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Abstract

This paper proposes a learning algorithm for the random field models whose energy

functions are in the form of linear combinations of rectified filter responses from sub-

sets of wavelets selected from a given over-complete dictionary. The algorithm consists

of the following two components. (1) We propose to induce the wavelets into the ran-

dom field model by a generative version of the epsilon-boosting algorithm. (2) We

propose to generate the synthesized images from the random field model using Gibbs

sampling on the coefficients (or responses) of the selected wavelets. We show that

the proposed learning and sampling algorithms are capable of generating realistic im-

age patterns. We also evaluate our learning method on a dataset of clustering tasks to

demonstrate that the models can be learned in an unsupervised setting. The learned

models encode the patterns in wavelet sparse coding. Moreover, they can be mapped to

the second-layer nodes of a sparsely connected convolutional neural network (CNN).

Keywords: Generative models, Markov random fields, Simultaneous sparse coding

1. Introduction and Motivations

1.1. Random field models based on wavelets

It is well known that wavelets provide sparse representations of natural images,

in that each image can be represented by a linear combination of a small subset of

wavelets selected from a given over-complete dictionary. We can exploit this fact to5

learn statistical models for various image patterns (such as object categories), so that
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each pattern is represented by a subset of wavelets selected from a given dictionary,

while their coefficients (as well as their locations and orientations) are allowed to vary

according to a certain probability distribution. Such a model can be written in the

form of a Markov random field (or a Gibbs distribution), whose energy function is in10

the form of a linear combination of rectified filter responses from the subset of selected

wavelets [24] . The model is generative in the sense that it is in the form of a probability

distribution defined on the space of images, so that we can generate images by drawing

samples from the probability distribution.

In this article, we propose a learning method for inducing wavelets into such ran-15

dom field models. It consists of the following two components. (1) We propose to

select the wavelets by a generative version of the epsilon-boosting algorithm [10]. We

call this process generative boosting because the gradient of the log-likelihood is com-

puted based on Monte Carlo samples generated from the model. (2) We propose to

generate synthesized images from the model using a Gibbs sampling algorithm [11]20

that samples the reconstruction coefficients (or the filter responses) of the selected

wavelets, by exploiting the sparse coding form of the model. The proposed learn-

ing algorithm identifies important dimensions of variations and generates synthesized

images by moving along these dimensions. It also gives a computational justification

for sparsity as promoting efficient sampling of the resulting statistical model.25

Learning process as a painting process. Figure 1 illustrates the learning process,

which is similar to the way an artist paints a picture by sequentially fleshing out more

and more details. (a) displays the training images. (b) displays the sequence of syn-

thesized images generated by the learned model as more and more wavelets are in-

duced into the random field by the generative boosting process. Each wavelet is like a30

stroke in the painting process. The wavelets are selected from a given dictionary of ori-

ented and elongated Gabor wavelets at a dense collection of locations, orientations and

scales. The dictionary also includes isotropic Difference of Gaussian (DoG) wavelets.

(c) displays the sequence of sketch templates of the learned model where each selected

Gabor wavelet is illustrated by a bar with the same location, orientation and length35

as the corresponding wavelet, and each selected DoG wavelet is illustrated by a circle

(in each sketch template, wavelets of smaller scales appear darker.) (d) displays more
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(a) training images

(b) synthesized images

(c) sketch templates

(d) more synthesized images

Figure 1: Learning process by generative boosting. (a) observed training images (100 × 100 pixels) from

which the random field model is learned. (b) a sequence of synthesized images generated by the learned

model as more and more wavelets are induced into the model. The numbers of the selected wavelets are

1, 20, 65, 100, 200, 500, and 800 respectively. (c) a sequence of sketch templates that illustrate the wavelets

selected from an over-complete dictionary. The dictionary includes 4 scales of Gabor wavelets, illustrated by

bars of different sizes, and 2 scales of Difference of Gaussian (DoG) wavelets, illustrated by circles. In each

template, smaller scale wavelets appear darker than larger ones. (d) more synthesized images independently

generated from the final learned model.
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(a) training images

(b) reconstructed images

(c) residual images

Figure 2: Shared sparse coding after wavelet selection by generative boosting. (a) observed training images.

(b) images reconstructed by the selected wavelets. (c) residual images.

synthesized images generated from the final model.

Figure 1 illustrates the principle of “analysis by synthesis” or “vision = inverse

graphics.” We synthesize images by sampling from the current model, and then select40

the next wavelet that reveals the most conspicuous difference between the synthesized

images and the observed images. As more wavelets are added into the model, the

synthesized images become more similar to the observed images. In other words, the

generative model is endowed with the ability of imagination, which enables it to adjust

its parameters so that its imaginations match the observations in terms of statistical45

properties that the model is concerned with.

Shared sparse coding and flexible composite basis function. The selected wavelets

provide shared sparse coding of the training images, in that all the images can be en-

coded by the same set of selected wavelets, but with different sets of coefficients for

different images (we also allow the selected wavelets to perturb their locations and ori-50

entations when encoding each image). Figure 2 illustrates the idea. (a) displays the

training images. (b) displays the corresponding reconstructed images as linear super-

positions of the selected wavelets. (c) displays the corresponding residual images.
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We may consider the composition of the selected wavelets as a new basis function.

However, this new basis function is flexible or reconfigurable in that the coefficients55

of the constituent wavelets (as well as their locations and orientations) are allowed

to vary according to a probability distribution. If we have a dictionary of such flexible

composite basis functions, it can lead to more efficient representations than the original

base dictionary of wavelets.

In our experiments, we show that the proposed learning and sampling algorithms60

are capable of generating realistic image patterns. For numerical evaluation, we test

our learning algorithm on a dataset for clustering tasks, and compare its performance

with other clustering methods. The clustering experiment shows that the models can

be learned in an unsupervised setting.

Having explained the basic idea, we now give two motivations for our work.65

1.2. Motivation 1: high-level representations of sparse-land

Wavelet sparse coding underlies many successful methods in signal processing,

such as image compression, de-noising, and super-resolution [7] [14]. During the past

two decades, tremendous progress has been made in both algorithm design as well as

theoretical analysis in this interdisciplinary area of research, driven by researchers from70

harmonic analysis, statistics and machine learning. Most of the past activities in this

area are based on the so-called “sparse-land” assumption [7], that is, the signals to be

recovered admit sparse linear representations by an over-complete dictionary of basis

functions, and the signals can be recovered by solving an inverse problem regularized

by a sparsity-inducing norm or penalty function.75

However, beyond generic sparsity, little effort has been made to understand the ob-

jects in the sparse-land: What do these objects look like? Can we find higher level

representations for these objects? An obvious observation is that in the sparse coding

of the objects in the sparse-land, the wavelets do not enter the sparse representations

randomly. Instead, they form various grouping or compositional patterns, and their80

coefficients may also follow certain patterns. The random field models and the gener-

ative boosting method studied in this paper seek to discover and encode such patterns,

and may lead to dictionaries of flexible composite basis functions as mentioned in the
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above subsection.

For natural images, one can learn an over-complete dictionary of basis functions by85

enforcing sparsity [16]. The learned basis functions resemble elongated and oriented

Gabor wavelets at different scales, and they encode ubiquitous simple structures such

as edges. The random field models studied in this paper encode more complex patterns

by selecting and composing wavelets, while allowing their coefficients (as well as lo-

cations and orientations) to vary for flexibility or reconfigurability. Such models can90

be useful for object recognition and scene understanding.

