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Abstract When an image is viewed at varying resolutions,
it is known to create discrete perceptual jumps or transi-
tions amid the continuous intensity changes. In this pa-
per, we study a perceptual scale-space theory which differs
from the traditional image scale-space theory in two aspects.
(i) In representation, the perceptual scale-space adopts a full
generative model. From a Gaussian pyramid it computes a
sketch pyramid where each layer is a primal sketch represen-
tation (Guo et al. in Comput. Vis. Image Underst. 106(1):5–
19, 2007)—an attribute graph whose elements are image
primitives for the image structures. Each primal sketch
graph generates the image in the Gaussian pyramid, and the
changes between the primal sketch graphs in adjacent layers
are represented by a set of basic and composite graph oper-
ators to account for the perceptual transitions. (ii) In compu-
tation, the sketch pyramid and graph operators are inferred,
as hidden variables, from the images through Bayesian infer-
ence by stochastic algorithm, in contrast to the deterministic
transforms or feature extraction, such as computing zero-
crossings, extremal points, and inflection points in the image
scale-space. Studying the perceptual transitions under the
Bayesian framework makes it convenient to use the statisti-
cal modeling and learning tools for (a) modeling the Gestalt
properties of the sketch graph, such as continuity and par-
allelism etc; (b) learning the most frequent graph operators,
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i.e. perceptual transitions, in image scaling; and (c) learn-
ing the prior probabilities of the graph operators condition-
ing on their local neighboring sketch graph structures. In ex-
periments, we learn the parameters and decision thresholds
through human experiments, and we show that the sketch
pyramid is a more parsimonious representation than a multi-
resolution Gaussian/Wavelet pyramid. We also demonstrate
an application on adaptive image display—showing a large
image in a small screen (say PDA) through a selective tour
of its image pyramid. In this application, the sketch pyra-
mid provides a means for calculating information gain in
zooming-in different areas of an image by counting a num-
ber of operators expanding the primal sketches, such that
the maximum information is displayed in a given number of
frames.

Keywords Scale-space · Image pyramid · Primal sketch ·
Graph grammar · Generative modeling

1 Introduction

1.1 Image Scaling and Perceptual Transitions

It has long been noticed that objects viewed at different dis-
tances or scales may create distinct visual appearances. As
an example, Fig. 1 shows tree leaves in a long range of dis-
tances. In region A at near distance, the shape contours of
leaves can be perceived. In region B, we cannot see indi-
vidual leaves, and instead we perceive a collective foliage
texture impression. In region C at an even further distance,
the image loses more structures and becomes stochastic tex-
ture. Finally, in region D at a very far distance, the image
appears to be a flat region whose intensities, if normalized
to [0,255], are independent Gaussian noise.
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These perceptual changes become more evident in a se-
ries of simulated images shown in Fig. 2. We simulate the
leaves by squares of uniform intensities over a finite range
of sizes. Then we zoom out the images by a 2 × 2-pixel
averaging and down-sampling process, in a way similar to
constructing a Gaussian pyramid. The 8 images in Fig. 2 are
the snapshots of the images at 8 consecutive scales. At high
resolutions, we see image primitives, such as edges, bound-
aries, and corners. At middle resolutions, these geometric
elements disappear gradually and appear as texture. Finally
at scale 8 each pixel is the averaged sum of 128×128 pixels
in scale 1 and covers many independent “leaves”. Therefore,
the pixel intensities are iid Gaussian distributed according to
the central limit theorem in statistics.

In the literature, the image scaling properties have been
widely studied by two schools of thought.

Fig. 1 A scene with tree leaves at a long range of distances. Leaves
at regions A, B, C, D appear as shape, structured texture, stochastic
texture, and Gaussian noise respectively

One studies the natural image statistics and invariants
over scales, for example, Ruderman (1994), Field (1987),
Zhu et al. (1997), Mumford and Gidas (2001). A survey pa-
per is referred to Srivastava et al. (2003). One fundamen-
tal observation is that the global image statistics, such as,
the power spectrums of the Fourier transform, histograms
of gradient images, histograms of LoG filtered images, are
nearly invariant over a range of scales. That is, the his-
tograms are the same if we down sample an image for a
few times. This is especially true for scenes with big view-
ing depth or scenes that contain objects of a large range
of sizes (infinite in the mathematical model Mumford and
Gidas 2001). The global image statistics for the image se-
quence in Fig. 2 is not scale invariant as the squares have a
smaller range of sizes than objects in natural images and this
sequence has 8 scales, while natural images usually can be
only scaled and down-sampled 4 to 5 times.

The other is the well known image scale-space theory,
which was pioneered by Witkin (1983) and Koenderink
(1984) in the early 1980s, and extended by Lindeberg (1993,
1994) and others (ter Haar Romeny 1997; Ahuja 1993). Al-
though the global statistics summed over the entire image
may be invariant in image scaling, our perception of the
specific objects and features changes. For example, a pair
of parallel edges merge into a single bar when the image is
zoomed out. In the image scale-space theory (Witkin 1983;
Koenderink 1984; Lindeberg 1994; ter Haar Romeny 1997),
two multi-scale representations have been very influential
in low level vision—the Gaussian and Laplacian pyramids.
A Gaussian pyramid (Simoncelli et al. 1992; Sporring et al.
1996) is a series of low-pass filtered and down-sampled im-
ages. A Laplacian pyramid consists of band-passed images
which are the difference between every two consecutive im-
ages in the Gaussian pyramid. Classical scale-space theory
studied discrete and qualitative events, such as appearance

Fig. 2 Snapshot image patches
of simulated leaves taken at 8
consecutive scales. The image at
scale i is a 2 × 2-pixel averaged
and down-sampled version of
the image at scale i − 1. The
image at scale 1 consists of a
huge number of opaque
overlapping squares whose
lengths fall in a finite range
[8,64] pixels and whose
intensities are uniform in the
range of [0,255]. To produce an
image of size 128 × 128 pixels
at scale 8, we need an image of
1288 × 1288 at scale 1
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of extremal points (Witkin 1983), and tracking inflection
points. The image scale-space theory has been widely used
in vision tasks, for example, multi-scale feature detection
(Lindeberg 1993, 1998a, 1998b; Lowe 2004; Ahuja 1993),
multi-scale graph matching (Shokoufandeh et al. 2002) and
multi-scale image segmentation (Lifshitz and Pizer 1990;
Olsen and Nielsen 1997), super-resolution (Xie et al. 2003),
and multi-resolution object recognition (Xu et al. 2005), It
has been shown that the performance of these applications
is greatly improved by considering scale-space issues.

We study the problem in a third approach by adopting a
full generative model, bringing in statistical modeling and
learning methods, and making inference in the Bayesian
framework.

1.2 Perceptual Scale-Space Theory

In this subsection, we briefly introduce the perceptual scale-
space representation as an augmentation to the traditional
image scale-space. As Fig. 3 shows, the representation com-
prises of two components.

1. A pyramid of primal sketches S0,S1, . . . ,Sn. Si is an at-
tribute graph and it produces the image Ik in the Gaussian
pyramid by a generative model g() with a dictionary Δk

(Guo et al. 2003a, 2007),

Ik = g(Sk;Δk) + noise, k = 1,2, . . . , n. (1)

Fig. 3 A perceptual scale-space representation consists of a pyramid
of primal sketches represented as attribute graphs and a series of graph
operators. These operators are represented as graph grammar rules for
perceptual transitions. The primal sketch at each level generates an im-
age in a Gaussian pyramid using a dictionary of image primitives

Δk includes image primitives, such as, blobs, edges, bars,
L-junctions, T-junctions, crosses etc. Sk is a layer of hid-
den graph governed by a Markov model to account for
the Gestalt properties, such as continuity and parallelism
etc., between the primitives.

2. A series of graph operators R0,R1, . . . ,Rn−1. Rk is a
set graph operators for the structural changes between
graphs Sk and Sk+1. Thus it explicitly accounts for
the perceptual jumps and transitions caused by the ad-
dition/subtraction of the Laplacian pyramid image I−

k .
In later experiments, we identify the top 20 most fre-
quent graph operators which covers nearly all the graph
changes.

