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Abstract. This paper presents a class of statistical models that integrate two statistical modeling paradigms in the
literature: (I) Descriptive methods, such as Markov random fields and minimax entropy learning (Zhu, S.C., Wu,
Y.N., and Mumford, D. 1997. Neural Computation, 9(8)), and (II) Generative methods, such as principal component
analysis, independent component analysis (Bell, A.J. and Sejnowski, T.J. 1997. Vision Research, 37:3327–3338),
transformed component analysis (Frey, B. and Jojic, N. 1999. ICCV), wavelet coding (Mallat, S. and Zhang, Z. 1993.
IEEE Trans. on Signal Processing, 41:3397–3415; Chen, S., Donoho, D., and Saunders, M.A. 1999. Journal on
Scientific Computing, 20(1):33–61), and sparse coding (Olshausen, B.A. and Field, D.J. 1996. Nature, 381:607–609;
Lewicki, M.S. and Olshausen, B.A. 1999. JOSA, A. 16(7):1587–1601). In this paper, we demonstrate the integrated
framework by constructing a class of hierarchical models for texton patterns (the term “texton” was coined by
psychologist Julesz in the early 80s). At the bottom level of the model, we assume that an observed texture image is
generated by multiple hidden “texton maps”, and textons on each map are translated, scaled, stretched, and oriented
versions of a window function, like mini-templates or wavelet bases. The texton maps generate the observed image
by occlusion or linear superposition. This bottom level of the model is generative in nature. At the top level of the
model, the spatial arrangements of the textons in the texton maps are characterized by minimax entropy principle,
which leads to embellished versions of Gibbs point process models (Stoyan, D., Kendall, W.S., and Mecke, J. 1985.
Stochastic Geometry and its Applications). The top level of the model is descriptive in nature. We demonstrate the
integrated model by a set of experiments.

Keywords: descriptive models, generative models, Gibbs point processes, Markov chain Monte Carlo, Markov
random fields, minimax entropy learning, perceptual organization, texton models, visual learning
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1. Introduction

What a vision algorithm can accomplish depends cru-
cially upon how much it knows about the contents of
the visual scenes, and the knowledge can be mathemat-
ically represented by general and parsimonious models
that can realistically characterize visual patterns in the
ensemble of images. Due to the variations of the pat-
terns across scenes and the richness of details within
each scene, the models are often statistical in nature.
Existing methods for statistical modeling can be gen-
erally divided into two categories. In this paper, we
call one category the descriptive methods and the other
category the generative methods.1

Descriptive methods construct the model for a visual
pattern by imposing statistical constraints on features
extracted from signals. Descriptive methods include
Markov random fields, minimax entropy learning (Zhu
et al., 1997), deformable models, etc. For example, re-
cent methods on texture modeling all fall into this cat-
egory (Heeger and Bergen, 1995; Zhu et al., 1997; De
Bonet and Viola, 1997; Portilla and Simoncelli, 2000)
These models are built on pixel intensities or some de-
terministic transforms of the original signals, such as
linear filtering. The shortcomings of descriptive meth-
ods are two-fold. First, they do not capture high level
semantics in visual patterns, which are often very im-
portant in human perception. For example, a descriptive
model of texture can realize a cheetah skin pattern with
impressive synthesis results but it does not have explicit
notion of individual blobs. Second, as descriptive mod-
els are built directly on the original signals, the resulting
probability densities are often of very high dimensions
and the sampling and inference are computationally
expensive. It is desirable to have dimension reduction
or sparse representation so that the models can be built
in a low dimensional space that often better reflects the
intrinsic complexity of the pattern.

In contrast to descriptive methods, generative meth-
ods postulate hidden variables as the causes for the
complicated dependencies in raw signals, and thus
the models are hierarchical. Generative methods are
widely used in vision and image analysis. For ex-
ample, principle component analysis (PCA), indepen-
dent component analysis (ICA) (Bell and Sejnowski,
1997), transformed component analysis (TCA) (Frey
and Jojic, 1999), wavelet image representation (Mallat
and Zhang, 1993; Chen et al., 1999), sparse coding
(Olshausen and Field, 1996; Lewicki and Olshausen,
1999), and the random collage model for generic

natural images (Lee et al., 2001). The hidden vari-
ables employed to represent or generate the observed
image usually follow very simple models. However, ex-
isting generative models appear to suffer from an over-
simplified assumption that the hidden variables are in-
dependent and identically distributed.2 As a result, they
are not sophisticated enough to model realistic visual
patterns. For example, a wavelet image coding model
can easily reconstruct an observed image, but it can-
not synthesize a texture pattern through independent
random sampling because the spatial relationships be-
tween the wavelet coefficients are not captured.