1.3. Motivation 2: generative convolutional neural nets

Recent years have witnessed tremendous successes of the convolutional neural net-

works (ConvNet or CNN) [12] [13]. The CNN is a hierarchical structure that consists

of alternative layers of linear filtering, non-linear rectification and max-pooling (as well95

as sub-sampling). When trained on the imagenet dataset [6] (a large dataset of natural

images), the learned filters at the lowest layer resemble Gabor wavelets, possibly due

to the rectification non-linearity that encourages sparsity.

The random field models studied in this paper can be mapped to the nodes at the

second layer of a CNN, but nodes corresponding to these models are sparsely and selec-100

tively connected to the first layer nodes of Gabor-like filters, so these models are more

explicit and meaningful than the common CNN nodes. More importantly, these models

are generative in that synthesized images can be sampled from the probability distribu-

tions defined by these models. Such models can be trained in an unsupervised setting

by maximum likelihood. In terms of sparse coding discussed in the previous subsec-105

tion, these models represent commonly occurring sparse coding patterns of wavelets,

where sparse activities are hardwired into sparse connectivities. Understanding the

learning of such models may eventually pave the way to learn sparsely connected CNN

in a generative and unsupervised fashion.

2. Past work110

In addition to the research themes mentioned in the Introduction section, the fol-

lowing are the models and methods that are closely related to our work.
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(a) training images

(b) sketch templates

(c) reconstructed images

Figure 3: Shared matching pursuit for the purpose of wavelet selection. (a) training images. (b) sequence

of sketch templates that illustrate the wavelets selected sequentially in order to reconstruct all the training

images simultaneously. See the caption of Figure 1(c) for the explanation of sketch templates. The selected

wavelets are shared by all the training images in their reconstructions. The numbers of selected wavelets in

the sequence are 2, 20, 60, 100, 200, 500, and 800 respectively. (c) sequences of reconstructed images by

the selected wavelets for the 1st and 3rd training images in (a).

2.1. Sparse FRAME model and two-stage learning

The random field model based on wavelets is called the sparse FRAME model in

our previous work [24]. The model is an inhomogeneous and sparsified generalization115

of the original FRAME (Filters, Random field, And Maximum Entropy) model [27]. In

[24] , we developed a two-stage learning algorithm for the sparse FRAME model. The

algorithm consists of the following two stages. Stage 1: selecting a subset of wavelets

from a given dictionary by a shared sparse coding algorithm, such as shared match-

ing pursuit. Stage 2: estimating the parameters of the model by maximum likelihood120

via stochastic gradient ascent where the MCMC sampling is powered by Hamiltonian

Monte Carlo [15]. Figure 3 illustrates the shared matching pursuit algorithm. Again (a)
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displays the training images. (b) displays the sequence of sketch templates that illus-

trate the selected wavelets. (c) displays the sequences of reconstructed images for 2 of

the 5 training images as more and more wavelets are selected by the shared matching125

pursuit.

One conceptual concern with the above two-stage learning algorithm is that the

selection of the wavelets in the first stage is not guided by the log-likelihood, but by

a least squares criterion that is only an approximation to the log-likelihood. In other

words, the first stage seeks to reconstruct the training images by selecting wavelets,130

without any regard for the patterns formed by the coefficients of the selected wavelets.

This paper is a continuation of our previous work on the sparse FRAME model

[24]. Relative to [24], the main contribution of this paper is that we replace the com-

putational core of the original sparse FRAME model with new learning and sampling

algorithms. In the learning algorithm, both the selection of the wavelets and the esti-135

mation of the parameters are guided by the log-likelihood, so the learning algorithm

is a more elegant one-stage algorithm in contrast to the two-stage algorithm in our

previous work [24]. Moreover, in this paper, the sampling of synthesized images is

accomplished by Gibbs sampling that moves the images along the dimensions spanned

by the selected wavelets. We show that Gibbs sampling is less prone to local modes140

than the Hamiltonian Monte Carlo sampler employed in [24].

2.2. Simultaneous or shared sparse coding

The random field model studied in this paper can be written in the form of simul-

taneous sparse coding [2] [19] or shared sparse coding as it was called in our previous

work [24], where the training images can be encoded by a common set of wavelets145

selected from a given dictionary, and the coefficients of the selected wavelets follow

a well-defined probability distribution. In fact, in our previous work [24], we em-

ployed simultaneous or shared sparse coding to select the wavelets before estimating

the parameters of the probability distribution of the image. See Figure 3 for an il-

lustration. Compared to our work, the existing methods on simultaneous sparse cod-150

ing in harmonic analysis literature did not aim to construct probability models for the

wavelet coefficients. As a consequence, they can reconstruct the input images but can-
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not synthesize new images as in our work. From the harmonic analysis perspective,

simultaneous sparse coding may be the entry point to high-level representations of the

sparse-land.155

2.3. Projection pursuit

The generative boosting method studied in this paper can be considered a paramet-

ric and finite version of projection pursuit [9], where the selection of the wavelets is

guided by the log-likelihood of a parametric model, and the wavelets are selected from

a finite over-complete dictionary instead of the infinite set of all possible projections.160

In this sense, our work provides a practical implementation and a vivid illustration of

projection pursuit.

2.4. Epsilon-Boosting

The epsilon-boosting algorithm proposed by Friedman [10] was inspired by ad-

aboost [8]. Its relation with the solution path of the `1 regularized loss function was165

studied by [17]. Epsilon-boosting has mainly been used in discriminative learning,

such as learning boosting tree classifiers [10].

2.5. Generative boosting

The literature on the application of boosting in learning generative models is rela-

tively scarce. The seminal paper [5] proposed a pursuit method for inducing features170

into random fields. Our work can be considered a highly specialized example with a

very different and specialized computational core. Our work can also be considered a

variation of the filter pursuit method of the original FRAME paper [27]. The differ-

ence from [27] is that in our work the selected wavelets are location specific and are

intended for representing object patterns instead of texture patterns.175

[22] proposed to use boosting methods to learn a generalized version of the re-

stricted Boltzmann machine on binary data. They used an approximate MCMC method

for sampling from the current model. In contrast, we develop a Gibbs sampling method

to sample the coefficients of the selected wavelets. Also, [22] was not intended for

learning sparse models or for performing sparse selection from a given dictionary. [20]180
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proposed an interesting theory for combining adaboost [8] and generative sampling for

learning binary features, and demonstrated its applications in various image processing

tasks. The features that we use are not binary, and our sampling and learning methods

are different from [20].

3. Random fields in sparse-land185

The random field models studied in this paper are in the form of Gibbs distribu-

tions whose energy functions are in the form of linear combinations of rectified filter

responses from a set of wavelets. They are called inhomogeneous FRAME (Filters,

Random field, And Maximum Entropy) models in [24] because they are an inhomoge-

neous generalization of the original FRAME model [27]. We first describe the dense190

version of the inhomogeneous FRAME model where all the wavelets in the dictionary

are included. We then describe the sparsified version of the inhomogeneous FRAME

model (called sparse FRAME model in [24] ) where only a subset of wavelets is se-

lected from the dictionary.

