplicity
when there is no confusion.

Similar to derive Eqn.10, we have,

p(IΛpg |pg) = q(IΛk
)
p(IΛpg |pg)
q(IΛpg )

(13)

So, Eqn.12 can be rewritten as,

pg∗ = arg max
pg∈Ωpg

p(pg)
p(IΛpg |pg)
q(IΛpg )

= arg max
pg∈Ωpg

[log p(pg) + log
p(IΛpg

|pg)
q(IΛpg )

] (14)

which is consistent with Eqn.11.

Recall that the prior probability p(pg) is defined in

Eqn.3 in general. For object categories with roughly
rigid configuration such as the human face, we can as-
sume that there are no occlusion among different nodes

at the same layer in a parse graph so that we can factor-

ize the likelihood ratio
p(IΛpg |pg)
q(IΛpg )

with respect to Eqn.6,

log
p(IΛpg |pg)
q(IΛpg)

=
∑

t∈V pg
T

log
p(IΛt |t)
q(IΛt)

(15)

Without loss of generality, we consider the AoG il-
lustrated in Fig.4. NodeA represents the object of inter-
est such as the human face. Vand = {P,A,C1, C2, C3}.
Further, we consider a parse graph pg in which V pg

and =
{P,A,C1, C2} and V pg

T = {tP , tA, tC1 , tC2}. In terms of
Eqn.3, we have,

log p(pg) = log p(A|O) + log p(X(A)|X(P ))

+
2∑

i=1

log p(X(Ci)|X(A))

+ log p(X(C1), X(C2)) + logZ (16)

By combining Eqn.15 and Eqn.16, Eqn.14 can be
rewritten as,

pg∗ = argmax
pg

{log p(A|O) +
2∑

i=1

log p(X(Ci)|X(A))

+ log
p(IΛtA

|tA)
q(IΛtA

)︸ ︷︷ ︸
α(A) process

+ [
2∑

i=1

log
p(IΛtCi

|tCi)

q(IΛtCi
)︸ ︷︷ ︸

α(tCi
) process

+ log p(X(C1), X(C2))︸ ︷︷ ︸
binding model

]

︸ ︷︷ ︸
β(A) process

+ [log
p(IΛtP

|tP )
q(IΛtP

)︸ ︷︷ ︸
α(P ) process

+ log p(X(A)|X(P ))︸ ︷︷ ︸
prediction model

]

︸ ︷︷ ︸
γ(A) process

} (17)

where p(X(Ci)|X(A)) is the prediction model for the

child node Ci of node A. From Eqn.17, we can see that
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our pursuit algorithm integrates the α, β and γ pro-

cesses explicitly.
Define wα

A, w
β(c)
A and w

γ(P )
A as the weights computed

from the α, β and γ processes respectively,

wα
A = log

p(IΛtA
|tA)

q(IΛtA
)

(18)

w
β(c)
A =

2∑
i=1

log
p(IΛtCi

|tCi)

q(IΛtCi
)

+ log p(X(C1), X(C2))

(19)

w
γ(P )
A = log

p(IΛtP
|tP )

q(IΛtP
)

+ log p(X(A)|X(P )) (20)

which will be specified by the learning algorithm in
Sec.4. Then, we can rewrite Eqn.17 as,

pg∗ = arg max
pg∈Ωpg

{log p(A|O) +
2∑

i=1

log p(X(Ci)|X(A))

+ wα
A︸︷︷︸

α(A) process

+ w
β(c)
A︸ ︷︷ ︸

β(A) process

+ w
γ(P )
A︸ ︷︷ ︸

γ(A) process

} (21)

Now, we can introduce the formal specifications of
the α, β and γ processes by connecting the general
identifications of the three processes in Sec.1.2 with the

Bayesian inference in terms of Eqn.17.

I. The α process detects node A by applying a log-

likelihood ratio test, log
p(IΛtA

|tA)

q(IΛtA
) (Eqn.18), directly

based on image features when node A is at middle res-

olution without occlusion. The α process can be viewed
as either bottom-up (feature classifiers such as the Ad-
aboost method) or top-down (template matching such

as the active basis model) inference process. For each
And-node A ∈ Vand, the α process, denoted by α(A; θ),
is instantiated by a corresponding terminal node tA ∈
VT , where θ is a set of parameters. For example, in
Fig.4, we have,

α(A; θ) : tA → A and x(tA) ⇒ X(A) (22)

where tA → A is calculated by wα
A in Eqn.18 and will

be specified in Eqn.32, and x(tA) ⇒ X(A) is used

to activate the γ processes of node A’s child nodes,
p(X(Ci)|X(A)), in Eqn.17 and the β process of node
A’s parent node, p(X(P )|X(A)).

II. The β process computes nodeA by applying a bottom-
up binding test, for example log p(X(C1), X(C2)) (in

Eqn.19), of its child nodes c = (C1, C2) which have been
detected in a given step based on the log-likelihood ra-

tio tests of their own α processes, wα
Ci

= log
p(IΛtCi

|tCi
)

q(IΛtCi
) .

The β process handles the situation in which node A

is at high resolution but with occlusion (the occlusion

disable the α(A) process). Let V ch
and ⊂ Vand be the

set of And-nodes which have children. For each node
A ∈ V ch

and, the β process of node A can be defined, de-

noted by β(A|c;ϕ) where c ⊆ ch(A) and ϕ is a set of
parameters. Given different c’s, we obtain different β
processes for node A. Consider c = (C1, C2) in Fig.4,

we have,

β(A|c;ϕ) : tC1 → C1 and x(tC1) ⇒ X(C1) (23)

tC2
→ C2 and x(tC2

) ⇒ X(C2)

(C1, C2) → A and (X(C1), X(C2)) ⇒ X(A)

where tCi → Ci are calculated by wα
Ci

(i = 1, 2), and

(X(C1), X(C2)) ⇒ X(A) will activate the β binding

process of node A. Then, we calculate w
β(c)
A which will

be specified by Eqn.45. The β(A|c;ϕ) will, in turn, ac-

tivate the γ processes of the other child nodes of node
A and the β process of node A’s parent node. Actually,
this procedure is activated recursively in testing.