The two modeling paradigms were developed al-
most independently by somewhat disjoint communities
working on different problems, and their relationship
has yet to be explored. In this paper, we present a class
of probabilistic models that integrate both descriptive
and generative methods, as well as the algorithm for
computational inference.

The proposed method can be viewed from the fol-
lowing four perspectives:

First, it combines the advantages of both descriptive
and generative methods, and provides a general scheme
for modeling sophisticated visual patterns. In computer
vision, a fundamental observation, stated in Marr’s pri-
mal sketch paradigm (Marr, 1982), is that natural visual
patterns consist of multiple layers of stochastic pro-
cesses. For example, Fig. 1 displays two natural images.
When we look at the ivy-wall image, we perceive not
only the texture “impression” in terms of pixel inten-
sities, but we also see the repeated elements in the ivy
and bricks. To capture the hierarchical notion, we pro-
pose a multi-layer generative model as shown in Fig. 2.
Inspired by the seminal work of Olshausen and Field
(1996), we assume that an image is generated by a few
layers of stochastic processes and each layer consists of
a finite number of distinct but similar elements, called
“textons” (following the terminology of Julesz). In our
experiments, each texton covers more than 100 pix-
els on average, so the layered representation achieves
nearly 100-fold dimension reduction or sparsity. With
sparse representation, the next step should be the mod-
eling of the spatial arrangements based on geometric
features. In particular, the textons at each layer are
characterized by Markov random field (MRF) mod-
els through the minimax entropy learning (Zhu et al.,
1997), and previous MRF texture models can be con-
sidered special cases where the models have only one
layer and each “texton” is just a pixel. See also a recent
paper of ours (Wu et al., 2002) that is directly built
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Figure 1. Two examples of natural patterns with layered structures. We not only perceive the texture impression in terms of pixel intensities,
but also the repeated texture elements.
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Figure 2. A generative model for an image I consists of multiple
layers of texton maps I(Tl ; �l ), l = 1, . . . , L superimposed with
occlusion plus a background texture image n.

on the work of Olshausen and Field (1996), where the
geometry of the elongate linear bases is characterized
by a causal sketch model. We feel that the integrated
model is a natural next step for the linear superposition
models in wavelet and sparse coding.

It is our belief that descriptive models can be pre-
cursors of generative models and both are ingredients
of the integrated learning process. In visual learning,
the model can be initially built on image intensities
via some features computed deterministically from the
image intensities. Then we can replace the features by
hidden causes, and such a process would incremen-
tally discover more abstract elements or concepts such
as textons, curves, flows, and so on, where elements at

the more abstract levels become causes for the elements
of lower abstractions. For instance, the flows generate
curves, and the curves generate textons, which in turn
generate pixel intensities. At each stage, the elements
at the most abstract level have no further hidden causes
and thus can be characterized by a descriptive model
based on some deterministic features, and such mod-
els can be derived by the minimax entropy principle as
demonstrated in Wu et al. (1999). When a new hidden
level of elements is introduced, it replaces the current
descriptive model by a simplified one. The learning
process evolves until the descriptive model for the most
abstract elements becomes simple enough for a certain
vision purpose.

Second, the integrated scheme provides a represen-
tational definition of “textons”. Texton has been an im-
portant notion in texture perception and early vision.
Unfortunately, it was only expressed vaguely in psy-
chology (Julesz, 1981), and a precise definition of tex-
ton has yet to be found. In this paper, we argue that
a definition of “texton” is possible only in the con-
text of a generative model. In this paper, in contrast
to the constraint-based clustering method by Leung
and Malik (1996, 1999) and Malik et al. (1999), tex-
tons are naturally embedded in a generative model
and are inferred as hidden variables of the generative
model. This is consistent with the philosophy of ICA
(Frey and Jojic, 1999), TCA (Frey and Jojic, 1999) and
sparse coding (Olshausen and Field, 1996; Lewicki and
Olshausen, 1999). In this paper, the textons are defined
in terms of image bases or window functions. In a re-
lated paper of ours (Zhu et al., 2002), we explored other
definitions of textons, such as combinations of linear
bases, local elements of shape and shading, etc.