3.1. Dense random field195

Following the notation of the inhomogeneous FRAME model [24], let I be an im-

age defined on the rectangular domain D. Let Bx,s,α denote a basis function such

as a Gabor wavelet (or difference of Gaussian (DoG) filter) centered at pixel x (a

two-dimensional vector) and tuned to scale s and orientation α. We discretize both

s and α so that they take values in finite sets. In our current implementation, α is

discretized into 16 equally spaced orientations. Given a dictionary of wavelets or filter

bank {Bx,s,α,∀x, s, α}, the dense version of the random field model is of the following

form

p(I;λ) =
1

Z(λ)
exp

(∑
x,s,α

λx,s,αh(〈I, Bx,s,α〉)

)
q(I), (1)

which is a Markov random field model because the Bx,s,α are localized. The model

is also a Gibbs distribution, an exponential family model, a log-linear model, or an

energy-based model, as it is called in different contexts.
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In model (1), 〈I, Bx,s,α〉 is the inner product between I and Bx,s,α, and it is called

the filter response of I to the wavelet Bx,s,α. h() is a non-linear rectification function,200

such as a piecewise linear function. In this paper, we adopt the choice h(r) = |r|,

which is sometimes called full-wave rectification. Another choice is h(r) = max(0, r),

which is sometimes called half-wave rectification. A more elaborate version is h(r) =

max(0, r − t) where t is a threshold. This h() is also called the rectified linear unit in

the machine learning literature [12].205

In (1), λ = (λx,s,α,∀x, s, α) are the weight parameters to be estimated from the

training images. Z(λ) is the normalizing constant. q(I) is a white noise reference

distribution whose pixel values follow independent N(0, σ2) distributions, so

q(I) =
1

(2πσ2)|D|/2
exp

(
− 1

2σ2
||I||2

)
, (2)

where ‖I‖ is the `2 norm of I, and |D| denotes the number of pixels in the image

domain D. In this paper, we fix σ2 = 1. We normalize the training images to have

marginal mean 0 and a fixed marginal variance (e.g., 10). For the choice h(r) =

|r|, if λx,s,α > 0, then the model encourages large magnitude of the filter response

〈I, Bx,s,α〉, regardless of its sign. This is often appropriate if we want to model object210

shape patterns.

Maximum likelihood learning by stochastic gradient. The basic learning algorithm

estimates the unknown parameters λ from a set of aligned training images {Im,m =

1, ...,M} that come from the same object category, where M is the total number of

training images. This basic algorithm can then be generalized to learn multiple models

from non-aligned images sampled from multiple categories by an EM-like algorithm. It

can be further generalized to learn a codebook of models from non-aligned images. In

the basic learning algorithm, the weight parameters λ can be estimated by maximizing

the log-likelihood function

L(λ) =
1

M

M∑
m=1

log p(Im;λ), (3)

whose partial derivatives are

∂L(λ)

∂λx,s,α
=

1

M

M∑
m=1

|〈Im, Bx,s,α〉| − Eλ [|〈I, Bx,s,α〉|] , (4)
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where Eλ denotes expectation with respect to p(I;λ), and it can be approximated by

Monte Carlo integration. Thus λ can be computed by the stochastic gradient ascent

algorithm [25]

λ(t+1)
x,s,α = λ(t)

x,s,α + γt

(
1

M

M∑
m=1

|〈Im, Bx,s,α〉| −
1

M̃

M̃∑
m=1

|〈Ĩm, Bx,s,α〉|

)
, (5)

where γt is the step size or learning rate, {Ĩm} are the synthesized images sampled

from p(I;λ(t)) using MCMC. M̃ is the total number of independent parallel Markov

chains that sample from p(I;λ(t)). The parameter learning follows the “analysis by

synthesis” principle, which iteratively synthesizes images from the current model and215

updates the weight parameters until the statistical properties of the synthesized images

match those of the observed images.

Writing the model as p(I;λ) ∝ exp(−U(I)), where the energy function

U(I) = −
∑
x,s,α

λx,s,α|〈I, Bx,s,α〉|+
1

2σ2
‖I‖2, (6)

the Hamiltonian Monte Carlo (HMC) algorithm [15] is used by [24] to sample from

p(I;λ), which involves computing U ′(I).

Normalizing constant. The learning of the model also involves the estimation of

the normalizing constant, which plays an important role in fitting the mixture models

or in unsupervised learning, even though it is not required for estimating λ and syn-

thesizing images. The ratio of the normalizing constants at two consecutive steps is

approximated by

Z(λ(t+1))

Z(λ(t))
≈ 1

M̃

M̃∑
m=1

[
exp

( ∑
x,s,α

(λ(t+1)
x,s,α − λ(t)

x,s,α)× |〈Ĩm, Bx,s,α〉|
)]
. (7)

Starting form λ(0) = 0 and logZ(λ(0)) = 0, logZ(λ(t)) can be computed along the220

learning process.

3.2. Sparse random field model for images in sparse-land

The dense random field model (1) can be sparsified so that only a small number

of λx,s,α are non-zero, i.e., only a small subset of wavelets is selected from the given
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dictionary. This leads to the following sparse random field model [24]:225

p(I;B, λ) =
1

Z(λ)
exp

(
n∑
i=1

λi|〈I, Bxi,si,αi〉|

)
q(I), (8)

where B = (Bxi,si,αi
, i = 1, ..., n) are the n wavelets selected from the given dic-

tionary, and λ = (λi, i = 1, ..., n) are the corresponding weight parameters. Random

fields like (8) generate images that belong to the sparse-land. This point will be made

explicit in Section 5.1.

Writing the model as p(I;B, λ) ∝ exp(−U(I)), then

U(I) = −
n∑
i=1

λi|〈I, Bxi,si,αi
〉|+ 1

2σ2
‖I‖2. (9)

U(I) is piecewise quadratic, or the model is piecewise Gaussian. There are 2n pieces230

according to the sign patterns of the responses (〈I, Bxi,si,αi
〉, i = 1, ..., n).

In the above model, n is assumed given (e.g., n = 200), although it can be chosen

adaptively by some information criteria. The dictionary of wavelets is also assumed

given. Otherwise it can be learned from training images by sparse coding [16]. The

selected wavelets can also be re-learned as unknown parameters of the model by max-235

imum likelihood via stochastic gradient.

4. Generative boosting for inducing wavelets into random field

For notational simplicity, we use the form of the dense model in equation (1), but

we assume λ = (λx,s,α,∀x, s, α) is a sparse vector, i.e., only a small number of λx,s,α

are non-zero. In the context of variable selection, the epsilon-boosting algorithm [10]240

is similar to coordinate ascent except that it only takes a small step size (thus the word

“epsilon” in “epsilon-boosting”) to update the coordinate. In fitting the model (1), the

algorithm starts from λ = 0, the zero vector. Then the generative boosting algorithm

updates the weight parameters λ based on the Monte Carlo estimation of the gradient of

the log-likelihood, L′(λ). However, unlike the updating scheme in equations (5) where245

all the weight parameters are adjusted according to the gradient, generative epsilon-

boosting only chooses to update the particular weight parameter that corresponds to

the maximal coordinate of the gradient.
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Specifically, at the t-th step, let

D(x, s, α) =
1

M

M∑
m=1

max
∆x,∆α

|〈Im, Bx+∆x,s,α+∆α〉| −
1

M̃

M̃∑
m=1

|〈Ĩm, Bx,s,α〉|, (10)

where (∆x,∆α) are the perturbations of the location and orientation of the basis func-250

tion Bx,s,α. The perturbations are introduced to account for shape deformations in

the observed images, and they can take values within some small ranges. In our cur-

rent implementation, the magnitude of ∆x is up to 2 or 3 pixels, and ∆α is within

{−π/16, 0, π/16}. The local max pooling is only applied to the observed images to

filter out shape deformations, and we assume p(I;λ) models the images prior to shape255

deformations. So p(I;λ) is a deformable template, and there is an explicit separation

between appearance and shape variations in the model.