III. The γ process computes node A by applying a top-
down prediction test, log p(X(A)|X(P )) (in Eqn.20),

from its parent node P which has been already detected
in a given step based on the log-likelihood ratio test of

the α process of node P , wα
P = log

p(IΛtP
|tP )

q(IΛtP
) . The γ

process handles the situation in which node A is under
very low resolution so both α(A) and β(A) are disabled.

Let V prt
and ⊂ Vand be the set of And-nodes which have

parent node(s). For each node A ∈ V prt
and, we can define

its γ process, denoted by γ(A|P ;φ) where P ∈ prt(A)

is a parent node and φ is a set of parameters. Similarly,
in Fig.4 we have,

γ(A|P ;φ) : tP → P and x(tP ) ⇒ X(P ) (24)

P → A and X(P ) ⇒ X(A)

where similarly, tP → P is calculated by wα
P andX(P ) ⇒

X(A) will activate the γ process of node A. Then, we

calculate w
γ(P )
A which will be specified by Eqn.52, and

then we run the inference process recursively.

3.2 The algorithm

Our greedy pursuit algorithm is straightforward based

on Eqn.17. Fig.5 shows a running example of human
face parsing by the proposed algorithm. On the whole,
the algorithm first runs all α processes (see the top

panel in Fig.5) and applies thresholds to obtain candi-
dates for each node. Then, to pursue object instances of
node A, the algorithm recursively runs all β processes

and γ processes to do bottom-up binding and top-down
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(face)

(mouth)

Learned Thresholds

(a) Illustration of results of the processes of all nodes in the human face AoG

(b) Illustration of generating parse graph proposals

(c) Results of pursuing parse graphs for each human face instance by integrating the and processes
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Fig. 5 A running example of pursuing human faces and constructing corresponding parse graphs in a typical image by integrating

the α, β and γ processes. The learning algorithms of the three processes are specified in Sec.4. In this figure, (a) shows the results of
running all the α processes with a number of candidates of each node. (b) illustrates how we generate parse graph proposals. After
applying the learned thresholds, we get promising candidates of each node and then run all the β and γ processes to propose possible
parse graphs. (c) shows the results of pursuing object instances and constructing their parse graphs on the fly by integrating the α, β

and γ processes in the proposed algorithm. In a greedy manner, we can get the pursuit indexes of all the object instances. For each
object instance, we know the construction of the parse graph explicitly, which goes beyond only a bounding box for each detected
object instance in traditional object detection. (Best viewed in color)
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prediction and then generate the parse graph proposals

(see the middle panel in Fig.5). The pursuit is based on
the pursuit index in Eqn.25. The parse graph for each
pursued instance of node A is constructed by retriev-

ing all the used α candidates (see the bottom panel in
Fig.5). We summarize the algorithm in Fig.6.

Proposal generation Ωpg. In testing, in order to find
the object instances which appear at different locations,
scales and orientations, we need search these three spaces

to find possible proposals. For searching the scale space,
we create the testing image pyramid for IΛ by a certain
down-sampling factor (we use 0.9 in our experiments)

until the image size is smaller than the minimum of
sizes of the learned active basis templates. We have the
pyramid with L layers {IΛ0

= IΛ, IΛ1
, · · · , IΛL

}. For
different orientations, we rotate the learned active ba-
sis templates. We use the sliding window method to
search all locations in the testing pyramid for all ac-

tive basis templates. That is, we run all the α processes
first and by applying the thresholds we get a list of
candidates for each node in the AoG (which could be

empty). Based on the list, we can generate parse graph
proposals Ωpg. Since we used fixed relative scales in
training the α(A), β(A) and γ(A) processes (as stated

in Sec.4.2), for example, given a hypothesis of node A
(such as the human face), we roughly know the loca-
tions, scales and orientations of other nodes in terms

of the learned β binding models p(X(Ci)|X(A)) and γ
prediction models p(X(A)|X(P )). Then, we put all pro-
posals in an open list which could be complete or partial

parse graphs. Further, different parse graphs could also
overlap to compete to explain the corresponding image
domain. The open list would be explored to do the pro-

posal verification and the ambiguity is solved based on
the pursue index addressed below.

Pursuit index. For each proposal, we compute its total
weight,

wA = wα
A + w

β(c)
A + w

γ(P )
A (25)

which is the pursuit index we are seeking for proposal
verification. Similarly, we can estimate the threshold
Th(wA) in an evaluation dataset.

Performance comparisons. According to Eqn.25, we can

explicitly compare the performance of different integra-
tions for each node A, for example, by plotting ROCs
based on wα

A, w
α
A + w

β(c)
A , wα

A + w
γ(P )
A and wA respec-

tively. Some comparison results are shown in Fig.16 for
junctions and rectangles and Fig.17 for human faces.
From these ROCs, we can see that how and how much

the integration improves performance.

Object parsing by integrating the α, β and γ processes

Input: an image IΛ and an AoG G.
Output: parse graphs pgi (i = 1, · · · ,K).

1. α map generation: Iα(U), ∀U ∈ Vand

run α(U ; θU ) and compute the weight wα
U .

2. α hypotheses generation: open list OP(U) from Iα(U)

apply thresholds Th(wα
U ) and local inhibitions.

3. β bindings and merging.