In the perceptual scale-space, both the sketch pyramid
and the graph operators are hidden variables and therefore
they are inferred from the Gaussian image pyramid through
Bayesian inference by stochastic algorithm. This is in con-
trast to the deterministic transforms or feature extraction,
such as computing zero-crossings, extremal points, and in-
flection points in traditional image scale-space. We should
compare the perceptual scale-space with recent progress in
the image scale-space theory in Sect. 1.4.

Studying the perceptual transitions under the Bayesian
framework makes it convenient to use the statistical model-
ing and learning tools. For example,

1. modeling the Gestalt properties of the sketch graph, such
as continuity and parallelism etc.

2. learning the most frequent graph operators, i.e. percep-
tual transitions, in image scaling.

3. learning the prior probabilities of the graph operators
conditioning on their local neighboring sketch graph
structures.

4. inferring the sketch pyramid by maximizing a joint pos-
terior probability for all levels and thus producing con-
sistent sketch graphs.

5. quantifying the perceptual uncertainty by the entropy of
the posterior probability and thus triggering the percep-
tual transitions through the entropy changes.

1.3 Contributions of the Paper

This paper makes the following main contributions.

1. We identify three categories of perceptual transitions
in the perceptual scale-space. (i) Blurring of image
primitives without structural changes. (ii) Graph gram-
mar rules for graph structure changes. (iii) Catastrophic
changes from structures to texture with massive image
primitives disappearing at certain scales. For example,
the individual leaves disappear from region A to B.

2. In our experiments, we find the top twenty most fre-
quently occurring graph operators and their composi-
tions. As the exact scale at which a perceptual jump oc-
curs may vary slightly from person to person, we asked
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seven human subjects to identify and label the perceptual
transitions over the Gaussian pyramids of fifty images.
The statistics of this study is used to decide parameters
in the Bayesian decision formulation for the perceptual
transitions.

3. We infer the sketch pyramid in the Bayesian framework
using learned perceptual graph operators, and compute
the optimal representation upwards-downwards the pyra-
mid, so that the attribute graphs across scales are opti-
mally matched and have consistent correspondence. Ex-
periments are designed to verify the inferred percep-
tual scale-space by comparing with Gaussian/Laplacian
scale-space and human perception.

4. We demonstrate an application of perceptual scale-space:
adaptive image display. The task is to display a large
high-resolution digital image in a small screen, such as
a PDA, a windows icon, or a digital camera viewing
screen. Graph transitions in perceptual scale-space pro-
vide a measure in term of description length of perceptual
information gained from coarse to fine across a Gaussian
pyramid. Based on the perceptual information, the algo-
rithm decides to show different areas at different resolu-
tions so as to convey maximum information in limited
space and time.

1.4 Related Work in the Image Scale-Space Theory

In this subsection, we review some of most related work in
image scale-space theory and compare them with the pro-
posed perceptual scale-space theory.

One most related work is the scale-space primal sketch
representation proposed by Lindeberg (1993). It is defined
in terms of local image extrema, level curves through saddle
points, and bifurcations between critical points. Lindeberg
proposed a method for extracting significant blob structures
in scale-space, and defined measures for the blob signifi-
cance and saliency. He also identified some blob events, such
as, annihilation, merge, split, and creation, and proposed the
scale-space lifetime concept.

In Lindeberg (1998a, 1998b), Lindeberg argued that “lo-
cal extrema over scales of different combinations of γ -
normalized derivatives are likely candidates that correspond
to interesting structures”, and defined scale-space edge and
ridge as a connected set of points in scale-space at which the
gradient magnitude is a local maximum in the gradient di-
rection, and a normalized measure of the edge strength is lo-
cally maximal over scales. Based on this representation, Lin-
deberg proposed an integrated mechanism for automatically
selecting scales for feature detection based on γ -normalized
differential entities and the maximization of certain strength
measure of image structures. In this way, it “allows more
direct control of the scale levels to be selected”.

In Shokoufandeh et al. (2002), Sholoufandeh et al. pro-
posed a framework for representing and matching multi-
scale feature hierarchies. The qualitative feature hierarchy
is based on the detection of a set of blobs and ridges at their
corresponding hierarchical scales, which are determined by
an automatic scale selection mechanism based on Lindeberg
(1998b).

Lifshitz and Pizer (1990) studied a set of mathematical
properties of Gaussian scale-space including the behaviors
of image intensity extrema, topology of extremum path, and
the containment relations of extremal region paths. Then
they proposed a hierarchical extremal region tree represen-
tation in scale-space, so as to facilitate image segmentation
task. Similar ideas have also been applied to watersheds in
the gradient magnitude map for image segmentation (Olsen
and Nielsen 1997).

In comparison to the above work, the perceptual scale-
space representation studied in this paper describes scale-
space events from a Bayesian inference perspective. In the
following we highlight a few important difference from the
image scale-space theory.

1. In representation, previous scale-space representations,
including (a) the trajectories of zero-crossing (Witkin
1983), (b) the scale-space primal sketch (Lindeberg and
Eklundh 1992), (c) the scale-space edge and ridge (Lin-
deberg 1998b), and (d) the extremal region tree (Lif-
shitz and Pizer 1990)—are all extracted deterministi-
cally by differential operators. In contrast, the percep-
tual scale-space representation adopts a full generative
model where the primal sketch is a parsimonious to-
ken representation, as conjectured by Marr (1983), that
can realistically reconstructs the original image in the
Gaussian pyramid. This is different from the scale-space
representations mentioned above. In our representation,
the scale-space events are represented by a large set of
basic and composite graph operators which extend the
blob/extrema events studied in the image scale-space the-
ory (Lindeberg and Eklundh 1992; Lindeberg 1998b;
Lifshitz and Pizer 1990). As the Bayesian framework
prevails in computer vision, posing the scale-space in the
Bayesian framework has numerous benefits as it is men-
tioned in Sect. 1.2. Most of all, it enable us to introduce
prior probability models for the spatial organizations and
the transition events. These models and representations
are learned through large data set and experiments.

2. In computation, the image scale-space representations
above are computed deterministically through local fea-
ture detection (Lindeberg and Eklundh 1992; Linde-
berg 1998b). In our method, we first use human labeled
sketches at each scale level to learn the probability dis-
tribution of the scaling events conditioned on their lo-
cal/neighboring graph configurations in scale-space. The
primal sketches in the sketch pyramid are inferred by a
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stochastic algorithm across scales to achieve global op-
timality under the minimum descriptive length (MDL)
principle.

Graph operators are introduced to the scale-space by
Shokoufandeh et al. (2002) for encoding the hierarchi-
cal feature graphs. Their algorithm intentionally introduces
some perturbations to the graph adjacency matrices by
adding or deleting graph nodes and edges. The objective of
using these graph operators is to analyze the stability of the
representation under minor perturbations due to noise and
occlusion. Our representation includes a much larger set of
basic and composite operators for the perceptual transitions
caused by image scaling.

This work is closely related to a number of early papers
in the authors’ group. It is a direct extension of the primal
sketch work (Guo et al. 2003a, 2007) to multi-scale. It is
also related to the study of topological changes in texture
motion (Wang and Zhu 2004). A specific multi-scale human
face model is reported in Xu et al. (2005) where the per-
ceptual transitions are iconic for the facial components. In
a companion paper (Wu et al. 2007), Wu et al. studied the
statistical models of images in a continuous entropy spec-
trum, from the sparse coding models (Olshausen and Field
1996) in the low entropy regime, to the stochastic texture
model (Markov random fields) in the high entropy regime.
Thus they interpret the drastic transitions between structures
to textures shown in Figs. 1 and 3 by the perceptual uncer-
tainty.

The paper is organized as follows. In Sect. 2, we set the
background by reviewing the primal sketch model and com-
pare it with the image pyramids and sparse coding mod-
els. Then, we introduce the perceptual uncertainty and three
types of transitions in Sect. 3. The perceptual scale-space
theory is studied in three consecutive sections—Sect. 4
presents a generative model representation. Section 5 dis-
cusses the learning issues for the set of graph operators and
their parameters, and Sect. 6 presents an inference algorithm
in the Bayesian framework with some experiment results of
computing the sketch pyramids. Then we show the appli-
cation of the sketch pyramids in adaptive image display in
comparison with image pyramid methods. The paper is con-
cluded with a discussion in Sect. 8.