We select

(x̂, ŝ, α̂) = arg max
x,s,α

D(x, s, α), (11)

and update λx̂,ŝ,α̂ by

λx̂,ŝ,α̂ ← λx̂,ŝ,α̂ + γtD(x̂, ŝ, α̂), (12)

where γt is the step size, assumed to be a sufficiently small value. The selected wavelet260

Bx̂,ŝ,α̂ reveals the dimension along which the current model is most conspicuously

lacking in reproducing the statistical properties of the training images. By including

Bx̂,ŝ,α̂ into the model and updating the corresponding parameter λx̂,ŝ,α̂, the model

receives the most needed boost. In terms of the painting analogy, Bx̂,ŝ,α̂ is the stroke

that is most needed to make the painting look more similar to the observed objects.265

The epsilon-boosting algorithm has an interesting relationship with the `1 regu-

larization in the Lasso [18] and basis pursuit [3]. As pointed out by [17], under a

monotonicity condition (e.g., the components of λ keep increasing), such an algorithm

approximately traces the solution path of the `1 regularized minimization problem:

− 1

M

M∑
m=1

log p(Im;λ) + ρ‖λ‖`1 , (13)

where the regularization parameter ρ starts from a big value so that all the components270
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(a) observed images

(b) synthesized images

(c) sketch templates

Figure 4: Learning sequence by generative epsilon-boosting. (a) some of the training images. (b) synthesized

images (100 × 80) are generated when the number of selected wavelets = 20, 60, 100, 200, 400, 600, and

700. (c) corresponding sketch templates.

of λ are zero, and gradually lowers itself to allow more components to be non-zero so

that more wavelets are induced into the model.

Algorithm (1) gives the details of the algorithm. In parameter updating, we update

the weight parameters of all the selected wavelets for the sake of computational effi-

ciency. It is possible that a wavelet can be selected more than once in the boosting275

process (as well as the shared matching pursuit process in [24]), so the actual number

of distinct wavelets selected can be slightly less than the number of selected wavelets

(or more precisely the number of selection operations) reported in the paper.

Figures 4 and 5 illustrate the learning process by displaying the synthesized im-

ages generated by the learned model as more and more wavelets are included. The280

corresponding sketch templates are also displayed.

Shared sparse coding. The observed images {Im,∀m} can be encoded using the
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Algorithm 1 Learning algorithm
Input:

(1) training images {Im,m = 1, ...,M}

(2) number of wavelets to be selected n

Output:

(1) set of selected wavelets B = {Bxi,si,αi , i = 1, ..., n}

(2) set of associated parameters λ = {λi, i = 1, ..., n}

(3) logarithm of normalizing constant logZ(λ).

1: Let B← φ, λ← 0, logZ(λ(0)) = 0, and t = 0

2: Initialize Ĩm as Gaussian white noise images

3: Calculate observed statistics:

Hobs
x,s,α ← 1

M

∑M
m=1 max∆x,∆α |〈Im, Bx+∆x,s,α+∆α〉|, ∀x, s, α

4: repeat

5: Generate {Ĩm,m = 1, ..., M̃} from p(I;B(t), λ(t)) by the Gibbs sampler in

Algorithm (2)

6: Calculate synthesized statistics:

Hsyn
x,s,α ← 1

M̃

∑M̃
m=1 |〈Ĩm, Bx,s,α〉|,∀x, s, α

7: Select (x̂, ŝ, α̂) = arg maxx,s,α(Hobs
x,s,α −Hsyn

x,s,α)

8: B(t+1) ← B(t) ∪ {Bx̂,ŝ,α̂}

9: Update λ(t+1)
i ← λ

(t)
i + γt(H

obs
i −Hsyn

i ), i = 1, ..., |B(t+1)|.

10: Compute Z ratio Z(λ(t+1))
Z(λ(t))

by Eq. (7)

11: Update logZ(λ(t+1))← logZ(λ(t)) + log Z(λ(t+1))
Z(λ(t))

12: t← t+ 1

13: until |B(t)| = n (|B| denotes the number of distinct wavelets in B)
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(a) observed images

(b) synthesized images

(c) sketch templates

Figure 5: (a) some of the training images. (b) synthesized images (100 × 100) are generated when the

number of selected wavelets = 20, 60, 100, 200, 400, and 700. (c) sketch templates.

selected wavelets {Bxi,si,αi , i = 1, ..., n} by

Im =

n∑
i=1

cm,iBxi+∆xm,i,si,αi+∆αm,i
+ εm, (14)

where (∆xm,i,∆αm,i) are the perturbations of the location and orientation of the i-

th wavelets Bxi,si,αi on the m-th training image Im. cm,i are the coefficients of the285

selected wavelets for encoding Im. We call (14) shared sparse coding because the

selected wavelets are shared by all the observed images. See Figure 2 in Section 1.1

for an illustration.

Correspondence to CNN. The filer bank {Bx,s,α,∀x, s, α} can be mapped to the

first layer of Gabor-like filters of a CNN. The max∆x,∆α operations correspond to the290

max pooling layer. Each sparse random field model (8) can be mapped to a node in

the second layer of a CNN, where each second layer node is sparsely and selectively

connected to the nodes of the first layer, with λi being the connection weights. The

generative boosting algorithm is used to sparsely wire the connections. − logZ(λ) can

be mapped to the bias term of the second-layer node.295
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5. Gibbs sampler on wavelets coefficients

In order to power the generative boosting algorithm, we need to sample from the

currently learned model. In this section, we develop a Gibbs sampling algorithm that

generates the synthesized images by exploiting the generative form of the model.

5.1. Wavelet sparse coding300

The sparse model in equation (8) is in the form of a Markov random field model

where the selected wavelets serve as filters. It can also be translated into a generative

model where the selected wavelets serve as linear basis functions. Specifically, given

the selected wavelets or basis functions B = (Bi = Bxi,si,αi
, i = 1, ..., n), we can

represent the image I by

I =

n∑
i=1

ciBxi,si,αi
+ ε, (15)

where ci are the least squares reconstruction coefficients, and ε is the residual image

after we project I onto the subspace spanned by B. Note that C = (ci, i = 1, ..., n) is

a deterministic transformation of I given B. Specifically, we can write I, Bi, as well

as C as column vectors, so that B = (Bi, i = 1, ..., n) is a matrix. Then C is the least

squares regression coefficients of I on B, i.e., C = (B>B)−1B>I.305

It can be shown that under the model p(I;B, λ) in (8), the distribution of C is

pC(C;λ) =
1

Z(λ)
exp

(
〈λ, |B>BC|〉

)
qC(C), (16)

where for a vector v, the notation |v| denotes the vector obtained by taking the absolute

value of each element of v. In equation (16),

qC(C) =
1

(2πσ2)n/2
exp

(
− 1

2σ2
(C>(B>B)C)

)
|B>B|1/2 (17)

is a multivariate Gaussian distribution, i.e., under qC(C), C ∼ N(0, σ2(B>B)−1).