Third, we present a Gestalt ensemble to characterize
the hidden texton maps as attributed point processes.
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The Gestalt ensemble corresponds to the grand canon-
ical ensemble in statistical physics (Chandler, 1987),
and it differs from traditional Gibbs models by hav-
ing an unknown number of textons whose neighbor-
hood changes dynamically. The relationships between
neighboring textons are captured by some Gestalt laws,
such as proximity, continuity, etc.

Fourth, we adapt a stochastic gradient algorithm
(Gu, 1998) for learning and inference. In the algorithm,
we simplify the original likelihood function and solve
the simplified maximum likelihood problem first. Start-
ing from the initial solution, we then use the stochastic
gradient algorithm to find refined solutions.

We demonstrate the proposed modeling method
on texture images. For an input texture image, the
learning algorithm can achieve the following four
objectives:

1. Learning the appearance of textons for each stochas-
tic process. Textons of the same stochastic process
are translated, scaled, stretched, and oriented ver-
sions of a window function, like mini-templates or
wavelet bases.

2. Inferring the hidden texton maps, each of which con-
sists of an unknown number of similar textons that
are related to each other by affine transformations.

3. Learning the minimax entropy models for the
stochastic processes that generate the textons maps.

4. Verifying the learned window functions and gener-
ative models through stochastic sampling.

Recently, a variety of texture synthesis techniques
have been proposed, notably the successful methods
of Efros and Freeman (2001) and Xu et al. (2000),
which are based on rearranging local image patches.
Our work, however, is more concerned with learning
parsimonious and sufficient models for texture patterns.
Such models can be useful for image understanding in
computer vision, and it may also lead to more graphics
applications because the models may capture visually
meaningful dimensions.

The paper is organized as follows. Section 2 intro-
duces the background on both generative and descrip-
tive methods. Section 3 discusses a hierarchical model
for texture. Section 4 studies Gestalt ensembles for
modeling texton processes. Then Section 5 presents an
integrated modeling scheme. Section 6 presents the al-
gorithm for inferential computation. Some experiments
are shown in Section 7. We conclude the paper with a
discussion in Section 8.

2. Background on Descriptive and
Generative Models

Given a set of images I = {Iobs
1 , . . . , Iobs

M }, where
Iobs

m , m = 1, . . . , M are considered realizations of
some underlying stochastic process governed by a
frequency distribution f (I). The objective of visual
learning is to estimate a parsimonious probabilistic
model p(I) based on I so that p(I) approaches f (I) by
minimizing a Kullback-Leibler divergence KL( f ‖p)
from f to p (Cover and Thomas, 1994),

K L( f ‖p) =
∫

f (I) log
f (I)

p(I)
dI

= E f [log f (I)] − E f [log p(I)]. (1)

In practice, the expectation E f [log p(I)] is replaced by
a sample average. Thus we have the standard maximum
likelihood estimator (MLE),

p∗ = arg min
p∈�p

KL( f ‖p) ≈ arg max
p∈�p

M∑
m=1

log p
(
Iobs

m

)
,

(2)

where �p is the family of distributions where p∗ is
searched for. One general procedure is to search for p in
a sequence of nested probability families of increasing
complexities,

�0 ⊂ �1 ⊂ · · · ⊂ �K → � f 
 f,

where K indexes the dimensionality of the space. For
example, K could be the number of free parameters in
a model. As K increases, the probability family should
be general enough to approach f to an arbitrary preset
precision.

There are two choices of families for �p in the lit-
erature.

The first choice is the exponential family, which can
be derived by the descriptive method through maxi-
mum entropy, and has its root in statistical mechanics
(Chandler, 1987). A descriptive method extracts a set
of K feature statistics as deterministic transforms of an
image I, denoted by φk(I), k = 1, . . . , K . Then it con-
structs a model p by imposing descriptive constraints
so that p reproduces the observed statistics hobs

k ex-
tracted from I,

E p[φk(I)] = hobs
k + 1

M

M∑
m=1

φk
(
Iobs

m

) ≈ E f [φk(I)] = hk,

k = 1, . . . , K . (3)
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One may consider hk as a projected statistics of f (I),
thus when M is large enough, p and f will have the
same projected (marginal) statistics on the K chosen di-
mensions. By the maximum entropy principle (Jaynes,
1957), this leads to the Gibbs model,

p(I;β) = 1

Z (β)
exp

{
−

K∑
k=1

βkφk(I)

}
.