2 Background: Image Pyramids and Primal Sketch

This section briefly reviews the primal sketch and image
pyramid representations and shows that the primal sketch
model (Guo et al. 2007) is a more parsimonious symbolic
representation than the Gaussian/Laplacian pyramids and
sparse coding model in image reconstruction.

2.1 Image Pyramids and Sparse Coding

A Gaussian pyramid is a sequence of images {I0, I1, . . . , In}.
Each image Ik is computed from Ik−1 by Gaussian smooth-
ing (low-pass filtering) and down-sampling

Ik = �Gσ ∗ Ik−1�, k = 1,2, . . . , n, I0 = I.

A Laplacian pyramid is a sequence of images {I−
1 , }. Each

image I−
k is the difference between an image Ik and its

smoothed version,

I−
k = Ik − Gσ ∗ Ik, k = 0,2, . . . , n − 1.

This is equivalent to convolving image Ik with a Laplacian
(band-pass) filter �Gσ . The Laplacian pyramid decomposes
the original image into a sum of different frequency bands.
Thus, one can reconstruct the image by a linear sum of im-
ages from the Laplacian pyramid,

I = I0, Ik = I−
k + Gσ ∗ �Ik+1�, k = 0,1, . . . , n − 1.

The down-sampling and up-sampling rates will be decided
by σ in accordance with the well-known Nyquist theorem
(see Mallat 1998 for details).

One may further decompose the original image (or its
band-pass images) into a linear sum of independent image
bases in a sparse coding representation. We denote Ψ as a
dictionary of over-complete image bases, such as Gabor co-
sine, Gabor sine, and Laplacian bases

I =
N∑

i=1

αiψi + ε, ψi ∈ Ψ.

ε is the residue. As Ψ is over-complete, αi, i = 1,2 . . . ,N

are called coefficients and usually αi �= 〈I,ψi〉. These coef-
ficients can be computed by a matching pursuit algorithm
(Mallat and Zhang 1993).

The image pyramids and sparse coding are very success-
ful in representing raw images in low level vision, but they
have two major problems.

Firstly, they are not effective for representing low entropy
image structures (cartoon components). Figures 4(a) and (b)
are respectively the Gaussian and the Laplacian pyramids
of a hexagon image. It is clearly that the boundary of the
hexagon spreads across all levels of the Laplacian pyramid.
Therefore, it consumes a large number of image bases to
construct sharp edges. The reconstruction of the Gaussian
pyramid by Gabor bases is shown in Figs. 4(c) and (d). The
bases are computed by the matching pursuit algorithm (Mal-
lat and Zhang 1993). Even with 500 bases, we still see blurry
edges and aliasing effects.

Secondly, they are not effective for representing high en-
tropy patterns, such as textures. A texture region often con-
sumes a large number of image bases. However, in human
perception, we are less sensitive to texture variations. A the-
oretical study on the coding efficiency is referred to in a
companion paper (Wu et al. 2007).
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Fig. 4 The image pyramids for an hexagon image. (a) The Gaussian
pyramid. (b) The Laplacian of Gaussian pyramid. (c) Reconstruction
of (a) by 24, 18, 12, 12 Gabor bases respectively. (d) Reconstruction

of (a) by Gabor bases. The number of bases used for a reasonable sat-
isfactory reconstruction quality is 500, 193, 80, 38 from small scale to
large scale respectively

These deficiencies suggest that we need to seek for a bet-
ter model that (i) has a hyper-sparse dictionary to account
for sharp edges and structures in the low entropy regime,
and (ii) separates texture regions from structures. This ob-
servation leads us to a primal sketch model.

2.2 Primal Sketch Representation

A mathematical model of a primal sketch representation was
proposed in (Guo et al. 2003a, 2007) to account for the
generic and parsimonious token representation conjectured
by Marr (1983). This representation overcomes the prob-
lems of the image pyramid and sparse coding mentioned
above. We use the primal sketch to represent perceptual tran-
sitions across scales.

Given an input image I on a lattice Λ, the primal sketch
model divides the image domain into two parts: a “sketch-
able” part Λsk for structures (e.g. object boundaries) and a
“non-sketchable” part Λnsk for stochastic textures which has
no salient structures

Λ = Λsk ∪ Λnsk, Λsk ∩ Λnsk = ∅.

Thus we write the image into two parts accordingly.

I = (IΛsk , IΛnsk),

The structural part Λsk is further divided into a number of
disjoint patches Λsk,k, k = 1,2, . . . ,Nsk (e.g. 11 × 5 pixels)

Λsk =
Nsk⋃

k=1

Λsk,k, Λsk,k ∩ Λsk,j = ∅, k �= j.

Each image patch represents an image primitive Bk , such
as a step edge, a bar, an endpoint, a junction (“T” type or
“Y” type), or a cross junction, etc. Figure 7 shows some ex-
amples of the primitives which can also be called textons
(Julesz 1981). Thus we have a generative model for con-
structing an image I below, with the residue following iid
Gaussian noise

I(u, v) = Bk(u, v) + ε(u, v), ε(u, v) ∼ N(0, σo),

∀(u, v) ∈ Λsk,k, i = 1, . . . ,Nsk,

where k indexes the primitives in the dictionary Δ for trans-
lation x, y, rotation θ , scaling σ , photometric contrast α and
geometric warping �β ,

k = (xi, yi, θi, σi, αi, �βi).

Each primitive has d + 1 points as landmarks shown on the
top row of Fig. 7. d is the degree of connectivity, for ex-
ample, a “T”-junction has d = 3, a bar has d = 2 and an
endpoint has d = 1. The (d + 1)’th point is the center of the
primitive. When these primitives are aligned through their
landmarks, we obtain a sketch graph S, where each node is a
primitive. A sketch graph is also called a Gestalt field (Zhu
1999; Guo et al. 2003b) and it follows a probability p(S),
which controls the graph complexity and favors good Gestalt
organization, such as smooth connection between the prim-
itives.

The remaining texture area Λnsk is clustered into Nnsk =
1 ∼ 5 homogeneous stochastic textures areas,

Λnsk =
Nnsk⋃

j=1

Λnsk,j .
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Fig. 5 Representing the hexagon image by primal sketch. (a) Sketch
graphs at four levels as symbolic representation. They use two types of
primitives shown in (d). The 6 corner primitives are shown in black,
and step edges are in grey. The number of primitives used for the four
levels are 24, 18, 12, 12, respectively (same as in Fig. 4c). (b) The

sketchable part IΛsk reconstructed by the two primitives with sketch
S. The remaining area (white) is non-sketchable (structureless): black
or gray. (c) Reconstruction of the image pyramid after filling in the
non-sketchable part. (d) Two primitives: a step-edge and an L-corner

Each follows a Markov random field model (FRAME) (Zhu
et al. 1997) with parameters ηj . These MRFs use the struc-
tural part IΛsk as boundary condition

IΛnsk,j
∼ p(IΛnsk,j

|IΛsk;ηj ), j = 1, . . . ,Nnsk.

For a brief introduction, the FRAME model for any image
IA in a domain A (here A = Λnsk,j , j = 1,2, . . . ,Nnsk re-
spectively) given its neighborhood ∂A is a Gibbs distrib-
ution learned by a minimax entropy principle (Zhu et al.
1997)

p(IA|I∂A;η) = 1

Z
exp

{
K∑

α=1

〈λα,Hα(IA|I∂A)〉
}

. (2)

Where Hα(IA|I∂A) is the histogram (vector) of filter re-
sponses pooled over domain A given boundary condition
in ∂A. The filters are usually Gabor and LoG and are se-
lected through an information theoretical principle. The pa-
rameters η = {λα,α = 1,2, . . . ,K} are learned by MLE and
each λα is a vector of the same length as the number of
bins in the histogram Hα . This model is a generalization to
traditional MRF models and is effective in modeling vari-
ous texture patterns, especially textures without strong struc-
tures.

The primal sketch is a two-level Markov model—the
lower level is the MRF on pixels (FRAME models) for the
textures; and the upper level is the Gestalt field for the spa-
tial arrangement of the primitives in the sketchable part. For

detailed description of the primal sketch model, please re-
fer to (Guo et al. 2003a, 2007). We show how the primal
sketch represents the hexagon image over scales in Fig. 5.
It uses two types of primitives in Fig. 5(d). Only 24 primi-
tives are needed at the highest resolution in Fig. 5(a) and the
sketch graph is consistent over scales, although the number
of primitives is reduced. As each primitive has sharp inten-
sity contrast, there is no aliasing effects along the hexagon
boundary in Fig. 5(c). The flat areas are filled in from the
sketchable part in Fig. 5(b) through heat diffusion, which is a
variation partial differential equation minimizing the Gibbs
energy of a Markov random field. This is very much like
image inpainting (Chan and Shen 2001).