Moreover, under p(I;B, λ) in (8), C and ε are independent of each other. Specifically,

ε is the Gaussian white noise image (following q(I)) subtracted by its least squares

projection on B.

The appendix gives a detailed derivation of pC(C). The basic idea is quite sim-310

ple. Under q(I), C and ε are independent of each other since they are obtained by
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the projections of I on B and the remaining dimensions that are orthogonal to B re-

spectively. The change from q(I) to p(I;B, λ) only involves the projection of I on

B, thus under p(I;B, λ), only the distribution of C is changed from qC(C), which is

N(0, σ2(B>B)−1), to pC(C;λ), while the distribution of ε remains the same as that315

under q(I), and C and ε remain independent.

Thus in order to generate an image from p(I;B, λ), we can generate C from

pC(C;λ) using the Gibbs sampler. Then we get the synthesized image according to

(15). To generate ε, we can first generate each of its component from N(0, σ2) inde-

pendently. Then we project ε onto B, and take the remainder as the noise term ε to320

be added to BC =
∑n
i=1 ciBi in (15). We can also just keep I =

∑n
i=1 ciBi as the

synthesized image while discarding the noise ε. In this article, the synthesized images

that we show are such noiseless versions. We can use the noiseless synthesized images

for learning λ or selecting the next wavelet in generative boosting.

The distribution pC(C) is also a Markov random field. ci and cj (i 6= j) are neigh-325

bors if the corresponding wavelets Bi and Bj have non-zero inner product 〈Bi, Bj〉.

The conditional distribution of ci given all the other components, denoted as c−i, only

depends on those cj that are neighbors of ci.

Note that if B>B = In, i.e., the selected wavelets are orthogonal, then ci =

〈I, Bi〉, and all the components of C are independent of each other. If the selected330

wavelets are not heavily correlated, then the coefficients are weakly dependent, and the

Gibbs sampling of C is expected to be fast mixing.

5.2. Moving along basis vectors

For Gibbs sampling of C ∼ pC(C;λ), an equivalent but simpler way of updating

the i-th component is by first sampling from p(di) ∝ p(I + diBi;B, λ), and letting335

ci ← ci + di, and I ← I + diBi, where di is a scalar increment of ci. The change

from I to I + diBi is a move along the basis vector Bi, and it only changes ci while

keeping the other coefficients fixed. This is because (ci, i = 1, ..., n) are least squares

reconstruction coefficients, so the diBi term will be perfectly accounted for by adding

di to ci without changing the least squares reconstruction error. So this scheme im-340

plements the same move as an update in the Gibbs sampler. See the appendix for a
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Algorithm 2 Sampling algorithm
Input:

(1) set of selected wavelets B = {Bxi,si,αi , i = 1, ..., n}

(2) set of parameters λ = {λi, i = 1, ..., n}

(3) number of sweeps K

Output:

a synthesized image Ĩ from p(I;B, λ)

1: Initialize Ĩ as Gaussian white noise image

2: repeat

3: Randomly pick Bi

4: Sample di from p(Ĩ + diBi)

5: Update Ĩ← Ĩ + diBi

6: until K sweeps (each sweep has n updates)

detailed justification of the equivalence between this scheme and the Gibbs sampler.

The algorithm is presented in Algorithm (2). In sampling di, we discretize it into a

finite number of equally spaced values. Such a scheme was used in [26] for the original

FRAME model, but their method does not correspond to a Gibbs sampler on wavelet345

coefficients. We maintain M̃ parallel chains for sampling Ĩm, m = 1, ..., M̃ .

The sampling algorithm is a natural match to the learning algorithm. Each iter-

ation of the generative boosting learning algorithm selects a wavelet and updates the

associated weight parameter. The sampling algorithm then moves the image along the

selected dimension as well as existing dimensions.350

5.3. Gibbs sampling of filter responses

The Gibbs sampling can also be applied to the filter responses (ri = 〈I, Bxi,si,αi〉, i =

1, ..., n). Let R = (ri, i = 1, ..., n). Writing I, Bi and R as column vectors, it follows

that R = B>I. The distribution of R under q(I) is qR(R), which is N(0, σ2B>B).

Under the change from q(I) to p(I;B, λ), the distribution of R is changed from qR(R)355
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to pR(R;λ), which is

pR(R;λ) =
1

Z(λ)
exp

(
〈λ, |R|〉 − 1

2σ2
R>(B>B)−1R

)
. (18)

The above is a piecewise Gaussian distribution. There are 2n pieces, corresponding to

the 2n combinations of the signs of (ri, i = 1, ..., n). Let A = (aij)n×n = (B>B)−1.

The conditional distribution of ri given the other components, denoted as r−i, is

pR(ri|r−i) ∝ exp

λi|ri| − 1

2σ2

(
aiir

2
i + 2ri

∑
j 6=i

aijrj
) , (19)

which is piecewise Gaussian and consists of a positive piece and a negative piece. The360

appendix gives details on how to sample from this piecewise Gaussian distribution. Af-

ter sampling R, the synthesized image can be obtained by least squares reconstruction

I = BC, where the least squares reconstruction coefficients C = (B>B)−1R. In our

current Matlab implementation, with 500 wavelet selected, it takes less than 0.2 second

for one sweep of the Gibbs sampling of filter responses for a total of 36 parallel chains.365

In Gibbs sampling of the reconstruction coefficients or filter responses, we update

one coefficient or one response at each step. It is possible to update multiple coeffi-

cients or responses of highly correlated wavelets together, albeit at a higher computa-

tional cost.

6. Experiments370

6.1. Qualitative experiments

Figure 6 displays some images generated by the sparse random field models, which

are learned by the generative epsilon-boosting algorithm from roughly aligned images.

The proposed learning algorithm is capable of modeling a wide variety of image pat-

terns, including highly textured patterns such as cheetah and falcon. The dictionary375

consists of 4 scales of Gabor wavelets and 2 scales of Difference of Gaussian (DoG)

wavelets. We use 36 parallel chains to sample images from the learned models.

6.2. Mixing of sampling algorithm

We evaluate the mixing of the Gibbs sampling on wavelet coefficients by running

M̃ = 100 parallel chains that sample from the fitted model p(I;B, λ) in (8) learned380
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Figure 6: Images generated by the sparse random field models learned from images of different categories

of objects. Typical sizes of the images are 100× 100. Typical number of training images for each category

is around 5. Number of the selected wavelets is 700.
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from cat images, where B = (Bi, i = 1, ..., n) are the selected wavelets. These chains

start from independent white noise images. Let Ĩm,t be the image of chain m produced

at iteration t, where each iteration is a sweep of the Gibbs sampler with random scan.