The parameters β = (β1, . . . , βK ) are Lagrange multi-
pliers and they are computed by solving the constraint
equations (3). The K features are chosen by a minimum
entropy principle (Zhu et al., 1997).

The descriptive learning method augments the di-
mension of the space �p by increasing the number of
feature statistics and generates a sequence of exponen-
tial families,

�d
1 ⊂ �d

2 ⊂ · · · �d
K → � f 
 f.

This family includes all the MRF and minimax entropy
models for texture (Zhu et al., 1997). For example, a
type of descriptive model for texture chooses φ j (I) as
the histograms of responses from some Gabor filters.

The second choice is the mixture family, which can be
derived by integration or summation over some hidden
variables W = (w1, . . . , wK ),

p(I; 	) =
∫

p(I, W ; 	) dW

=
∫

p(I | W ; �)p(W ;β) dW.

The parameters of a generative model include two parts
	 = (�,β). It assumes a joint probability distribution
p(I, W ; 	), and that W generates I through a condi-
tional model p(I | W ; �) with parameters �. The hid-
den variables are characterized by a model p(W ;β).
W should be inferred from I in a probabilistic man-
ner, and this is in contrast to the deterministic features
φk(I), k = 1, . . . , K in descriptive models. The gen-
erative method incrementally adds hidden variables to
augment the space �p and thus generates a sequence
of mixture families,

�
g
1 ⊂ �

g
2 ⊂ · · · ⊂ �

g
K → � f 
 f.

For example, principal component analysis, wavelet
image coding (Mallat and Zhang, 1993; Chen et al.,
1999), and sparse coding (Olshausen and Field, 1996;

Lewicki and Olshausen, 1999) all assume a linear addi-
tive model where an image I is the result of linear super-
position of some window functions �k, k = 1, . . . , K ,
plus a Gaussian noise process n.

I =
K∑

k=1

ak�k + n,

where ak, k = 1, . . . , K are the coefficients, �k are the
eigen vectors in PCA, wavelet bases in image coding,
or over-complete basis for sparse coding. The hidden
variables are the K coefficients of bases plus the noise,
so W = (a1, . . . , aK , n).3 The coefficients are assumed
to be independently and identically distributed,

ak ∼ p(ak) = 1

Z
exp{−λo|ak |ρ}, k = 1, . . . , K ,

where Z is a normalizing factor. The norm ρ = 1 for
sparse coding (Olshausen and Field, 1996; Lewicki and
Olshausen, 1999) and basis pursuit (Chen et al., 1999),
and ρ = 2 for principal component analysis. Thus we
have a simple distribution for W ,

p(W ;β)

= 1

Z

k∏
k=1

exp{−λo|ak |ρ}
∏
(x,y)

exp

{
−n2(x, y)

2σ 2
o

}
.

In this example, the parameters are the K bases plus
the parameters in p(W ;β), 	 = {�1, . . . , �K , λo, σo}.
There are also occlusion models with randomly posi-
tioned discs called random collage or deadleaf models
(see Lee et al. (2001) and refs. therein).

In this model p(W ;β) is from the exponential family.
However, in the literature, hidden variables ak, k =
1, . . . , K are assumed to be iid Gaussian or Laplacian
distributed. Thus the concept of descriptive models are
trivialized.

3. A Multi-Layered Generative
Model for Texture

We focus on a multi-layer generative model for texture
images and we believe that the same modeling method
can be applied to other patterns such as object shapes.
An image I is assumed to be generated by L layers of
stochastic processes, and each layer consists of a finite
number of distinct but similar elements, called “tex-
tons”. Figure 3 shows three typical examples of texture
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Figure 3. Texture images with texton processes. Each texton is represented by a rectangle window.

images, and each texton is represented by a rectangular
window. A layered model is shown in Fig. 2.

Textons at layer l are image patches transformed
from a square template �l . The j-th texton in layer
l is identified by six transformation variables,

tl j = (xl j , yl j , σl j , τl j , θl j , Al j ), (4)

where (xl j , yl j ) represents the texton center location,
σl j the scale (or size), τl j the “stretch” (aspect ratio of
height versus width), θl j the orientation, and Al j for
photometric transforms such as lighting variability. tl j

defines an affine transform denoted by G[tl j ], and the
pixels covered by a texton tl j is denoted by Dl j . Thus
the image patch IDl j of a texton tl j is

IDl j = G[tl j ] � �l , ∀ j, ∀l,

where � denotes the transformation operator. Texton
examples of a circular template at different scales,
stretches, and orientations are shown in Fig. 4.