(1) run β(A|c;ϕ) and compute the weight w
β(c)
A

(2) apply Th(w
β(c)
A ) to generate β(A) hypotheses

and insert them into OP(A) decreasingly;
(3) merge with compatible α(A) hypotheses

and compute weight wα
A + w

β(c)
A .

4. γ predictions and merging.

(1) run γ(A|P ;φ) and compute the weight w
γ(P )
A

(2) apply Th(w
γ(P )
A ) to generate γ(A) hypotheses

and insert them into OP(A) decreasingly;

(3) merge with compatible α(A), (α+ β)(A) hypotheses

and compute weight wα
A + w

γ(P )
A

or wα
A + w

β(c)
A + w

γ(P )
A .

5. Object pursuing and parsing.

In OP(A), pursue node A according to wA,
construct parse graphs by retrieving all the α hypotheses.
Stop pursuing based on Th(wA).

Fig. 6 The greedy pursuit algorithm for object parsing using
AoG by integrating the α, β and γ processes

4 Learning the α, β and γ processes

In this section, we introduce the learning algorithm un-
der the MLE framework for the α, β and γ processes
to specify wα

A in Eqn.18, w
β(c)
A in Eqn.19 and w

γ(P )
A in

Eqn.20 respectively. We train the three processes sep-
arately due to the observation that the effectiveness of
the three processes depends on the scale and occlusion

conditions as illustrated in Fig.1 and Fig.3, and for the
purpose of evaluating the information contribution of
each process individually. To that end, we propose an

isolation method to block one process from the other
two processes. The isolation is based on the manually
labeled parse graphs in this paper which are available

in the LHI image database (Yao et al, 2007).

4.1 Isolating the α, β and γ processes.

Scale and occlusion are the two main causes entailing
the α, β and γ processes. So, each of the three processes
of node A can be blocked through scaling and/or mask-

ing image patches of node A in terms of the labeled
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Fig. 7 Illustration of isolating the α, β and γ processes of node A in an AoG. Consider the human face example in this figure. The
isolation is performed by scaling and masking the image patch (the left-top panel) in terms of its annotation (the left-bottom panel).

The annotation used in this paper is the manually labelled parse graph. Details are specified in Sec.4.1. Based on the isolation, we
generate training and evaluation data for each process in Sec.4.2.

parse graphs. Then, we isolate one process by blocking
the other two processes. Fig.7 illustrates the procedures
with an example for human face (node A).

I. Isolating the α(A) process. Block both the β(A)
and γ(A) processes will isolate the α process. First, we

crop only the compact image patches of node A out
of its context in terms of the annotations. Then, the
image patches are down-sampled up to a certain scale

at which the parts can not be recognized if cropped in
isolation.

II. Isolating the β(A) process. We have different
β(A) processes depending on the given subset of node
A’s child nodes, c ⊆ ch(A). Then, to isolate the β(A|c)
process is is to block both the α(A) and γ(A) processes
meanwhile keep the α processes of child nodes in c on.
We first crop only the compact image patches of node A

but just keep those patches whose resolutions are above
a predefined value. Then, we scale all the image patches
to the same size (also above the predefined value) and

mask those portions of all the image patches with re-
spect to the child node(s) not in c.

III. Isolating the γ(A) process. We may have differ-

ent γ processes given different parent nodes P . To iso-
late the γ(A|P ) process is to block the α(A) and β(A)
while keeping the α(P ) process on. So, it is equivalent

to isolate the α(P ) process. First, we crop the compact
image patches of the parent node P . Then, we down-
sample the image patches up to a certain scale at which

the node A itself can not be recognized if cropped in
isolation.

By changing the testing image dataset of an object
category with these isolating methods, we can cause
most of existing object detection or recognition meth-

ods to fail. To achieve robust performance, we train

each process separately first and then integrate them
explicitly (see Eqn.17) for our numerical study.

Next, we generate training and evaluation data for

each process in terms of the isolating procedures.

4.2 Training data for the α, β and γ processes

Suppose we have a set of m positive images for an ob-
ject of interest, D+ = {(I1, pg1), · · · , (Im, pgm)}, where
pgi is the annotated parse graph for image Ii. Based on

the parse graph, we can generate training and testing
datasets for the three processes. For simplicity of nota-
tions, we assume that each node of interest appears in

each image Ii with good resolution.

I. The α process training dataset. Let D+
α (A) denote

the positive training dataset for the α(A) process of
node A. Through the isolation method of the α process,

for each Ii ∈ D+, we obtain the α image patch of node
A, denoted by I

(A)
i . So, we have,

D+
α (A) = {I(A)

i : i = 1, 2, · · · ,m}

II. The β process training dataset. Let D+
β (A|c) denote

the positive training dataset for the β(A|c) process.
Through the isolation method of the β process, for each
Ii ∈ D+, we obtain the β image patch of node A given

child node(s) in c, denoted by I
(c)
i . Then, we get,

D+
β (A|c) = {(I(c)i , X(c|I(c)i )) : i = 1, 2, · · · ,m}

where X(c|I(c)i ) = {X(Cj) : Cj ∈ c, j = 1, · · · , |c|}
is the concatenation of attributes for child node(s) in

c measured in I
(c)
i , which will be used to learn the

bottom-up β binding model p(X(Cj), X(Ck))’s for node

A given child nodes in c (j ̸= k, j, k = 1, · · · , |c|).
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III. The γ process training dataset. Let D+
γ (A|P ) de-

note the positive training dataset for the γ(A|P ) pro-
cess. Through the isolation method of the γ process, for
each Ii ∈ D+, we can get the γ image patch of node A

given the parent node P , denoted by I
(P )
i . So, we have,

D+
γ (A|P ) = {(I(P )

i , X(A|I(P )
i )) : i = 1, 2, · · · ,m}

where X(A|I(P )
i ) is the attributes of node A measured

in I
(P )
i , which will be used to learn the top-down γ

prediction model p(X(A)|X(P )) of node A given the
parent node P .