Compared to the image pyramids, the primal sketch has
the following three characteristics.

1. The primitive dictionary is much sparser than the Gabor
or Laplacian image bases, so that each pixel in Λsk is
represented by a single primitive. In contrast, it takes a
few well-aligned image bases to represent the boundary.

2. In a sketch graph, the primitives are no longer inde-
pendent but follow the Gestalt field (Zhu 1999; Guo
et al. 2003b), so that the position, orientation, and in-
tensity profile between adjacent primitives are regular-
ized.

3. It represents the stochastic texture impression by Markov
random fields instead of coding a texture in a pixel-
wise fashion. The latter needs large image bases to
code flat areas and still has aliasing effects as shown in
Fig. 4.
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3 Perceptual Uncertainty and Transitions

In this section, we pose the perceptual transition problem
in a Bayesian framework and attribute the transitions to the
increase in the perceptual uncertainty of the posterior prob-
ability from fine to coarse in a Gaussian pyramid. Then, we
identify three typical transitions over scales.

3.1 Perceptual Transitions in Image Pyramids

Visual perception is often formulated as Bayesian inference.
The objective is to infer the underlying perceptual represen-
tation of the world denoted by W from an observed image I.
Although it is a common practice in vision to compute the
modes of a posterior probability as the most probable in-
terpretations, we shall look at the entire posterior probabil-
ity as the latter is a more comprehensive characterization of
perception including uncertainty

W ∼ p(W |I;Θ), (3)

where Θ denotes the model parameters including a dictio-
nary used in the generative likelihood. A natural choice for
qualifying perceptual uncertainty is the entropy of the pos-
terior distribution,

H(p(W |I)) = −
∑

W,I

p(W, I;Θ) logp(W |I;Θ).

It is easy to show that when an image I is down-sampled
to Ism in a Gaussian pyramid, the uncertainty of W will in-
crease. This is expressed in a proposition below (Wu et al.
2007).

Proposition 1 Down-scaling increases the perceptual un-
certainty,

H(p(W |Ism);Θ) ≥ H(p(W |I;Θ)). (4)

To be self-contained, we provide a brief proof and expla-
nation of the above proposition in Appendix 1.

Consequently, we may have to drop some highly uncer-
tain dimensions in W , and infer a reduced set of representa-
tion Wsm to keep the uncertainty of the posterior distribution
of the pattern p(Wsm|Ism;Θsm) at a reasonable small level.
This corresponds to a model transition from Θ to Θsm, and
a perceptual transition from W to Wsm. Wsm is of lower di-
mension than W .

Θ → Θsm, W → Wsm.

For example, when we zoom out from the leaves or
squares in Figs. 1 and 2, some details of the leaves, such
as the exact positions of the leaves, lose gradually, and we
can no longer see the individual leaves. This corresponds to
a reduced description of Wsm.

3.2 Three Types of Transitions

We identify three types of perceptual transitions in image
scale-space. As they are reversible transitions, we discuss
them either in down-scaling or up-scaling in a Gaussian
pyramid.

Following Witkin (1983), we start with a 1D signal in
Fig. 6. The 1D signal is a horizontal slice from an image
of a toaster in Fig. 6(a). Figure 6(b) shows trajectories of

Fig. 6 Scale-space of a 1D signal. (a) A toaster image from which
a line is taken as the 1D signal. (b) Trajectories of zero-crossings of
the 2nd derivative of the 1D signal. The finest scale is at the bottom.
(c) The 1D signal at different scales. The black segments on the curves

correspond to primal sketch primitives (step edge or bar). (d) A sym-
bolic representation of the sketch in scale-space with three types of
transitions
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zero-crossings of the 2nd derivative of the 1D signal. These
zero-crossing trajectories are the signature of the signal in
classical scale-space theory (Witkin 1983). We reconstruct
the signal using primal sketch with 1D primitives—step
edges and ridges in Fig. 6(c) where the gray curves are the
1D signal at different scales and the dark segments corre-
spond to the primitives. Viewing the signal from bottom-
to-top, we can see that the “steps” are getting gentler; and
at smaller scales, the pairs of steps merge into ridges. Fig-
ure 6(d) shows a symbolic representation of the trajectories
of the sketches tracked through scale-space and is called a
sketch pyramid in 1D signal. Viewing the trajectories from
top to bottom, we can see the perceptual transitions of the
image from a texture pattern to several ridge type sketches,
then split into number of step-edge type sketches when up-
scaling. Figure 6(d) is very similar to the zero-crossings
in (b), except that this sketch pyramid is computed through
probabilistic Bayesian inference while the zero-crossings
are computed as deterministic features. The most obvious
differences in this example are at the high resolutions where
the zero-crossings are quite sensitive to small noise pertur-
bations.

Now we show several examples for three types of transi-
tions in images.

Type 1: Blurring and sharpening of primitives. Figure 7
shows some examples of image primitives in the dictio-
nary Δsk, such as step edges, ridges, corners, junctions.
The top row shows the d + 1 landmarks on each primitive
with d being the degree of connectivity. When an image is
smoothed, the image primitives exhibit continuous blurring
phenomenon shown in each column, or “sharpening” when
we zoom-in. The primitives have parameters to specify the
scale (blurring).

Type 2: Mild jumps. Figure 8 illustrates a perceptual
scale-space for a cross with a four-level sketch pyramid S0,

S10, S2, S3 and a series of graph grammar rules R0,R1,R2

for graph contraction. Each Rk includes production rules
γk,i , i = 1,2, . . . ,m(k) and each rule compresses a subgraph
g conditional on its neighborhood ∂g.

Rk = {γk,i : gk,i |∂gk,i → g′
k,i |∂gk,i , i = 1,2, . . . ,m(k)}.

If a primitive disappear, then we have g′
k,i = ∅. Shortly, we

shall show the 20 most frequent graph operators (rules) in
Fig. 10 in natural image scaling.

Graph contraction in a pyramid is realized by a series of
rules,

Sk

γk,1···γk,m(k)−→ Sk+1.

Fig. 7 Image primitives in the dictionary of primal sketch model are
sharpened with four increasing resolutions from top to bottom. The
blurring and sharpening effects are represented by scale parameters of
the primitives

Fig. 8 An example of a 4-level
sketch pyramid and
corresponding graph operators
for perceptual transitions
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Fig. 9 Catastrophic
texture-texton transition occurs
when a large amount of
primitives of similar sizes
disappear (or appear)
collectively

Fig. 10 Twenty graph operators
identified from down-scaling
image pyramids. For each
operator, the left graph turns
into the right graph when the
image is down-scaled

These operators explain the gradual loss of details (in
red), for example, a cross shrinks to a dot, a pair of paral-
lel lines merges into a bar (ridge), and so on. The opera-
tors are reversible depending on the upward or downward
scaling.

Type 3: Catastrophic texture-texton transition. At cer-
tain critical scale, a large number of similar size primitives
may disappear (or appear reversely) simultaneously. Fig-
ure 9 shows two examples—cheetah dots and zebra stripe
patterns. At high resolution, the edges and ridges for the ze-
bra stripes and the cheetah blobs are visible, when the im-
age is scaled down, we suddenly perceive only structureless
textures. This transition corresponds to a significant model
switching and we call it the catastrophic texture-texton tran-
sition. Another example is the leaves in Fig. 1.

In summary, a sketch pyramid represents structural
changes reversibly over scales which are associated with
appearance changes. Each concept, such as a blob, a cross,
a parallel bar only exists in a certain scale range (lifespan)
in a sketch pyramid.

4 A Generative Model for Perceptual Scale-Space

In natural images, as image structures are highly statistical,
they may not exactly follow the ideal PDE model assump-
tions. In this section, we formulate a generative model for
the perceptual scale-space representation and pose the infer-
ence problem in a Bayesian framework.