We define the collection of all textons in layer l as a
texton map,

Tl = (nl , {tl j , j = 1 . . . nl}), l = 1 . . . L ,

where nl is the number of textons in layer l.
In each layer, the texton map Tl and the template �l

generate an image Il = I(Tl ; �l) deterministically. If
several texton patches overlap at site (x, y) in Il , the

Figure 4. A template � and its three transformed copies. (a) template �; (b) scaled copy; (c) stretched copy; (d) scaled/stretched/rotated copy.

pixel value is taken as average,

Il(x, y) =
∑nl

j=1 δ((x, y) ∈ Dl j )IDl j (x, y)∑nl
j=1 δ((x, y) ∈ Dl j )

,

where δ(•) = 1 if • is true, otherwise δ(•) = 0. In
image Il , pixels not covered by any texton patches are
transparent. The image I is generated in the following
way,

I(T; �) = I(T1; �1) � I(T2; �2) � · · · � I(TL ; �L ),

and Iobs = I(T; �) + n. (5)

The symbol � denotes occlusion (or linear addition),
i.e. I1 � I2 means I1 occludes I2. I(T; �) is called a
reconstructed image and n is assumed to be Gaussian
noise process n(x, y) ∼ N (0, σ 2

0 ), ∀(x, y), although in
general it should be a stochastic texture. Thus pixel
value at site (x, y) in the image I is the same as the top
layer image at that point, while uncovered pixels are
only modeled by noises.

In this generative model, the hidden variables are

T = (L , {(Tl , dl) : l = 1, . . . , L}, n),

where dl indexes the order (or relative depth) of the l-th
layer.

To simplify computation, we assume that L = 2
and the two stochastic layers are called “background”
and “foreground” respectively. The two texton process
Tl , l = 1, 2 are assumed to be independent of each
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other. This assumption seems okay for simple texture
patterns studied in this paper, but for more sophisti-
cated patterns, it is certainly necessary to have more
levels and to consider the dependencies among these
levels.

Thus the likelihood for an observable image I can be
computed

p(I; 	) =
∫

p(I | T; �)p(T;β)dT, (6)

=
∫

p(I | T1, T2; �)
2∏

l=1

p(Tl ;βlo,βl)dT1dT2,

(7)

where � = (�1, �2) be texton templates and β =
(β1o,β1, β2o,β2) the parameters for the two texton pro-
cesses which we shall discuss in the next section, and
σ 2 the variance of the noise. The generative part of the
model is a conditional probability p(I | T1, T2; �),

p(Iobs | T1, T2; �) ∝ exp

{−‖Iobs − I(T1, T2; �)‖2

2σ 2

}
,

(8)

where I (T1, T2; �) is the reconstructed image from
the two hidden layers without noise (see Eq. (5)). As
the generative model is very simple, the texture pat-
tern should be captured by the spatial arrangements of
textons in models p(Tl ; βlo,βl), l = 1, 2, which are in
much lower dimensional spaces and are more semanti-
cally meaningful than previous Gibbs models on pixels
(Zhu et al., 1997).

In the next section, we discuss the model
p(Tl ; βlo,βl), l = 1, 2 for the texton processes.

Figure 5. Three typical ensembles in statistical mechanics.

4. A Descriptive Model of Texton Processes

As the texton processes Tl are not generated by fur-
ther hidden layers in the model,4 they can be charac-
terized by descriptive models in exponential families.
In this section, we first review some background on
three physical ensembles, and then introduce a Gestalt
ensemble for texton process. Finally we show some
experiments for realizing the texton processes.

4.1. Background: The Physics Foundation
for Visual Modeling

There are two main differences between a texton pro-
cess Tl and a conventional texture defined on a lattice
� ⊂ Z2.

• A texton process has an unknown number of ele-
ments and each element has several attributes tl j ,
while a texture image has a fixed number of pixels
and each pixel has only one variable for intensity.

• The neighborhood of a texton can change depending
on their relative positions, scales, and orientations,
while pixels always have fixed neighborhoods.

Although a texton process is more complicated than a
texture image, they share a common property that they
all have large number of elements and global patterns
arise from simple local interactions between elements.
Thus a well-suited theory for studying these patterns
is statistical physics—a subject studying macroscopic
properties of a system involving a huge number of el-
ements (Chandler, 1987).