When node P only has one child node A, we can
transform the γ prediction model of node A given the
parent node P p(X(A)|X(P )) into the β binding model

of node P given the child node A equivalently.

In the same way, we can get the attributesX(Cj |I(A)
i )

to learn top-down γ prediction models p(X(Cj)|X(A))’s
for child nodes Cj ’s of node A where Cj ∈ ch(A),

I
(A)
i ∈ D+

α (A).

Correspondingly, we collect negative datasetsD−
α (A),

D−
β (A|c) and D−

γ (A|P ) by randomly cropping image
patches from generic background images.

Scale specifications in experiments. In the experiments

for evaluating the information contributions in Sec.6.1,
we prepare the data for multiple scales to observe how
the information contributions change with scales. In the

experiments for object parsing by integrating the α, β
and γ processes of node A in Sec.6.2, we use fixed rela-
tive scales for the three processes. Consider the scales of

the compact image patches of node A in these three pro-
cesses, denoted by sα(A), sβ(A) and sγ(A) respectively.
We set sα(A) = b× sγ(A) =

1
b × sβ(A) (b = 2 used in our

current experiments).

Given the data, we specify the training procedure

under the MLE framework in the next section.

4.3 Learning the α process

Learning the α process involves selecting a modeling
scheme for α(A; θ) and estimating the parameters θ by

maximizing the data likelihood onD+
α (A). For example,

in discriminative boosting methods, θA is the learned
strong classifier which consists of a set of boosted weak

classifiers and the corresponding weights (Viola and
Jones, 2004), and in generative model-based methods
such as the active basis model, θ is the set of parame-

ters specify the learned deformable template (Wu et al,

Fig. 8 Illustration of learned α, β binding and γ prediction mod-
els for human face. The top panel shows the learned active basis

model for the α process of each terminal node. The left-bottom
panel illustrates the binding model for the β process in which the
outside red box is the bounding box of face and the inside dash
boxes are for the parts and the ellipses represent the location

following a Gaussian distribution. The right-bottom panel shows
the prediction model for the γ process in which the outside green
box is the bounding box of head-shoulder and the inside solid and

dash boxes represent the changeable size of the bounding box of
face and the red ellipse represent the location of face following a
Gaussian distribution.

2009). Given D+
α (A), we have,

α(A; θ∗) = argmax
θ

p(D+
α (A)|A; θ)

= argmax
θ

m∑
i=1

log p(I
(A)
i |A; θ) (26)

Solving α(A; θ∗) depends on choosing a specific mod-
eling scheme for p(I|A; θ). In this paper, we use the ac-
tive basis model which is briefly introduced here for this

paper to be self-contained.

Active basis model. The active basis model is a de-
formable model which consists of a small number of Ga-

bor wavelet elements (as visual primitives for modeling
object category) at selected locations and orientations.
These Gabor wavelet elements can slightly perturb their

locations and orientations before they are linearly com-
bined to generate the observed image. Let Λ be the do-
main of the image patch I and {Bx,y,s,o} the dictionary

of Gabor wavelet elements. The (x, y, s, o) are densely
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rectangle

parallel 

line
junctions

type I type II

linelet

Fig. 9 Illustration of the AoG for junctions and rectangles. The left panel shows some positive examples of L junction, cross junction,
parallel line, T/Y/Arrow junction. Each sample of L, cross and T/Y/Arrow junctions is shown under three different scales (10 × 10
pixels, 20 × 20 pixels and 30 × 30 pixels) from which we can intuitively see that the α process would be very weak. The right-top
panel shows some samples of rectangle in which we can also know that the α process would not work well due to the variabilities. The

right-bottom panel shows the AoG for rectangle.

sampled: (x, y) ∈ Λ, s is a fixed size (often about 1/10 of
the length of Λ) and o ∈ {iπ/N, i = 0, · · · , N −1} (e.g..
N = 15). The dictionary forms an over-complete dictio-

nary for modeling IΛ. Then we obtain the sparse coding
scheme I =

∑n
i=1 aiBi + U where n is the number of

selected bases, Bi = Bxi,yi,s,0i , ai’s are the coefficients
and U is the unexplained residual image. In the matrix

form, we have I = Ba + U (where B = (B1, · · · , Bn)
and a = (a1, · · · , an)

′
). In terms of linear decompo-

sition, we know that U resides in the remaining sub-

space orthogonal to B and we can write U = B̄ā (where
columns in B̄ are orthogonal to columns in B and both
B̄ and ā would be made implicit in the active basis

model). So, we have I = Ba+ B̄ā. Then, we can spec-
ify the distribution of I given B as

p(I|B) = p(a, ā) det(J) = p(a)p(ā|a) det(J) (27)

where J is the Jacobi matrix of the linear transform
from I to (a, ā) and det(J) the determinant of J .

On the other hand, let q(I) be a reference distribu-
tion (which has a few choices discussed in (Wu et al,

2009)), and similarly, we can have

q(I) = q(a, ā) det(J) = q(a)q(ā|A) det(J) (28)

In the active basis model, we want to construct p(I|B)
by modifying q(I) and assume q(ā|a) = p(ā|a), so we
have

p(I|B) = q(I)
p(a)

q(a)
= q(I)

p(a1, · · · , an)
q(a1, · · · , an)

(29)

Further, by applying the local inhibition principle, we
can treat the selected Gabor wavelet elements indepen-
dently, that is,

p(I|B) = q(I)
n∏

i=1

p(ai)

q(ai)
(30)

where p(ai) is parameterized as an exponential fam-
ily model p(ai;λi) =

1
Z(λi)

exp{λih(ri)}q(ai) (ri = | <
I,Bi > |2 is the local energy of Gabor filter response

and h(ri) = sigmoid(ri) = ζ[ 2
1+e−2ri/ζ

− 1] is a sig-
moid transformation function with ζ being the satu-
ration level such as ζ = 6), and q(ai) is pooled from

generic background images at an off-line stage. The re-
sulting model is

p(I|B) = q(I)

n∏
i=1

1

Z(λi)
exp{λih(ri)} (31)
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In testing, the matching score (the α weight of a

hypothesis of node A) is the log-likelihood ratio,

wα
A = log

p(I|B)

q(I)
=

n∑
i=1

[λih(ri)− logZ(λi)] (32)

Active basis model can be also used to learn mixed

image template modeling both shape and texture (Wu
et al, 2009; Si et al, 2009).