We denote a Gaussian pyramid by I[0, n] = (I0, . . . , In).
The perceptual scale-space representation, as shown in
Fig. 3, consists of two components—a sketch pyramid de-
noted by S[0, n] = (S0, . . . ,Sn), and a series of graph gram-
mar rules for perceptual transitions denoted by R[0, n−1] =
(R0,R1, . . . ,Rn−1). Our objective is to define a joint prob-
ability p(I[0, n],S[0, n],R[0, n − 1]) so that an optimal
sketch pyramid and perceptual transitions can be com-
puted though maximizing the joint posterior probability
p(S[0, n],R[0, n − 1]|I[0, n]). This is different from com-
puting each sketch level Sk from Ik independently. The latter
may cause “flickering” effects such as the disappearance and
reappearance of an image feature across scales.
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4.1 Formulation of a Single Level Primal Sketch

Following the discussion in Sect. 2.2, the generative model
for primal sketch is a joint probability of a sketch S and an
image I,

p(I,S;Δsk) = p(I|S;Δsk)p(S).

The likelihood is divided into a number of primitives and
textures,

p(I|S;Δsk) ∝
Nsk∏

k=1

exp

{
−

∑

(u,v)∈Λsk,k

(I(u, v) − Bk(u, v))2

2σ 2
o

}

×
Nnsk∏

j=1

p(IΛnsk,j
| IΛsk;ηj ).

S = 〈V,E〉 is an attribute graph. V is a set of primitives in S

V = {Bk, k = 1,2, . . . ,Nsk}.
E denotes the connectivity for neighboring structures,

E = {e = 〈i, j 〉 : Bi,Bj ∈ V }
The prior model p(S) is an inhomogeneous Gibbs model
defined on the attribute graph to enforce some Gestalt prop-
erties, such smoothness, continuity and canonical junctions:

p(S) ∝ exp

{
−

4∑

d=0

ζdNd −
∑

〈i,j〉∈E

ψ(Bi,Bj )

}
,

where the Nd is the number of primitives in S whose de-
gree of connectivity is d . ζd is the parameter that controls
the number of primitives Nd and thus the density. In our ex-
periments, we choose ζ0 = 1.0, ζ1 = 5.0, ζ2 = 2.0, ζ3 = 3.0,
ζ4 = 4.0. The reason we give more penalty for terminators is
that the Gestalt laws favor closure and continuity properties
in perceptual organization. ψ(Bi,Bj ) is a potential function
of the relationship between two vertices, e.g. smoothness
and proximity. A detailed description is referred to (Guo
et al. 2007).

4.2 Formulation of a Sketch Pyramid

Because of the intrinsic perceptual uncertainty in the pos-
terior probability (see (3)), the sketch pyramid Sk, k =
0,1, . . . , n will be inconsistent if each level is computed in-
dependently. For example, we may observe a “flickering”
effect when we view the sketches from coarse-to-fine (see
Fig. 16b).

To ensure monotonic graph transitions and consistency of
a sketch pyramid, we define a common set of graph opera-
tors

Σgram = {T∅,Tdn,Tme2r , . . .}.

Fig. 11 Each square marks the image patch where the graph opera-
tor occurs, and each number in the squares correspond to the index of
graph operators listed in Fig. 10

They stand, respectively, for null operation (no topology
change), death of a node, merging a pair of step-edges into a
ridge, etc. Figure 10 shows a graphical illustration of twenty
down-scale graph operators (rules), which are identified and
learned through a supervised learning procedure in Sect. 5.
Figure 11 shows a few examples in images by rectangles
where the operators occur.

Each rule γn ∈ Σgram is applied to a subgraph gn with
neighborhood ∂gn and replaces it by a new subgraph g′

n.
The latter has smaller size for monotonicity, following the
Proposition 4.

γn : gn|∂gn → g′
n|∂gn, |g′

n| ≤ |gn|.

Each rule is associated with a probability depending on its
attributes,

γn ∼ p(γn) = p(gn → g′
n|∂gn), γn ∈ Σgram.

p(γn) will be decided through supervised learning described
in Sect. 5.

As discussed previously, transitions from Sk to Sk+1 are
realized by a sequence of m(k) production rules Rk ,

Rk = (γk,1, γk,2, . . . , γk,m(k)), γk,i ∈ Σgram.

The order of the rules matters and the rules constitute a path
in the space of sketch graphs from Sk to Sk+1.
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The probability for the transitions from Sk to Sk+1 is,

p(Rk) = p(Sk+1 |Sk) =
m(k)∏

i=1

p(γk,i).

A joint probability of the scale-space is

p(I[0, n],S[0, n],R[0, n − 1])

=
n∏

k=0

p(Ik|Sk;Δsk) · p(S0) ·
n−1∏

k=0

m(k)∏

j=1

p(γk,j ), (5)

4.3 A Criterion for Perceptual Transitions

A central issue for computing a sketch pyramid and asso-
ciated perceptual transitions is to decide which structure
should appear at which scale. In this subsection, we shall
study a criterion for the transitions. This is posed as a model
comparison problem in the Bayesian framework.

By induction, suppose S is the optimal sketch from I. At
the next level, image Ism has decreased resolution, and so
Ssm has less complexity following Proposition 4. Without
loss of generality, we assume that Ssm is reduced from S by
a single operator γ .

S
γ�⇒ Ssm

we compute the ratio of the posterior probabilities.

δ(γ ) � log
p(Ism|Ssm)

p(Ism|S)
+ λγ log

p(Ssm)

p(S)
(6)

= log
p(Ssm|Ism)

p(S|Ism)
, if λγ = 1. (7)

The first log-likelihood ratio term is usually negative even
for a good choice of Ssm, because a reduced generative
model will not fit an image as well as the complex model S.
However, the prior term log p(Ssm)

p(S)
is always positive to en-

courage simpler models.
Intuitively, the parameter λγ balances the model fitting

and the model complexity. As we know in Bayesian decision
theory, a decision may not be only decided by the posterior
probability or coding length, it is also affected by some cost
function (not simply 0 − 1 loss) related to perception. The
cost function is summarized into λγ for each γ ∈ Σgram.

• λγ = 1 corresponds to the Bayesian (MAP) formulation,
with 0 − 1 loss function.

• λγ > 1 favors applying the operator γ earlier in the down-
scaling process, and thus the simple description Ssm.

• λγ < 1 encourages “hallucinating” features when they are
unclear.

Therefore, γ is accepted, if δ(γ )〉0. More concretely, a
graph operator γ occurs if

log
p(Ism|Ssm)

p(Ism|S)
+ λγ log

p(Ssm)

p(S)
> 0,

log
p(I|Ssm)

p(I|S)
+ λγ log

p(Ssm)

p(S)
< 0.

(8)

The transitions Rk between Sk and Sk+1 consist of a se-
quence of such greedy tests. In the next section, we learn
the range of the parameters λγ for each γ ∈ Σgram from hu-
man experiments.

5 Supervised Learning of Parameters

In this section, we learn a set of the most frequent graph
operators Σgram in image scaling and learn a range of pa-
rameter λγ for each operator γ ∈ Σgram through simple hu-
man experiments. The learning results will be used to infer
sketch pyramids in Sect. 6.

We selected 50 images from the Corel image database.
The content of these images covers a wide scope: nat-
ural scenes, architectures, animals, human beings, and man-
made objects. Seven graduate students with and without
computer vision background were selected randomly from
different departments as subjects. We provided a computer
graphics user interface (GUI) for the 7 subjects to iden-
tify and label graph transitions in the 50 image pyramids.
The labeling procedure is as follows. First, the software
will load a selected image I0, and build a Gaussian pyra-
mid (I0, I2, . . . , In). Then the sketch pursuit algorithm (Guo
et al. 2003a) is run on the highest resolution to extract a pri-
mal sketch graph, which is then manually edited to fix some
errors to get a perfect sketch S0.

Next, the software builds a sketch pyramid upwards by
generating sketches simply by zooming out the sketch at the
level below (starting with S0) one by one till the coarsest
scale. The subjects will search across both the Gaussian and
sketch pyramids to label places where they think graph edit-
ing is needed, e.g. some sketch disappears, or a pair of dou-
ble edge sketches may be replaced by a ridge sketch. Each
type of transition corresponds to a graph operator or a graph
grammar rule. All these labeled transitions are automatically
saved across all scale and for the 50 images.

The following are some results from this process.