To understand the intuitive ideas behind various tex-
ture and texton models, we find it revealing to discuss
three physical ensembles which are shown in Fig. 5.

1. Micro-canonical ensemble. Figure 5(a) is an insu-
lated system of N elements. The elements could be
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atoms or molecules in systems such as solid ferro-
magnetic material, fluid, or gas. N is nearly infinity,
say N = 1023. The system is decided by a configura-
tion S = (xN , mN ), where xN describes the coordinates
of the N elements and mN their momenta. The system
is subject to some global constraints ho = (N , E, V ).
That is, the number of elements N , the total system en-
ergy E , and total volume V are fixed. When it reaches
equilibrium, this insulated system is characterized by
a so-called micro-canonical ensemble,

�mcn = {S : h(S) = ho, f (S; ho) = 1/|�mcn|}.

S is a microscopic state or instance, and h(S) is the
macroscopic summary of the system. The state S is
assumed to be uniformly distributed within �mcn , thus
it is associated with a uniform probability f (S; ho). The
system is identified by ho.

2. Canonical ensemble. Figure 5(b) illustrates a
small subsystem embedded in a micro-canonical en-
semble. The subsystem has n � N elements, fixed vol-
ume v � V and energy e. It can exchanges energy
through the wall with the remaining elements which
is called the “heat bath” or “reservoir”. At thermody-
namic equilibrium, the microscopic state s = (xn, mn)
for the small system is characterized by a canonical
ensemble with a Gibbs model p(s;β),

�cn =
{

s; p(s;β) = 1

Z
exp{−βe(s)}

}
.

In our recent paper on texture modeling (Wu et al.,
1999), the micro-canonical ensemble is mapped to a
Julesz ensemble where S = I is an infinite image on
2D plane Z2, and ho is a collection of Gabor filtered
histograms. The canonical ensemble is mapped to a
FRAME model (Zhu et al., 1997) with s = I� being
an image on a finite lattice �. Intuitively, s is a small
patch of S viewed from a window �. The intrinsic re-
lationship between the two ensembles is that the Gibbs
model p(s;β) in �cn is derived as a conditional distri-
bution of f (S; ho) in �mcn. There is a duality between
ho and β (see Wu et al. (1999) and refs therein).

3. Grand-Canonical ensemble. Figure 5(c) illus-
trates a third system where the subsystem is open and
can exchange not only energy but also elements with
the bath. So v is fixed, but n and e may vary. This
models liquid or gas materials. At equilibrium, the mi-
croscopic state s for this small system is governed by a
distribution p(s; βo,β) with βo controlling the density

of elements in s. Thus a grand-canonical ensemble is

�gd = {s = (n, xn, mn); p(s; βo,β)}

The grand-canonical ensemble is a mathematical
model for visual patterns with varying numbers of
elements, thus lays the foundation for modeling tex-
ton processes. In the next subsection, we map the
grand-canonical ensemble to a Gestalt ensemble
in visual modeling.

4.2. The Gestalt Ensemble

Without loss of generality, we represent a spatial pat-
tern by a set of attributed elements called textons as it
was discussed in Section 3. To simplify notation, we
consider only one texton layer on a lattice �,

T = (n, {t j = (x j , y j , σ j , τ j , θ j , A j ), j = 1, . . . , n}).

For a texton map T, we define a neighborhood system
∂(T).

∂(T) = {∂t : t ∈ T, ∂t ⊂ T}

where ∂t is a set of neighboring textons for each texton
t . In this paper, we use the nearest neighborhood. Be-
cause each texton covers a 15 × 15 patch on average, a
pair of adjacent textons captures image features at the
scale of often more than 30 × 30 pixels.

There are a few different ways of defining ∂(T). One
may treat each texton as a point, and compute a Voronoi
diagram or Delaunay triangularization which provides
graph structures for the neighborhood. For example, a
Voronoi neighborhood was used in Ahuja and Tuceryan
(1989) for grouping dot patterns. However, for textons,
we need to consider other attributes such as orienta-
tion in defining neighborhood. Figure 6(a) shows a
texton t . The plane is separated into four quadrants
relative to the two axes of the rectangle. In each quad-
rant, the nearest texton is considered as the neighbor
texton. Unlike the Markov random field on image lat-
tice, the texton neighborhood is no longer translation
invariant.