The threshold Th(wα
A) of the α process α(A; θ) can

be estimated in a validation α dataset.
The top panel of Fig.8 shows the learned active basis

for each terminal node of a face AoG.

4.4 Learning the β process

Learning the β process involves specifying β(A|c;ϕ) and
estimating the parameters ϕ by maximizing the data
likelihood on D+

β (A|c). β(A|c;ϕ) composes (or binds)
a (complete or partial) set of child nodes in c, to gener-

ate hypotheses of node A. In the literature, component-
based (Biederman, 1987; Heisele et al, 2007), fragment-
based (Ullman et al, 2002) and other part-based meth-

ods (Amit and Trouvé, 2007; Wu et al, 2007) can be
treated as this kind of process. Given D+

β (A|c), we ob-
tain,

β(A|c;ϕ∗)

= argmax
ϕ

p(D+
β (A|c)|c;ϕ)

= argmax
ϕ

m∑
i=1

log p(I
(c)
i , X(c|I(c)i )|c;ϕ) (33)

The β(A|c;ϕ) process includes two components, one

is the α process of each child node in c with parameters
θc and the other is the binding model for the given
children c with parameters △. So, ϕ = (θc,△) and we

have,

p(I(c), X(c|I(c))|c;ϕ)

= p(I(c)|c; θc)× p(X(c|I(c));△) (34)

where for notation simplicity we use I(c) to represent

I
(c)
i generally.

In this paper, we consider three types of attributes
for binding, that is, the location Lc, scale Sc and ori-

entation Oc respectively. So, △ = (△L,△S ,△O). And,
we model them in a pairwise manner. Consider c =
(Ci, Cj) (Ci, Cj ∈ ch(A)), we have,

X(c|I(c)) = {X(Ci), X(Cj)} = (Lc, Sc, Oc|I(c))

and

Lc = (LCi , LCj ); Sc = (SCi , SCj ); Oc = (OCi , OCj )

For the α processes of child nodes in c, we have,

log p(I(c)|c) = log p(I(Ci,Cj)|Ci, Cj) (35)

= log p(I(Ci)|Ci; θCi) + log p(I(Cj)|Cj ; θCj )

= α(Ci; θCi) + α(Cj ; θCj )

For binding child nodes in c, we obtain,

p(X(c|I(c));△) = P (X(Ci), X(Cj);△) (36)

= p(Lc, Sc, Oc|I(c);△)

= p(Lc|I(c);△L)× p(Sc|I(c);△S)× p(Oc|I(c);△O)

Solving β(A|c;ϕ∗) depends on choosing a specific

modeling scheme for p(Lc|I(c);△L), p(Sc|I(c);△S) and
p(Oc|I(c);△O). In this paper, the three terms are mod-
eled as Gaussian distributions in their respective trans-

formed spaces (Felzenszwalb and Huttenlocher, 2005).

Thus, each pairwise binding c = (Ci, Cj) is char-
acterized by the expected relative location µLc , scale
µSc and orientation µOc and corresponding full covari-

ance matrices ΣLc , ΣSc and ΣOc . So, we have △L =
(µLc , ΣLc), △S = (µSc , ΣSc) and △O = (µOc , ΣOc)
which can be estimated from the datasetD+

β (A|c). Then,
we have,

p(Lc|I(c);△L) = p(LCi , LCj ;µLc , ΣLc)

= N (LCi − LCj ;µLc , ΣLc) (37)

p(Sc|I(c);△S) = p(SCi , LCj ;µSc , ΣSc)

= N (SCi
− SCj

;µSc , ΣSc) (38)

and

p(Oc|I(c);△O) = p(OCi , OCj ;µOc , ΣOc)

= N (OCi −OCj ;µOc , ΣOc) (39)

Further, we specify the three Gaussian distribution
above in a transformed space to have zero means and
diagonal covariances. To that end, we first compute the

singular value decompositions of the three covariance
matrices and then define the transformations. For ex-
ample, for the location (the same is for the scale and

orientation), we have ,

ΣLc = ULcDLcU
T
Lc

(40)

Tij(LCi) = UT
Lc
(LCi − µLc) (41)

Tji(LCj ) = UT
Lc
(LCj ) (42)

So, we can rewrite Eqn.37 as

p(Lc|I(c);△L) = N (LCi − LCj ;µLc , ΣLc)

= N (Tij(LCi)− Tji(LCj ); 0, DLc) (43)
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So, we calculate the binding score of nodes in c as,

wbindc = log p(X(c|I(c));△) (44)

Then, by combining Eqn.36 and Eqn.44, we obtain

the weight of a β hypothesis of node A given the chil-
dren c,

w
β(c)
A = log p(I(c), X(c|I(c))|c;ϕ)

= log p(I(c)|c) + log p(X(c|I(c));△)

= wbindc +
∑
Ci∈c

wα
Ci

(45)

The threshold Th(w
β(c)
A ) of the β process β(A|c;ϕ)

can be estimated in a validation β dataset.