Learning Result 1: frequencies of Graph Operators Fig-
ure 10 shows the top 20 graph operators which have been
applied most frequently in the 50 images among the 7 sub-
jects. Figure 12 plots the relative frequency for the 20 op-
erators. It is clear that the majority of perceptual transitions
correspond to operator 1, 2, and 10, as they are applied to the
most frequently observed and generic structures in images.
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Fig. 12 The frequencies of the top 20 graph operators shown in Fig. 10

Learning Result 2: Range of λγ The exact scale where a
graph operator γ is applied varies a bit among the human
subjects. Suppose an operator γ occurs between scales I and
Ism, then we can compute the ratios.

a1 = − log
p(Ism|Ssm)

p(Ism|S)
, b1 = λγ log

p(Ssm)

p(S)
,

a2 = − log
p(I|Ssm)

p(I|S)
, b2 = λγ log

p(Ssm)

p(S)
.

By the inequalities in (8), we can determine an interval for
λγ

a1

b1
< λγ <

a2

b2
.

The interval above is for a specific occurrence of γ and it
is caused by finite levels of a Gaussian pyramid. By accu-
mulating the intervals for all instances of the operator γ in
the 50 image and the 7 subjects, we obtain a probability
(histogram) for γ . Figure 13 shows the cumulative distri-
bution functions (CDF) of λγ for the top 20 operators listed
in Fig. 10.

Learning Result 3: Graphlets and Composite Graph Opera-
tors Often, several graph operators occur simultaneously
at the same scale in a local image structure or subgraph
of a primal sketch. Figure 14(a) shows some typical sub-
graphs where multiple operators happen frequently. We call
these subgraphs graphlets. By using the “Apriori Algorithm”
(Agrawal and Srikant 1994), we find the most frequently as-
sociated graph operators in Fig. 14(b). We call these com-
posite operators.

Figure 15 shows the frequency counts for the graphlets
and composite graph operators. Figure 15(a) shows that a
majority of perceptual transitions involves sub-graphs with
no more than 5 primitives (nodes). Figure 15(b) shows that
the frequency for the number of graph operators involved in

each composite operator. We include the single operator as
a special case for comparison of frequency.

In summary, the human experiments on the sketch pyra-
mids set the parameters λγ , which will decide the threshold
of transitions. In our experiments, it is evident that human
vision has two preferences in comparison with the pure max-
imum posterior probability (or MDL) criterion (i.e. λγ = 1,
∀γ ).

• Human vision has a strong preference for simplified de-
scriptions. As we can see that in Fig. 13, λγ > 1 for
most operators. Especially, if there are complicated struc-
tures, human vision is likely to simplify the sketches. For
example, λγ goes to the range of (Cootes et al. 1998;
Gauch and Pizer 1993) for operators No. 13, 14, 15.

• Human vision may hallucinate some features, and de-
lay their disappearance, for example, λγ < 1 for operator
No. 4.

These observations become evident in our experiments in
the next section.

6 Upwards-Downwards Inference and Experiments

In this section, we briefly introduce an algorithm that in-
fers hidden sketch graphs S[0, n] upwards and downwards
across scales using the learned models p(λγ ) for each gram-
mar rule. Then we show experiments of computing sketch
pyramids.

6.1 The Inference Algorithm

Our goal is to infer consistent sketch pyramids from Gauss-
ian image pyramids, together with the optimal path of tran-
sitions by maximizing a Bayesian posterior probability,

(S[0, n],R[0, n − 1])∗
= arg maxp(S[0, n],R[0, n − 1]|I[0, n])

= arg max
n∏

k=0

p(Ik|Sk;Δk) · p(S0)

n∏

k=1

m(k)∏

j=1

p(γk,j ).

Our inference algorithm consists of three stages.
Stage I: Independent sketching. We first apply the pri-

mal sketch algorithm (Guo et al. 2003a, 2007) to image
I0 at the bottom of a Gaussian pyramid to compute S0.
Then we compute Sk from Ik using Sk−1 as initialization
for k = 1,2, . . . , n. As each level of sketch is computed
independently by MAP estimation, the consistency of the
sketch pyramid is not guaranteed. Figure 16(b) shows the
sketch pyramid where we observe some inconsistencies in
the sketch graph across scales.

Step II: Bottom-up graph matching. This step gives the
initial solution of matching sketch graph Sk to Sk+1. We
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Fig. 13 CDFs of λ for each graph grammar rule or operator listed in Fig. 10
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Fig. 14 (a) Frequently
observed local image structures.
The line drawings above each
image patch are the
corresponding subgraphs in its
sketch graph. (b) The most
frequently co-occurring operator
sets. The numbers in the left
column are the indices to the top
20 operators listed in Fig. 10.
The diagrams in the right
column are the corresponding
subgraphs and transition
examples

(a) (b)

(a) (b)

Fig. 15 Frequency of the graphlets and composite operators. (a) Histogram of the number of nodes per graphlet where perceptual transitions
happen simultaneously. (b) Histogram of the number of operators applied to each “graphlet”

adopt standard graph matching algorithm discussed in (Zhu
and Yuille 1996; Klein et al. 2001) and (Wang and Zhu
2004) to match attribute sketch graphs across scales. Here,
we briefly report how we compute the matching in a bottom-
up approach.

A sketch as an attribute node in a sketch graph (as shown
in Fig. 16) has the following properties.

1. Normalized length l by its scale.
2. Shape s. A set of control points connectively define the

shape of a sketch.
3. Appearance a. (Pixel intensities of a sketch.)
4. Degree d. (Number of connection at each ends of a

sketch.)

In the following, we also use l, s,a,d as functions on sketch
node i, i.e., each returns the corresponding feature. For ex-

ample, l(i) tells the normalized length of the i’th sketch
node by its scale.

A match between the i’th sketch node at scale k (denoted
as vi ) and the j ’th sketch node at scale k +1 (denoted as vj )
is defined as a probability:

Pmatch[vi, vj ] = 1

Z
exp

{
− (l(i) − l(j))2

2σ 2
c

− (s(i) − s(j))2

2σ 2
s

− (a(i) − a(j))2

2σ 2
a

− (d(i) − d(j))2

2σ 2
d

}

where σ.’s are the variances of the corresponding features.
This similarity measurement is also used in the following
graph editing part to compute the system energy. When
matching Sk = (vi(k), i = 1, . . . , n) and Sk+1 = (vi(k +
1), i = 1, . . . , n), where n is the larger number of sketches
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Fig. 16 A church image in scale-space. (a) Original images across
scales. The largest image size is 241 × 261. (b) Initial sketches com-
puted independently at each level by algorithm. (c) Improved sketches
across scales. The dark dots indicate end points, corners and junctions.
(d) Synthesized images by the sketches in (c). The symbols mark the
perceptual transitions

in either of the two graphs, it is reasonable to allow some
sketches in Sk map to null, or multiple sketches in Sk map
to a same sketch in Sk+1, and vice versa. Thus, the similarity
between graph Sk and Sk+1 is defined as a probability:

P [Sk,Sk+1] =
n∏

i=1

Pmatch[vi(k), vi(k + 1)].

As the sketch graphs at two adjacent levels are very simi-
lar and well aligned. Finding a good match is not difficult.
The graph matching result are used as an initial match to
feed into the following Markov chain Monte Carlo (MCMC)
process.

Step III: Matching and editing graph structures by
MCMC sampling. Because of the intrinsic perceptual un-
certainty in the posterior probability, and the huge and com-
plicated solution space for hidden dynamic graph structures,
we have to adopt the MCMC reversible jumps (Green 1995)
to match and edit the computed sketch graphs both upwards
and downwards iteratively in scale-space. In another word,
these reversible jumps, a.k.a. graph operators, are used as a
computation mechanism to infer the hidden dynamic graph

structures and to find the optimal transition paths so as to
pursue globally optimal and perceptually consistent primal
sketches across scales.

Our Markov chain consists of twenty pairs of reversible
jumps (listed in Fig. 10) to adjust the matching of adjacent
graphs in a sketch pyramid based on the initial matching re-
sults in Step II, so as to achieve a high posterior probability.
These reversible jumps correspond to the grammar rules in
Σgram. Each pair of them is selected probabilistically and
they observe the detailed balance equations. Each move in
the Markov chain design is a reversible jump between two
states A and B realized by a Metropolis-Hastings method
(Metropolis et al. 1953).

For clarity, we put the description of these reversible
jumps to Appendix 2.