The above neighborhood is defined deterministi-
cally. In more general settings, ∂(T) shall be repre-
sented by a set of hidden variables that can be inferred
from T. Thus a texton may have a varying number
of neighbors referenced by some indexing or address
variables. These address variables could be decided
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Figure 6. Texton neighborhood. (a) a texton has four neighbors; (b) Four measurements between texton t1 and its neighbor t2, dc, dm , α,
and γ .

probabilistically depending on the relative positions,
orientations, and scales or intensities. This leads to the
so-called mixed Markov random field and is beyond the
scope of this paper. Mumford and Fridman discussed
such cases in other context (see Fridman (2000)).

For a texton t1 and its neighbor t2 ∈ ∂t , we measure
five features shown in Fig. 6(b), which capture various
Gestalt properties:

1. dc: Distance between two centers, which measures
proximity.

2. dm : Gap between two textons, which measures con-
nectedness and continuation.

3. α: Angle of a neighbor relative to the main axis of the
reference texton. This is mostly useful in quadrants
I and III. α/dc measures the curvature of possible
curves formed by the textons, or co-linearity and
co-circularity in the Gestalt language.

4. γ : Relative orientations between the two textons.
This is mostly useful for neighbors in quadrants II
and IV and measures parallelism.

5. r : Size ratio which denotes the similarity of texton
sizes. r is the width of t2 divided by the width of t1
for neighbors in quadrants I and III and r is length
of t2 divided by the length of t1 for neighbors in
quadrants II and IV.

Thus a total of 4 × 5 = 20 pairwise features are com-
puted for each texton plus two features of each texton
itself: The orientation θ j and a two dimensional feature
consisting of the scale and stretch (σ j , τ j ). Following
the notation of descriptive models in Section 2, we de-
note these features by

φ(k)(t | ∂t), for k = 1, . . . , 22.

We compute 21 one dimensional marginal histo-
grams and a two-dimensional histogram for (σ j , τ j ),

averaged over all textons.

H (k)(z) =
n∑

j=1

δ
(
z − φ(k)(t j | ∂t j )

)
, ∀k.

We denote these histograms by

H (T) = (
H (1), . . . , H (22)

)
, and h(T) = 1

n
H (T).

The vector length of h(T) is the total number of bins in
all histograms. One may choose other features and high
order statistics as well. In the vision literature, Steven
(1978) was perhaps the earliest attempt to characterize
spatial patterns using histogram of attributes (see Marr
(1982) for some examples).

The distribution of T is characterized by a statisti-
cal ensemble in correspondence to the grand-canonical
ensemble in Fig. 5(c). We call it a Gestalt ensemble on
a finite lattice � as it is the general representation for
various Gestalt patterns,

A Gestalt ensemble = �gst = {T : p(T; βo,β)}. (9)

The Gestalt ensemble is governed by a Gibbs distri-
bution,

p(T; βo,β) = 1

Z
exp{−βon− < β, H (T) >}, (10)

where Z is the partition function, and βo is a parameter
controlling texton density. We can rewrite the vector
valued potential functions β as energy functions β (k)(),
then we have

p(T; βo,β)

= 1

Z
exp

{
−βon −

n∑
j=1

K=22∑
k=1

β(k)(φ(k)(t j | t∂ j )
)}

.
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This model provides a rigorous way for integrating
multiple feature statistics into one probability model,
and generalizes existing point processes (Stoyan et al.,
1985).

The probability p(T; βo,β) is derived in the Ap-
pendix from the Julesz ensemble (or micro-canonical
ensemble). We first define a close system with N � n
elements on a lattice �, and we assume the density of
textons is fixed

lim
N→∞

N

|�| = ρ, as N → ∞, and � → Z2.

Thus we obtain a Julesz ensemble on Z2 (Wu et al.,
1999),

A Julesz ensemble = � jlz = {T∞ : h(T∞)

= ho, N → ∞, f (T∞; ho)},

where ho = (ρ, h) is the macroscopic summary of the
system state T∞. On any finite image, a texton process
should be a conditional density of f (T∞; ho). There is
a one-to-one correspondence between ho = (ρ, h) and
the parameters (βo,β) (see Appendix for details).

We can learn the parameters (βo,β) and select effec-
tive features φ(k) by the descriptive method—the mini-
max entropy learning paradigm (Zhu et al., 1997). In the
following subsection, we discuss some computational
issues as well as experiments for learning p(T; βo,β),
and simulating the Gestalt ensembles.