4.5 Learning the γ process

Learning the γ process involves specifying γ(A|P,φ)
and estimating the parameters φ by maximizing the
data likelihood on D+

γ (A|P ). γ(A|P ;φ) predicts hy-

pothesis of node A from the α process of its parent node
P . In the literature, context-based methods (Torralba,
2003; Hoiem et al, 2008) can be looked as γ processes.

Given D+
γ (A|P ), we have,

γ(A|P ;φ∗)

= argmax
φ

p(D+
γ (A|P )|P ;φ)

= argmax
φ

m∑
i=1

log p(I
(P )
i , X(A|I(P )

i )|P ;φ) (46)

Also, γ(A|P ;φ) consists of two components, one is

the α process of the parent node P with the parameters
θP and the other is the predicting model from parent
node P to node A itself with parameters ▽. So, we have

φ = (θP ,▽) and obtain,

p(I(P ), X(A|I(P ))|P ;φ)

= p(I(P )|P ; θP )× p(X(A|I(P ));▽) (47)

where we also use I(P ) to represent I
(P )
i in general.

In the γ process, we want to predict the location
LA, scale SA and orientation OA of node A from the

parent node P . So, we have ▽ = (▽L,▽S ,▽O) and

X(A|I(P )) = X(A)|X(P ) = (LA, SA, OA|I(P ))

For the α process of the parent node P , we have,

log p(I(P )|P ; θP ) = α(P ; θP ) (48)

In order to predict a hypothesis of node A, we have,

p(X(A|I(P ));▽) = p(X(A)|X(P );▽) (49)

= p(LA, SA, OA|I(P );▽)

= p(LA|I(P );▽L)× p(SA|I(P );▽S)× p(OA|I(P );▽O)

Then, solving γ(A|P,φ∗) depends on how we model

p(LA|I(P );▽L), p(SA|I(P );▽S) and p(OA|I(P );▽O). The
three terms are also treated as Gaussian distribution.
So, ▽L = (µLA

, ΣLA
), ▽S = (µSA

, ΣSA
) and ▽O =

(µOA , ΣOA). For example, we have,

p(LA|I(P );▽L)

= p(LA|I(P );µLA , ΣLA)

= N (LA;µLA , ΣLA) (50)

where µLA
is the mean and ΣLA

is the covariance, es-

timated by the statistics in D+
γ (A|P ).

So, we compute the prediction score for node A from
its parent node P as,

w
predict
P = log p(X(A)|X(P );▽) (51)

Then, the weight of a γ hypothesis of node A is,

w
γ(P )
A = w

predict
P + wα

P (52)

Similarly, the threshold Th(w
γ(P )
A ) of the γ process

γ(A|P ;φ) can be estimated in a validation γ dataset.
The bottom panel of Fig.8 illustrates the learned

Gaussian distributions in the β binding and γ predic-

tion process for human face.

5 Evaluating the information contributions of

the α, β and γ processes

We propose a method to evaluate the information con-

tributions of the α, β and γ processes individually based
on their discriminative power. Our method is similar to
the decision tree framework (Breiman et al, 1984). We

also study human performance for the three processes
individually for comparisons.

5.1 Evaluating method

For simplicity of notation, we denote the α, β and γ

processes as a testing function Tst(). As illustrated in
Fig.10, the information contribution of Tst(), denoted
by IC( Tst), is measured by the uncertainty or impurity

reduction after applying it on a testing dataset D.
The testing dataset D = D+ ∪D− includes a set of

positive samples D+ and a set of negative samples D−.

After applying Tst(), we can obtain two datasets, one is
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Fig. 10 Illustration of evaluating the information contributions
of the α, β and γ processes individually based on their discrimina-
tive power. We also study the human performance for the three

processes individually for comparisons. D = D+ ∪ D− are the
input testing dataset including a positive sample set D+ and a
negative sample set D−. After testing, we obtain two subsets,
one is the set D+

Tst in which samples pass the test and the other

D−
Tst in which samples do not pass the test. D+

Tst consists of

TPs and FPs, and D−
Tst includes TNs and FNs. See texts for the

calculation of information contribution.

D+
Tst in which samples pass the testing function Tst()

and the other is D−
Tst in which samples fail. So, D+

Tst

consist of true positives (TPs) and false positives (FPs),
and D−

Tst include true negatives (TNs) and false nega-

tives (FNs). We compute the information contribution
of Tst() as ,

IC( Tst) = 1−
H(D+

Tst) +H(D−
Tst)

H(D)
(53)

where H() represents the impurity of a dataset which

is defined as the product of the size of the dataset (de-
noted by | · |) and its entropy (denoted by E()),

H(D) = |D| × E(D) (54)

and the entropy is

E(D) = −|D+|
|D|

log
|D+|
|D|

− |D−|
|D|

log
|D−|
|D|

(55)

In the same way, we can compute E(D+
Tst),H(D+

Tst),

E(D−
Tst) and H(D−

Tst). Then, we calculate IC( Tst).

In the literature, an alternative approach for mea-
suring Tst() is studied in (Blanchard and Geman, 2005)

from some theoretical viewpoints.

5.2 Human study

The information contribution defined in Eqn.53 is em-
pirical, so we also study human performance of the in-
formation contributions of the α, β and γ processes

individually for comparisons.

The human study environment. Based on the psy-
chological toolbox (Brainard, 1997), we develop a GUI

interface for the human study. In experiments, we have

7 human subjects with normal sights. We use LCD

monitors whose brightness and contrast are adjusted
for each subject adaptively. The distance between hu-
man subjects and monitors are adjusted around 50cm

according to each subject’s sight. The outside light en-
vironment is also adjusted to a suitable level. In test-
ing, clicking the enter key means the displayed sample is

positive and clicking the space key means it is negative.