6.2 Experiments on Sketch Pyramids

We successfully applied the inference algorithm on 20 im-
ages to compute their sketch pyramids in perceptual scale-
space. In this subsection, we show some of them to illustrate
the inference results.

Inference Result 1: Sketch Consistency Figure 16(c) shows
examples of the inferred sketch pyramids obtained by the
MCMC sampling with the learned graph grammar rules. We
compare the results with the initial bottom-up sketches (b)
where each level is computed independently and in a greedy
way. The improved results show consistent graph matching
across scales.

Inference Result 2: Compactness of Perceptual Sketch Pyra-
mid In Fig. 17, we compare the inferred sketch graphs in
column (c) with the sketch graph obtained by only apply-
ing death operator in column (b). We can see that the sketch
graphs inferred from perceptual scale-space is more com-
pact and close to human perception.

Figure 18 compares the compactness of the sketch pyra-
mid representation obtained by applying learned perceptual
graph operators against that rendered by applying only sim-
ple death operators. The compactness is measured by the
number of sketches. Images at scale level 1 has the highest
resolution, containing maximum number of sketches in the
sketch graph, and the number of sketches at this scale level is
normalized to 1.0. When scaling down, the sketch nodes are
getting shorter and shorter, till they finally disappear, where
the death operator applies. Thus the higher the scale level,
the fewer the sketch nodes. The dashed line shows the rel-
ative number of sketches at each scale level with only the
simple death operator applied when scaling down. The solid
line shows the relative number of sketches at each scale level
by applying perceptual operators learned from human sub-
jects. The number of sketches indicates the coding length
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Fig. 17 Sketch graph
comparison between applying
simple death operator and
applying learned perceptual
graph operators. (a) Original
images. (b) Sketch graphs at
scale level 7 with only death
operator applied. (c) Sketch
graphs at scale level 7 with
learned perceptual graph
operator applied

of sketch graphs. As human beings always prefer simpler
models without perceptual loss, the sketch pyramid inferred
with learned perceptual graph operators is a more compact
representation.

In summary, from the above inference results, it seems
that the inferred perceptual sketch pyramid matches the
transitions in human perception experiment well. By prop-
erly addressing the perceptual transition issue in perceptual
scale-space, we expect performance improvements in many
vision applications. For example, by explicitly modeling

these discrete jumps, we can finally begin to tackle visual
scaling tasks that must deal with objects and features that
look fundamentally different across scales. In object recog-
nition, for example, the features that we use to recognize an
object from far away may belong to a different class than
those we use to recognize it at a closer distance. The percep-
tual scale-space will allow us to connect these scale-variant
features in a probabilistic chain. In the following section, we
show an applications based on a inferred perceptual sketch
pyramid.
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Fig. 18 A comparison of relative node number in sketch graphs at
each scale between applying simple death operators and applying the
learned perceptual graph operators. Images at scale level 1 has the
highest resolution, containing maximum number of nodes in the sketch
graphs, which is normalized to 1.0. The dashed line shows the number
of sketches at each scale level when simple death operator is applied.
The solid line shows the number of sketches after applying perceptual
operators learned from human subjects

7 An Application—Adaptive Image Display

Because of improving resolution of digital imaging and
use of portable devices, recently there have been emerging
needs, as stated in Xie et al. (2003), for displaying large dig-
ital images (say Λ = 2048 × 2048 pixels) on small screens
(say Λo = 128 × 128 pixels), such as in PDAs, cellular
phones, image icon display on PCs, and digital cameras.
To reduce manual operations involved in browsing within
a small window, it is desirable to display a short movie for
a “tour” that the small window Λo flying through the lattice
Λ, so that most of the information in the image is displayed
in as few frames as possible. These frames are snapshots of
a Gaussian pyramid at different resolutions and regions. For
example, one may want to see a global picture at a coarse
resolution and then zoom in some interesting objects to view
the details.

Figure 19 shows a demo on a small PDA screen. The
PDA displays the original image at the upper-left corner,
within which a window (white) indicates the area and res-
olution shown on the screen. To do so, we decompose a
Gaussian pyramid into a quadtree representation shown in
Fig. 20. Each node in the quadtree hierarchy represent a
square region of a constant size. We say a quadtree node
is “visited” if we show its corresponding region on the
screen. Our objective is to design a visiting order of some
nodes in the quadtree. The quadtree simplifies the repre-
sentation but causes border artifacts when an interesting
object is in the middle and has to be divided into several
nodes.

With this methodology, two natural questions will arise
for this application.

Fig. 19 A tour over a Gaussian pyramid. Visiting the decomposed
quad-tree nodes in a sketch pyramid is an efficient way to automati-
cally convey a large image’s informational content

Fig. 20 A Gaussian pyramid is partitioned into a quad-tree. We only
show the nodes which are visited by our algorithm. During the “tour”,
a quad-tree node is visited if and only if its sketch sub-graph expands
from the level above, which indicates additional semantic/structural in-
formation appears

1. How do we know what objects are interesting to users?
The answer to this question is very subjective and user
dependent. Usually people are more interested in faces
and texts (Xie et al. 2003), which requires face and text
detection. We could add this function rather easily to the
system as there are off-the-shelf code for face and text
detection working reasonably well. But it is beyond the
scope of this paper, which is focused on low-middle level
representation of generic images.

2. How do we measure the information gain when we zoom
in an area? There are two existing criteria: one is the
focus of attention models (Ma et al. 2002), which essen-
tially favors areas of high intensity contrast. A problem
with this criterion is that we may be directed to some
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boring areas, for example smooth (cartoon like) regions
where few new structures will be revealed when the area
is zoomed-in. The other is to sum up the Fourier power of
the Laplacian image at certain scale over a region. This
could tell us how much signal power we gain when the
area is zoomed in. But the frequency power does not nec-
essarily mean structural information. For example, we
may zoom into the forest (texture) in the background (see
Fig. 21).

We argue that a sketch pyramid together with perceptual
transitions provide a natural and generic measure for the in-
formation gains when we zoom in an area or visit a node in
the quadtree.

In computing a perceptual sketch pyramid, we studied
the inverse process when we compute operators from high-
resolution to low-resolution. A node v at level k corresponds
to a sub-graph Sk(v) of sketches, and its children at the
higher resolution level correspond to Sk−1(v

′). The infor-
mation gain for this split is measured by

δ(v) = − log2
p(Sk−1(v

′))
p(Sk(v))

. (9)

It is the number of new bits needed to describe the extra
information when graph expands. As each node in the quad-
tree has an information measure, we can expand a node in
a sequential order until a threshold τ (or a maximum num-
ber of bits M) is reached. Figure 21 shows results of the
quad-tree decomposition and multi-resolution image recon-

struction. The reconstructed images show that there is little
perceptual loss of information when each region is viewed
at its determined scale.

The information gain measure in (9) is more meaningful
than calculating the power of bandpass Laplacian images.
For example, as shown in Fig. 4(b), a long sharp edge in
an image will spread across all levels of the Laplacian pyra-
mid, and thus demands continuous refining in the display if
we use the absolute value of the Laplacian image patches.
As shown in Fig. 5, in contrast, in a sketch pyramid, it is a
single edge and will stop at certain high level. As a result,
the quad-tree partition makes more sense to human beings
in the perceptual sketch pyramid than in the Laplacian of
Gaussian pyramid, as shown in Figs. 21 and 22.

To evaluate the quad-tree decomposition for images
based on the inferred perceptual sketch pyramids, we de-
sign the following experiments to quantitatively verify the
perceptual sketch pyramid model and its computation.