Let rm,t,i = 〈Ĩm,t, Bi〉 be the response of the synthesized image Ĩm,t to Bi. Let

Rt,i = (rm,t,i,m = 1, ..., M̃) be the M̃ dimensional vector. Fix t = 100, let ρk,i be385

the correlation between vectors Rt,i and Rt+k,i. Then ρk =
∑n
i=1 ρk,i/n measures

the average auto-correlation of lag k, and is an indicator of how well the parallel chains

are mixing. As a comparison, we also compute ρk for the Hamiltonian Monte Carlo

(HMC) sampler employed in our previous work [24], where each iteration consists of

30 leapfrog steps. Figure 7 plots ρk for k = 1, ..., 20, and for n = 10, 50, 100, 300390

respectively, where each plot corresponds a particular n. Because of the rectification

function |〈I, Bxi,si,αi
〉| in model (8), the model can be highly multi-modal. It seems

that HMC can be easily trapped in the local modes, whereas the Gibbs sampler is less

prone to the trapping of local modes. It is highly desirable to have a MCMC scheme

that can traverse the local modes easily.395

6.3. Local normalization and multiple selection

For the sake of recognition and detection accuracy, it is often desirable to perform

some transformations of filter responses 〈I, Bx,s,α〉 on the observed images, so that

the marginal distributions of the filter responses are closer to those produced by the

Gaussian white noise model q(I), which is used as the reference distribution or the400

background model. One type of transformation is local normalization:

〈I, Bx,s,α〉 →
〈I, Bx,s,α〉(∑

x′∈Ns(x)

∑
α〈I, Bx′,s,α〉2/N

)1/2
, (20)

whereNs(x) is a local squared window centered at x. The size ofNs(x) is proportional

to the scale s. N is the total number of wavelets whose centers are within Ns(x) and

whose scales are s. The local normalization amounts to whitening the original images,

and it tends to enhance the high frequency content of the original images. We can learn405

the model by matching the statistical properties of the synthesized images (without

local normalization) to those of the observed images with local normalization. The
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Figure 7: Comparison of auto-correlation between the Gibbs sampling method and the HMC sampling

method. The number of selected wavelets varies from n = 10, 50, 100, 300.

synthesized images tend to have more prominent high frequency content, similar to the

engraving style. The learned model is thus a model of the whitened versions of the

training images. In our current implementation, the size of Ns(x) is about twice the410

size of the support of the filter Bx,s,α.

To speed up the generative boosting algorithm, we may select multiple wavelets

in each step. Specifically, we may divide the rectangular image domain into k × k

cells of equal sizes. Then in each step, we can select one wavelet within each cell by

maximizing D(x, s, α) in equation (10) over (x, s, α) within each cell, provided that415

the maximum in the cell is above a pre-specified threshold. This enables us to select

up to k2 wavelets within each iteration, thus accelerating the learning algorithm at the

cost of the precision or optimality of the selection.
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Figure 8: Learning from non-aligned images. Objects appear at different locations, scales and orientations

in the training images. In each of the 2 experiments, the first image is the synthesized image generated from

the learned model (local normalization of filter responses of the observed images is used, so the synthesized

images have more prominent high frequency content). The rest of the images are some examples of training

images and the bounding boxes indicate the inferred locations, scales and orientations of the objects. Lion

experiment: each model has 500 wavelets, learned from 12 images. Flower experiment: each model has 500

wavelets, learned from 9 images. The sizes of templates are 100 × 100.

6.4. Learning from non-aligned images

The model can be learned from non-aligned images by iterating the following two420

steps: (1) detecting objects in the training images based on the current model. (2)

re-learning the model from the detected image patches.

Figure 8 shows two experiments of learning from non-aligned images. We initialize

the algorithm by randomly assigning an initial bounding box to each training image.

The template size is 100 × 100. In detection, we search over 8 different resolutions425

of the images and 11 different orientations. The detected image patches are cropped

from the optimal resolution for re-learning. The algorithm is run for 8 iterations. Each

model has 500 wavelets. We use multiple selection in this experiment with 5× 5 cells.

6.5. Learning mixture models for clustering tasks

We evaluate our learning algorithm on clustering tasks by fitting mixture models430

of sparse random field models using an EM-like algorithm. The algorithm iterates

the following two steps: (1) classifying images into different clusters based on the

current models of the clusters, (2) re-learning the model of each cluster from images
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Table 1: Comparison of conditional purity and conditional entropy among sparse random field model learned

by generative boosting, active basis model, two-step EM, and k-means with HOG on 12 clustering tasks.

(Numbers in bold font indicate the best performances.)

(a) Conditional purity

Tasks (]clusters) ours active basis two-step EM k-means + HOG

bull/cow (2) 0.8867 ± 0.1981 0.6667 ± 0.1269 0.8733 ± 0.0596 0.7600 ± 0.1690

cup/teapot (2) 0.9067 ± 0.0983 0.7867 ± 0.1346 0.8200 ± 0.1325 0.6400 ± 0.0925

plane/helicopter (2) 0.9733 ± 0.0365 0.9600 ± 0.0365 0.7133 ± 0.1386 0.7933 ± 0.1722

camel/elephant/deer (3) 0.9200 ± 0.1419 0.7289 ± 0.1519 0.7202 ± 0.1183 0.8000 ± 0.0861

clocks (3) 0.9822 ± 0.0099 0.6578 ± 0.0810 0.8578 ± 0.1375 0.8400 ± 0.1337

seagull/swan/eagle (3) 1.0000 ± 0.0000 0.8355 ± 0.1504 0.8000 ± 0.1728 0.9333 ± 0.1491

eye/mouth/ear/nose (4) 0.8500 ± 0.1369 0.8300 ± 0.1244 0.7734 ± 0.1146 0.8067 ± 0.1090

flowers (4) 0.9200 ± 0.0960 0.9033 ± 0.1120 0.7300 ± 0.0570 0.7800 ± 0.0681

PC components (4) 0.9533 ± 0.1043 0.9233 ± 0.1084 0.8500 ± 0.1296 0.8400 ± 0.1234

animal faces (5) 0.8827 ± 0.0861 0.7973 ± 0.0808 0.8693 ± 0.1013 0.7147 ± 0.1474

musical instruments (5) 0.9227 ± 0.1060 0.8880 ± 0.1134 0.7573 ± 0.1048 0.7840 ± 0.0614

animal bodies (5) 0.8800 ± 0.0869 0.8053 ± 0.1057 0.8133 ± 0.1015 0.7680 ± 0.0746

Average 0.9231 ± 0.0917 0.8152 ± 0.1105 0.7981 ± 0.1140 0.7883 ± 0.1155

(b) Conditional entropy

Tasks (]clusters) ours active basis two-step EM k-means + HOG

bull/cow (2) 0.2130 ± 0.2726 0.5846 ± 0.1368 0.3451 ± 0.1273 0.4786 ± 0.1903

cup/teapot (2) 0.2457 ± 0.1850 0.4534 ± 0.2267 0.4040 ± 0.1823 0.6355 ± 0.0791

plane/helicopter (2) 0.0821 ± 0.1124 0.1390 ± 0.1152 0.5296 ± 0.1383 0.4337 ± 0.1714

camel/elephant/deer (3) 0.1773 ± 0.2596 0.5941 ± 0.2816 0.5935 ± 0.1625 0.4914 ± 0.1265

clocks (3) 0.0665 ± 0.0372 0.6581 ± 0.0770 0.3022 ± 0.2105 0.3327 ± 0.1791

seagull/swan/eagle (3) 0.0000 ± 0.0000 0.2595 ± 0.2373 0.3548 ± 0.2886 0.0924 ± 0.2067

eye/mouth/ear/nose (4) 0.2080 ± 0.1898 0.3211 ± 0.1390 0.4208 ± 0.2267 0.2724 ± 0.1527

flowers (4) 0.1625 ± 0.1391 0.1758 ± 0.1561 0.5521 ± 0.0564 0.5189 ± 0.1129

PC components (4) 0.0669 ± 0.1497 0.1693 ± 0.1881 0.2804 ± 0.2314 0.2649 ± 0.1586

animal faces (5) 0.2859 ± 0.1608 0.4472 ± 0.1655 0.3013 ± 0.1656 0.5155 ± 0.2156

musical instruments (5) 0.1121 ± 0.1535 0.2249 ± 0.1960 0.4861 ± 0.1313 0.3866 ± 0.1135

animal bodies (5) 0.2902 ± 0.1517 0.3537 ± 0.1414 0.4586 ± 0.1670 0.4772 ± 0.1372

Average 0.1592 ± 0.1510 0.3651 ± 0.1717 0.4190 ± 0.1740 0.4083 ± 0.1536
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classified into this cluster. We also allow the objects to appear at unknown locations

and orientations in the images. Therefore, this is an unsupervised learning task.435

We compare our method with (a) the active basis model [23], (b) two-step EM [1],

(c) k-means with HoG features [4].