Observing time setting. In order to study the infor-
mation contributions individually in the human study,

in addition to control the scale of image patch, we con-
trol the observing time. For the α process, the observing
time is less than 200ms. For the β and γ processes, we

do not control the observing time. At same time, the
response time of each subject is recorded.

The testing data for human subjects. In order to re-

duce the amount of human subjects’ observing image
data, we only use the FPs from computer experiments
as the negative samples for human subjects. Fig.12 and

Fig.14 show some examples used in evaluations of α and
β processes of human face. The assumption is that those
TNs would also be correctly classified by human sub-
jects, which is intuitively reasonable. At the same time,

each group of data is tested by all 7 subjects to elim-
inate possible biases made by some subjects. The hu-
man subjects can be treated as ideal observers and their

overall performance improvement against the computer
can be treated as a metric in future work for the com-
puter vision community.

6 Experiments

In the experiments of our numerical study, we choose
two hierarchical case studies, one is junctions and rect-

angles in low-to-middle-level vision and the other is hu-
man faces in high-level vision. And, we do two series of
experiments, one is to evaluate the individual informa-

tion contribution of the α, β and γ processes and the
other is object parsing by integrating the three pro-
cesses with performance comparisons.

6.1 Experiment I: evaluating information

contributions of the α, β and γ processes individually

Junctions and rectangles. We consider five types of hi-

erarchical image structures in low-to-middle-level vi-
sion including L-junction, cross junction, parallel line,
T/Y/Arrow junction and rectangle. In our experiments,

we treat T/Y/arrow junction as the same type currently
due to the similarity. As illustrated in the right-bottom
panel of Fig.9, the rectangle node is an Or-node which

has two types of decompositions, one is decomposed
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IC of the process by HUMAN tested with 3 scales (10 by 10, 20 by 20 and 30 by 30)

IC of the process by HUMAN tested with 3 scales (10 by 10, 20 by 20 and 30 by 30)

IC of the process by COMPUTER with 1 scales (30 by 30) 

IC of the process by COMPUTER with 1 scales (30 by 30)

Fig. 11 The information contributions of the α and β processes of junctions and rectangles. We test three scales, 10 × 10, 20 × 20
and 30× 30 pixels. We can observe that the β processes of junctions and rectangles are much better than their α processes.

into two groups of parallel lines and the other is de-
composed into four junctions such as four L-junctions.

The data. A set of 200 natural images from the LHI
image database (Yao et al, 2007) is used in which the
sketches are manually labeled. Based on the manually

labeled sketches, we extract positive examples for the
five types of hierarchical image structures and a com-
mon set of negative examples. Some positive examples

are shown in Fig.9.

Training and testing. For the α process, we use first
and second derivative Gaussian filters, LoG (Laplacian
of Gaussian) filters, DoG (difference of Gaussian) and

elongated DooG (different of offset Gaussian) filters, all
with 3 scales (10× 10, 20× 20 and 30× 30 pixels). The
α process of line segment uses the primal sketch model

(Guo et al, 2007) similar to the implicit testing used
in our previous compositional boosting work (Wu et al,
2007). The α processes of the five types of hierarchical

image structures use the patch-based active basis model
for both shape and texture. In testing, we search differ-
ent 15 orientations in order to handle the rotation. For

the β process, the five types of hierarchical image struc-
tures are computed by binding line segments in terms
of the explicit testing on their relative locations, angles

and distances between their endpoints. Rectangles are

computed in two alternative ways, one is by binding
two groups of parallel lines in terms of their relative lo-

cations and angles, and the other is by binding a set of
incomplete (two or three) or complete (four) junctions
in terms of their relative locations, angles and distances

between the endpoints.
The observation: Fig.11 shows the information con-

tributions of the α (red lines) and β (blue lines) pro-

cesses of junctions and rectangles from the human study
experiments at three scales (10×10, 20×20 and 30×30
pixels). The results of computer experiments are shown

by those small rectangles (the red ones for the α and
the blue ones for the β process and for clarity only the
results tested with the scale 30× 30 pixels are shown).

We observe that the β binding inference process domi-
nates in low-to-middle-level vision.

Human faces. We consider the AoG of the human face

which consists of six nodes, head-shoulder, face, left eye,
right eye, nose and mouth, as shown in Fig.8. In our
experiments, we treat the left and right eye node as

one same type of node due to the similarity.
The data.A set of 1000 images from the LHI database

is used in which all the six nodes are at good resolu-

tion and the parse graphs are manually labeled (see an
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FaceHead-shoulder LeftEye

RightEye Nose Mouth

Some negatives

Fig. 12 The left panel shows the information contributions of the α processes of nodes (ie. head-shoulder, face, left eye, right eye,
nose and mouth) in human face AoG in the human study. We test five scales (8 × 8, 10 × 10, 12 × 12, 16 × 16, 20 × 20 and 24 × 24
pixels). Some positive examples for each node and some negative examples are shown in the right panel. We can observe that the
α(face) process is stronger than the α processes of other nodes in the human face AoG.

example in Fig.7). We generate the training data based

on the parse graph.

Training and testing. For the α process, we use the
Gabor filter. The learned α, β and γ processes are
shown in Fig.8. Here, we test five scales for the α pro-

cess (8×8, 10×10, 12×12, 16×16, 20×20 and 24×24
pixels), five scales for β process (38×38, 50×50, 60×60,
80× 80 and 100× 100) and one scale for the γ process

of human face (32× 32).

The observation: We observe that the α process of

the human face node is stronger than those of the other
node in the human face AoG. The information contri-
butions are shown in Fig.12.

6.2 Experiment II: object parsing in a greedy pursuit

manner by integrating the α, β and γ processes

Rectangles. We test a set of 50 images including 30 city
scene images and 20 office scene images. A running ex-
ample is shown in Fig.15 and more examples are shown

in Fig.16. From the ROC comparisons in Fig.16, we can

see that the β processes of junctions and rectangles in

low-to-middle-level vision dominate with much perfor-
mance improved against the α processes.