We selected 9 images from the Corel image database and
7 human subjects with and without computer vision back-
ground. To get a fair evaluation of the inference results, we
deliberately chose 7 different persons from the 7 graduate
students who had done the perceptual transition labeling in
the learning stage. Each human subject was provided with
a computer graphical user interface, which allowed them to
partition the given high-resolution images into quad-trees as
shown in Fig. 24. The depth ranges of the quad-trees were
specified by the authors in advance. For example, for the
first three images in Fig. 24, the quad-tree depth range was

Fig. 21 (a–c) Show three examples of the tours in the quad-trees. The
partitions correspond to regions in the sketch pyramid that experience
sketch graph expansions. If the graph expands in a given partition,
then we need to increase the resolution of the corresponding image
region to capture the added structural information. (d–f) Represent the

replacement of each sketch partition with an image region from the
corresponding level in the Gaussian pyramid. Note that the areas of
higher structural content are in higher resolution (e.g. face, house), and
areas of little structure are in lower resolution (e.g. landscape, grass)
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Fig. 22 For comparison with the corresponding partitions in the
sketch pyramid (Fig. 21), a Laplacian decomposition of the test images
are shown. The outer frame is set smaller than the image size to avoid
Gaussian filtering boundary effects. The algorithm greedily splits the
leaf nodes bearing the most power (sum of squared pixel values in the

node of the Laplacian pyramid I+
k ). As clearly evident, the Laplacian

decomposition does not exploit the perceptually important image re-
gions in its greedy search (e.g. facial features) instead focusing more
on the high frequency areas

Fig. 23 Comparison of the quad-trees partitioned by the human sub-
jects and the computer algorithm—Part II. The computer performance
is within the variation of human performance. (a) The computer algo-
rithm partitioned quad-tree. (b) & (c) Two examples of human parti-
tioned quad-tree

set to 1 to 4 levels, 1 to 4 levels and 2 to 5 levels, respec-
tively. Then, the human subjects partitioned the given im-
ages into quad-trees based on the information distributed on
the images according to their own perception and within the
specified depth ranges.

After collecting the experiment results from human sub-
jects, we compared the quad-tree partition performance by
human subjects and that by our computer algorithm based on
inferred perceptual sketch pyramids. The quantitative mea-
sure was computed as follows. Each testing image was split
into quad-tree by the 7 human subjects. Consequently, each
pixel of the image was assigned 7 numbers, which were the
corresponding depth of the quad-tree partitioned by the 7 hu-

Table 1 Comparison table of quad-tree partition performance on 9
images between human subjects and the computer algorithm based on
inferred perceptual image pyramids. This table shows that for 7 out of
9 images, the computer performance is within the variation of human
performance

Image ID Human partition STD Computer partition error

54076 0.231265 0.202402

77016 0.140912 0.092913

180088 0.246501 0.154938

234007 0.239068 0.208406

404028 0.357495 0.325235

412037 0.178133 0.162965

street 0.279815 0.263395

197046∗ 0.168721 0.244858

244000∗ 0.245081 0.369920

man subjects at the pixel. In Table 1, the middle column is
the average standard deviation (STD) of quad-tree depth per
pixel of each image partitioned by the human subjects. It
tells the human performance variation. For each image, we
take the average depth of the human partition as the “truth”
for each pixel. The right column shows the computer algo-
rithm’s partition error from the “truth”. This table shows that
in 7 out of 9 images, the computer performance is within the
variation of human performance.

Figure 24 and Fig. 23 compare the partition results be-
tween computer algorithm and human subjects. In these fig-
ures, the first column shows the quad-tree partitions of each
image by our computer algorithm. The other two columns
are two sample quad-tree partitions by the human subjects.
In Fig. 24, our computer algorithm’s performance is within
the variation of human performance. Figure 23 shows the
two exceptional cases. However, from the figure, we can see
that the partitions by our computer algorithm are still very
reasonable.
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Fig. 24 Comparison of the quad-trees partitions by the human sub-
jects and the computer algorithm. The computer performance is within
the variation of human performance. (a) The computer algorithm par-
titioned quad-tree. (b) & (c) Two examples of human partitioned
quad-tree

8 Summary and Discussion

In this paper, we propose a perceptual scale-space repre-
sentation to account for perceptual jumps amid continu-
ous intensity changes. It is an augmentation to the classical
scale-space theory. We model perceptual transitions across

scales by a set of context sensitive grammar rules, which
are learned through a supervised learning procedure. We ex-
plore the mechanism for perceptual transitions. Based on
inferred sketch pyramid, we define information gain of an
image across scales as the number of extra bits needed to
describe graph expansion. We show an application of such
an information measure for adaptive image display.

Our discussion is mostly focused on the mild perceptual
transitions. We have not discussed explicitly the mechanism
for the catastrophic texture-texton transitions, which is re-
ferred to in a companion paper (Wu et al. 2007). In future
work, it shall also be interesting to explore the link between
the perceptual scale-space to the multi-scale feature detec-
tion and object recognition (Lowe 2004; Kadir and Brady
2001), and applications such as super-resolution, and track-
ing objects over a large range of distances.
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Appendix 1: Interpreting the Information Scaling
Proposition

This appendix provides a brief proof and interpretation of
Proposition 4, following the derivations in (Wu et al. 2007).
Let W be a general description of the scene following a
probability p(W) and it generates an image by a determinis-
tic function I = g(W). I ∼ p(I). Because I is decided by W ,
we have p(W, I) = p(W). So,

p(W |I) = p(W, I)
p(I)

= p(W, I)
p(I)

. (10)

Then by definition

H(p(W |I)) = −
∑

W,I

p(W, I) logp(W |I), (11)

= −
∑

W,I

p(W, I) log
p(W)

p(I)
, (12)

= H(p(W)) −H(p(I)). (13)

Now, if we have a reduced image Ism = Re(I), for example,
by smoothing and subsampling, then we have

H(p(W |Ism)) = H(p(W)) −H(p(Ism)). (14)

So,

H(p(W |Ism)) −H(p(W |I)) = H(p(I)) −H(p(Ism)) (15)
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As Ism is a reduced version of I, suppose both Ism and I
are discretized properly. Then H(p(I)) ≥ H(p(Ism)). The
conclusion follows.

This proposition is quite intuitive. When we zoom out,
some information will be lost for the underlying description
W and thus they become less perceivable.

Appendix 2: The Reversible Jumps for Graph Editing
Operators

The 20-graph editing operators are used to edge the sketch
graphs so that they are matched in graph structures and the
remaining differences are the transitions. Because the graph
matching needs to consider information propagation, they
are made reversible. Reversibility in MCMC is similar to
back-tracing in heuristic searches in computer science.

Consider a reversible move between two states A and B

by applying an operator back and forth.
We design a pair of proposal probabilities for mov-

ing from A to B , with q(A → B) = q(B|A), and back
with q(B → A) = q(A|B). The proposed move is accepted
with probability, according to the well-known Metropolis-
hastings method,

α(A → B) = min

(
1,

q(A|B) · p(B|Iobs[1, τ ])
q(B|A) · p(A|Iobs[1, τ ])

)
.

These MCMC moves simulate a Markov chain with invari-
ant probability p(S[0, n],R[0, n − 1] |I[0, n]). Each proba-
bility model in (5), including the image photometric model
p(Ik|Sk), the primal sketch geometric model p(Sk) and the
graph grammar rule model p(γi). These probability mod-
els are used in this inference process when sampling from
the posterior probability. The design of reversible jumps
is very similar to the design in (Wang and Zhu 2004;
Guo et al. 2007). Due to the page limit, we only introduce
one pair of Markov chain moves—split/merge (Operator 7
in Fig. 10). The moves are illustrated in Fig. 25 and they are
jump processes between two states A and B , where

A = (n,S = 〈(V−, vj ), (E−, ei,j )〉)
� (n − 1,S′ = 〈V−,E−〉) = B,

Fig. 25 Split/merge graph operation diagram. A vertex can be split
into two vertices with one of six edge configurations

where n is the number of sketches in sketch graph S. V−
and E− denote the unchanged sketch set and edge set, re-
spectively. ei,j is the edge between sketches vi and vj , and
vj is the sketch disappeared after merging. We define the
proposal probabilities as follows

q(A → B) = qs/m · qm · q(i) · q(j),

q(B → A) = qs/m · qs · q ′(i) · q(pattern).

qs/m is the probability for selecting this split/merge move
among all possible graph operations. qm and qs is the prob-
ability to choose either split or merge, respectively, where
qm + qs = 1. q(i) is the probability of selecting vi as the an-
chor vertex for the other vertex to merge into, which is usu-
ally set to 1/n. q(j) is the probability to choose vj from vi ’s
neighbors, which is set to be inversely proportional to the
distance between vi and vj . When proposing a split move,
q ′(i) is the probability to choose vi . It is assumed to be uni-
form among those qualified vertices. When a sketch with m

edges is split, there are 1/(2m − 2) ways for two vertices
to share these m edges. Therefore, q(pattern) is set to be
1/(2m − 2).
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