We collect a dataset that consists of 12 clustering tasks. In each task, each cluster

includes 15 images. The numbers of clusters vary from 2 to 5 and are assumed known

in these tasks. The image ground-truth category labels are provided and assumed un-440

known to the algorithm, and they are used in evaluating the clustering accuracies. To

quantize the clustering accuracies, we use two metrics: conditional purity and condi-

tional entropy [21]. Given the true category label x and the inferred category label y

of an image, the conditional purity is defined as
∑
y p(y) maxx p(x|y), and the condi-

tional entropy is
∑
y p(y)

∑
x p(x|y) log(1/p(x/y)), where both p(y) and p(x|y) are445

estimated from the training data. A better clustering algorithm would expect higher

purity and lower entropy.

We fit a mixture of sparse models. M̃ = 100 chains of sampled images are gen-

erated to estimate the parameters and normalizing constants. Typical template sizes

are 100 × 100. The typical number of wavelets for each template is 600 or 700. We450

use multiple selection in this experiment with 5× 5 cells. The dictionary consists of 3

scales of Gabor wavelets but no DoG wavelets in this experiment.

Table 1 shows the average clustering accuracies and standard errors based on 5

repetitions for 12 clustering tasks. The results show that our method performs better

than other methods. Figure 9 illustrates one task of clustering animal heads. It displays455

one example image in each of the 5 categories. It also displays synthesized images

generated by the learned sparse models. We use local normalization in this experiment,

so the synthesized images emphasize high frequency content.

6.6. Comparison with two-stage learning

A two-stage learning algorithm was proposed in our previous work [24] to train the460

sparse model by taking advantage of the shared sparse coding model (14).

(1) In the first stage, a simultaneous or shared sparse coding scheme is used to

select B = (Bxi,si,αi
, i = 1, ..., n) by simultaneously reconstructing all the observed
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(a) observed images

(b) synthesized images

Figure 9: Unsupervised learning of mixture of sparse models. (a) displays one training image for each cluster.

(b) displays one synthesized image generated by the model learned for each cluster (local normalization

of filter responses of the observed images is used, so the synthesized images have more prominent high

frequency content). The sizes of the images are 100 × 100. The number of images within each cluster is 15.

The number of clusters is 5. The number of selected wavelets is 700.

images. The selection is accomplished by minimizing the least squares reconstruction

error for all the training images465

M∑
m=1

‖Im −
n∑
i=1

cm,iBxi+∆xm,i,si,αi+∆αm,i‖2. (21)

The minimization of (21) can be accomplished by a shared matching pursuit algorithm,

which sequentially adds wavelets to reduce the above reconstruction error. Figure 3 in

Section 2.1 illustrates the basic idea. It corresponds to a boosting algorithm whose

objective function is (21) instead of the log-likelihood.

(2) After selecting B = (Bxi,si,αi
, i = 1, ..., n), the second stage estimates λi by470

maximum likelihood using the stochastic gradient ascent algorithm as in equation (5).

To compare the generative boosting algorithm with the above two-stage algorithm

based on shared matching pursuit, we conduct two experiments that compare the two

methods using two criteria.

Approximation error. The sparse model (8) is a sparsified version of the dense475

model (1). The quantity D(x, s, α) in equation (10) measures the discrepancy between

the fitted model and the observed data as far as the wavelet Bx,s,α is concerned. We

can compute the average of |D(x, s, α)| over all x, s, α as an overall measure of dis-
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crepancy or approximation error. The left panel of Figure 10 plots the approximation

error versus the number of wavelets selected for the generative boosting method and480

the shared matching pursuit method respectively for learning from the cat images. It

can be seen that generative boosting leads to a faster reduction of the approximation

error.

Selection accuracy. In this experiment, we use a pre-defined model with known

B = (Bi = Bxi,si,αi , i = 1, ..., n) and λ = (λi, i = 1, ..., n) as the true model to485

generate training images so that we know the ground truth. The pre-defined model

has the shape of a square, and we allow some overlap between the wavelets Bi that

make up the shape of the square. We use n = 16 wavelets in this experiment, and we

generate M = 36 training images, assuming that all λi are equal for simplicity. Let

B̂ = (B̂i, i = 1, ..., n) be the selected wavelets learned from the training images, where490

n is assumed known. We use the correlation between
∑n
i=1Bi and

∑n
i=1 B̂i as the

measure of accuracy of recovering the true wavelets. The right panel of Figure 10 plots

the selection accuracy versus typical values of λi for generative boosting and shared

matching pursuit. The accuracy is computed by averaging over 10 repetitions. It can

been seen that generative boosting is consistently more accurate than shared matching495
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pursuit. In this experiment, we use the Gibbs sampling of filter responses, and the

wavelet selection is based on the noiseless synthesized images. Before selecting each

new wavelet, we estimate the parameters of the current model by maximum likelihood.

7. Conclusion

Much success has been gained by researchers in harmonic analysis and other fields500

by exploiting generic sparsity via regularization. Yet little progress has been made on

representing and learning specific sparsity patterns. The sparse random field model

studied in this paper is a candidate for such a representation. This paper provides a

computational core for sampling from and learning such a model.

The learned models can be mapped to the second-layer nodes of CNN that are505

sparsely connected to the first layer nodes of Gabor-like filters. Both the sparse con-

nections and the generative nature of the learned models make them more explicit and

meaningful than common CNN nodes.

The mixture model experiments show that the models can be learned in an unsu-

pervised fashion. It may be possible to extend the model to a multi-layer convolutional510

structure with sparse connections learned by generative boosting. Such a multi-layer

model may lead to high-level representations of sparse-land that go beyond linear basis

functions or wavelets.