Human faces. We test a set of 500 images in which more
than half of human face instances are with occlusion or
at very low resolution. A running example of the human

face pursuit is shown in Fig.5 and more examples are
shown in Fig.17. From the ROC comparisons in Fig.17,
we can see that for human face, its α process works

better than those of its child nodes such as eyes and
nose and its parent node such as head-shoulder.

The ROC comparisons are consistent with the eval-

uated information contributions in experiment I.

7 Summary and discussion

In this paper, we present a framework for the numeri-
cal study of the bottom-up and top-down inference pro-
cesses in hierarchical models using AoG as an example

and choose two hierarchical cases in our experiments,
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Fig. 13 The information contributions of the β processes of the human face. The left panel show the information contributions of
the β processes with 2 facial components. The right panel is for the β processes with 3 facial components. We test five scales, 38× 38,
50× 50, 60× 60, 80× 80 and 100× 100 pixels. Some examples are shown in Fig.14. In the β process, we can observe that the left eye
and right eye are more informative than other facial components.

one is junctions and rectangles in low-to-middle-level
vision and human faces in high-level vision. For each

node A in an AoG, we identify three inference processes,
termed the α(A), β(A) and γ(A) processes. The nu-
merical study consists of four components: (i) isolating

the α(A), β(A) and γ(A) processes based on a block-
ing method, (ii) training their models separately under
the MLE framework, (iii) evaluating their information

contributions individually based on their discriminative
power in both computer experiments and human per-
ception experiments and (iv) integrating them explic-

itly under the Bayesian framework for robust inference.
Based on the numerical study in our experiments, we
observe that:

(i) For each node A in an AoG, the α(A), β(A) and

γ(A) processes contribute to compute it in com-
plementary ways. Their effectivenesses depend on
the scale and occlusion conditions.

(ii) In low-to-middle-level vision, for junctions (L, T,
Y, arrow and cross junctions and parallel lines)
and rectangles, their β processes (bottom-up bind-

ing processes in the hierarchy) are dominated based

on both computer experiments and human per-
ception experiments.

(iii) In high-level vision, the human face node have
stronger α process than those of facial compo-
nents.

(iv) For robust inference of object parsing using AoG,
the three processes should be integrated explicitly
under the Bayesian formulation. The integration

takes advantage of the separation of the learning
of the three processes.

Beside accuracy performance, computational efficiency
is another important criteria in computer vision, es-

pecially when we have a big hierarchical model with
100s (even 1000s) nodes, we can not afford to perform
bottom-up detections for all nodes at the beginning. On

the other hand, some recent human vision experiments
show that humans can recognize scene and object cate-
gories as fast as we detect the low level image primitives

and the human visual system schedules the computing
in an very effective way (Thorpe et al, 1996) (but how
the human visual system handles that is still unclear to

vision researchers). Actually, the scheduling problem is
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Positive examples Negative examples

2 Parts

3 Parts

Fig. 14 Some examples used in the human study of evaluating the information contribution of the β processes of human face with 2
and 3 facial components respectively. The left panel shows some positive examples and the right panel shows some negative examples.

The examples are at 100× 100 pixels for illustration.

a long-standing problem in vision (Ullman, 1984) and

often discussed verbally. We think that the answer lies
in the numerical study of the bottom-up and top-down
inference processes. We should evaluate their respective

information contributions in the first place and then ob-
tain some insights on how to schedule them. We leave
the scheduling problem in our on-going work.

In the literature, some efficient search algorithms
are proposed for computing a single node, such as the

coarse-to-fine strategy (Blanchard and Geman, 2005;

Fleuret and Geman, 2008), the efficient subwindow search

method (Lampert et al, 2009), the dynamic program-
ming methods (Meinshausen et al, 2009) and the A∗

heuristic algorithm (Felzenszwalb and McAllester, 2007;

Kokkinos and Yuille, 2009). They do not handle the
scheduling problem among different nodes in hierarchi-
cal models.

Consider object parsing using AoG as an exam-
ple again, the objective of scheduling is to maximizing

the accuracy performance and simultaneously minimiz-
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Image

All in one

Edge probability map Blob corners

Canny

Fig. 15 A running example of pursuing junctions and rectangles in a typical image by integrating the α, β and γ processes. The
left-top is the original input image. The middle-top is the edge probability map and the right-top shows the detected corners. The
images in the second and the third row show the detected results of different kinds of junctions with the type name shown in the left-

top in each image. The left-bottom shows the detected rectangles. The middle-bottom shows the final sketch by merging all detected
results. Compared with the canny results shown in the right-bottom image, we can see that the final sketch obtained by the proposal
algorithm is better.

ing the overall computing cost. In hierarchical mod-
els, the computing always starts from some nodes’s α
processes in general. For computational efficiency, one

should compute those most promising α processes first
and then pass their messages to their child nodes through
the top-down γ processes and to their parent nodes

through the bottom-up β processes, and so on, schedule
the bottom-up and top-down inference processes (the α,
β and γ processes) in an AoG.
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(0.04 0.94)
(0.05 0.90)

(0.02 0.95)

(0.043 0.91)
(0.031 0.97)

Fig. 16 The top panel show more results of rectangle pursuing. The bottom panel shows the ROC comparisons of the α process and
the integration of the α, β processes for junctions and rectangle. Those small solid rectangles show the performance by humans.
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(0.01 0.98) (0.02 0.99)
(0.02 0.93)

(0.03 0.96) (0.01 0.94)

Fig. 17 The top panel shows more results of human face pursuing. The bottom panel shows the ROC comparisons of the α process
and different integrations of the α, β and γ processes. Those small solid rectangles show the performance by humans.
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