Reproducibility

http://www.stat.ucla.edu/˜jxie/GenerativeBoosting.html The page515

contains the datasets and matlab/C code for producing the experimental results pre-

sented in this paper.
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Appendix

Technical details on wavelet sparse coding

For notational simplicity, we use Bi to denote Bxi,si,αi
. For the sparse model, the525

number of selected wavelets, n� |D|, the number of pixels in image domain D. Let I

andBi be |D|×1 vectors. For the |D|×nmatrix B = (B1, ..., Bn), we can construct a

|D|× (|D|−n) complementary matrix B̄ = (B̄n+1, ..., B̄|D|), so that B̄>B̄ = I|D|−n,

the |D| − n dimensional identity matrix, and B̄>B = 0, the zero matrix. That is, the

column vectors in B̄ are orthonormal, and they are orthogonal to the column vectors in530

B. We shall make B̄ implicit in the end.

Now let B̃ = (B, B̄) be the |D| × |D| squared matrix. Then we can write

I =

n∑
i=1

ciBi +

|D|∑
i=n+1

c̄iB̄i = BC + B̄C̄ = B̃C̃, (22)

where C = (ci, i = 1, ..., n) is the n× 1 vector, and C̄ = (c̄i, i = n+ 1, ..., |D|) is the

(|D| − n)× 1 vector, and C̃ = (C, C̄) is the |D| × 1 vector. C̃ = B̃−1I. C is the least

squares regression coefficients of I on B, i.e., C = (B>B)−1B>I = (B>B)−1R,

where R = B>I, i.e., R = (ri, i = 1, ..., n) and ri = 〈I, Bi〉 is the filter response.535

C̄ = B̄>I. Let ε = B̄C̄, we can write I =
∑n
i=1 ciBi + ε, where ε is the residual

image after we project I onto the subspace spanned by B.

The distribution p(I;B, λ) in (8) induces a joint distribution pC̃(C̃) via the trans-

formation I = B̃C̃, or C̃ = B̃−1I. We shall show that under pC̃(C̃), C ∼ pC(C;λ)

and C̄ ∼ pC̄(C̄) are independent of each other. In fact, pC̄(C̄) is Gaussian white noise,540

and ε = B̄C̄ is Gaussian white noise projected onto B̄.

Specifically, we can write the original model (8) in matrix notation

p(I;λ) =
1

Z(λ)
exp

(
〈λ, |B>I|〉

)
q(I), (23)

where for a vector v, |v| is a vector of the same dimension where we take absolute

values element-wise. The distribution of C̃ can then be derived via

p(I;λ)dI = p(B̃C̃;λ)dB̃C̃ = p(B̃C̃;λ)|B̃|dC̃ = pC̃(C̃;λ)dC̃, (24)
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where |B̃| denotes the absolute value of the determinant of B̃, the Jacobian term.

|B̃|2 = |B̃>B̃| = |B>B|, so |B̃| = |B>B|1/2. Thus,

pC̃(C̃;λ) = p(B̃C̃;λ)|B̃|

=
1

Z(λ)
exp

(
〈λ, |B>(BC + B̄C̄)|〉

)
q(B̃C̃)|B̃|

=
1

Z(λ)
exp

(
〈λ, |B>BC|〉

) 1

(2πσ2)|D|/2
exp

(
− 1

2σ2
||B̃C̃||2

)
|B̃|

=
1

Z(λ)
exp

(
〈λ, |B>BC|〉

) 1

(2πσ2)|D|/2
exp

(
− 1

2σ2
(C>(B>B)C + ‖C̄‖2)

)
|B>B|1/2

=
1

Z(λ)
exp

(
〈λ, |B>BC|〉

) 1

(2πσ2)n/2
exp

(
− 1

2σ2
(C>(B>B)C)

)
|B>B|1/2

× 1

(2πσ2)(|D|−n)/2
exp

(
− 1

2σ2
‖C̄‖2

)
= pC(C;λ)pC̄(C̄),

(25)

where C and C̄ are independent of each other, pC̄(C̄) is |D|−n dimensional Gaussian

white noise, i.e., c̄i ∼ N(0, σ2) independently for i = n + 1, ..., |D|. The distribution

of the coefficients

pC(C;λ) =
1

Z(λ)
exp

(
〈λ, |B>BC|〉

)
qC(C), (26)

where

qC(C) =
1

(2πσ2)n/2
exp

(
− 1

2σ2
(C>(B>B)C)

)
|B>B|1/2 (27)

is a multivariate Gaussian distribution, C ∼ N(0, σ2(B>B)−1). Thus we can write

the model in the generative form C ∼ pC(C;λ), I = B>C + ε, where ε = B̄C̄, and is

independent of C.

Technical details on moving along basis vectors545

For Gibbs sampling of C ∼ pC(C;λ), we can update the i-th component by first

sampling from p(di) ∝ p(I+ diBi;λ), and letting ci ← ci + di, I← I+ diBi, where

di is a scalar increment of ci. To see this, let us drop the subscript i for simplicity, and

write p(I;λ) in (23) simply as p(I). We shall explain why p(d) ∝ p(I + dB).

For the basis vector B, let B̄ be the |D| × (|D| − 1) complementary matrix, whose

columns are linearly independent of each other and independent of B (here we use

the notation B̄ in a slightly different manner from the above; this new B̄ corresponds
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to (B1, ..., Bi−1, Bi+1, ..., Bn, B̄) defined above). Let B̃ = (B, B̄), and C̃ = (c, C̄)

(again, here we use the notation C̃ and C̄ in a slightly different manner from the above.

Here C̄ corresponds to (c1, ..., ci−1, ci+1, ...cn, C̄) defined above). So I = B̃C̃ =

cB + B̄C̄, where C̃ = B̃−1I. The joint distribution of C̃ = (c, C̄) is pC̃(c, C̄) =

p(cB + B̄C̄)|B̃|. Therefore, the conditional distribution (as a function of c)

pC̃(c|C̄) =
pC̃(c, C̄)∫
c
pC̃(c, C̄)dc

=
p(cB + B̄C̄)∫
c
p(cB + B̄C̄)dc

∝ p(cB + B̄C̄),

(28)

where the Jacobian term |B̃| is canceled. Let c0 be the current value of c. Let I0 =

c0B + C̄B̄ be the current image. In the Gibbs sampler, given the current value of C̄,

we need to draw a new c from pC̃(c|C̄) to replace the current c0. Then the conditional

distribution of this new c (where c0 and C̄ are given) is

pC̃(c|C̄) ∝ p(cB + B̄C̄) = p(c0B + B̄C̄ + (c− c0)B)

= p(I0 + (c− c0)B).
(29)

Let d = c−c0. Then the conditional distribution of d given C̄ is p(d|C̄) ∝ p(I0 +dB),550

where the Jacobian of the translation d = c− c0 is 1.

Technical details on Gibbs sampling of filter responses

For the positive piece with ri ≥ 0, the mean of the Gaussian is µ+ = (−
∑
j 6=i aijrj+

σ2λ)/aii. The variance of the Gaussian is s2 = σ2/aii. For the negative piece with

ri < 0, the mean of the Gaussian is µ− = (−
∑
j 6=i aijrj − σ2λ)/aii. The vari-555

ance of the Gaussian is again s2 = σ2/aii. Let Φ(x;µ, σ2) be the cumulative den-

sity function of the normal distribution N(µ, σ2). Then the area under the Gaussian

density curve of N(µ+, s
2) restricted to the positive part is ρ+ = 1 − Φ(0;µ+, s

2).

The area under the Gaussian density curve of N(µ−, s
2) restricted to the negative

part is ρ− = Φ(0;µ−, s
2). For the piecewise Gaussian distribution pR(ri|r−i), the560

probability ri ≥ 0 is p+ ∝ ρ+ exp(µ2
+/2s

2), and the probability ri < 0 is p− ∝

ρ− exp(µ2
−/2s

2), with p+ + p− = 1. In order to sample from pR(ri|r−i), we can first

decide whether ri is positive or negative according to p+ and p−, and then sample from

the corresponding truncated normal distribution (using the inversion method).
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