4.3. Experiment I: Learning and Sampling
Gestalt Ensembles

Suppose we have a set of texton maps, Tm on lattice
�m, , m = 1, . . . , M , which are assumed to be inde-
pendent realizations of the same texton processes. In
this section, we assume these texton maps are known
and they are manually drawn by a human observer.
In the next section, the texton maps are estimated in a
Bayesian inference step and thus the learning of the de-
scriptive models for the texton maps shall be integrated
with the estimation of the hidden texton maps. As long
as the observation is large enough, i.e.

∑M
m=1 |�m | is

large enough, we can estimate a texton model on a stan-
dard lattice � by the maximum likelihood estimator

(MLE),

(βo,β)∗ = arg maxL(βo,β),
(11)

L(βo,β) =
M∑

m=1

log p(Tm ; βo,β).

Thus by steepest ascent, let τ be time steps, we have,

dβo

dτ
= ∂L

∂βo
= E p[n]

|�| −
∑M

m=1 nm∑M
m=1 |�m | ,

dβ

dτ
= ∂L

∂β
= E p[h(T)] − 1

M

M∑
m=1

h(Tm).

Due to the concavity of the log-likelihood with respect
to (βo,β), the solution is unique under mild regularity
conditions. The expectation E p[n] and E p[h(T)] often
have to be estimated from Monte Carlo simulations as
it is the case with texture learning (Zhu et al., 1997).

There are two different methods for simulating a
Gestalt ensemble due to the fundamental link between
the micro-canonical (Julesz) and grand-canonical
(Gestalt) ensembles. In the first method, one can sim-
ulate a Julesz ensemble with a fixed number of tex-
tons on a large lattice. A Markov chain Monte Carlo
(MCMC) algorithm for sampling a Julesz ensemble of
texture images was presented by Zhu et al. (2000). Then
different patches of the large synthesized texton map
will be used as samples from p(T; βo,β). The second
method samples from p(T; βo,β) directly and thus the
Markov chain should have a death/birth dynamics to
adjust the number of textons. We choose the second
method because we can learn the parameter simulta-
neously as we draw samples from the model. Briefly
stated, the Markov chain process includes two types of
dynamics

1. A death/birth process: This is simulated by a re-
versible jump (Green, 1995) that deletes or adds a
texton.

2. A diffusion process: This updates the position, ori-
entation, scale, and stretch of the textons by Gibbs
sampler (Geman and Geman, 1984).

We show four typical examples for learning and sam-
pling p(T; βo,β) in Figs. 7–10. The first example in
Fig. 7 is a cheetah skin pattern with textons (see the
rectangles) being the blobs. Figure 7(a) is the observed
image with textons illustrated by the rectangular win-
dows. Figures 7(b)–(f) are typical texton maps sampled
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Figure 7. (a) The observed image with textons illustrated by the rectangular windows. (b)–(f) are typical texton maps sampled from a Gibbs
model p(T; βo,β) at various stages τ = 0, . . . , 234 of the learning procedure.

Figure 8. The simulation of a regular grid pattern at various stages τ = 0, . . . , 147 of the learning procedure.

from a Gibbs model p(T; βo,β) at various stages of the
learning procedure. At step τ = 234, the synthesized
texton map has statistics close to the observed with
<5% error in histograms. The spatial arrangements of
the cheetah blobs are very random and this pattern is
the easiest one among the four example.

Figure 8 shows a very regular point pattern. It is
much harder to simulate this pattern as it is extremely
“cold”. Thus a special annealing strategy is employed
to sample this pattern. In each picture, we show the 4
neighbors for one texton.

Strictly speaking, the wood pattern in Fig. 9 and the
crack pattern in Fig. 10 are not point processes. The
textons form lines and curves for the trees and random
graphs for the cracks. Thus it is desirable to introduce
another layer of representation. In this experiment, we
intend to demonstrate that such global curve and graph
patterns can still be effectively characterized by the
texton processes through Gestalt models.

The simulated patterns for woods and cracks in
Figs. 9 and 10 expose two drawbacks of the cur-
rent texton models. First, the rectangular window
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Figure 9. Markov chain Monte Carlo simulation of a woods pattern at various stages τ = 0, . . . , 332 of the learning procedure.

Figure 10. Markov chain Monte Carlo simulation of a crack pattern at various stages τ = 0, . . . , 202 of the learning procedure.

representation is too rigid and often leaves some small
gaps when two windows are supposed to be aligned
seamlessly. To solve this problem, we should introduce
more sophisticated texton representation as a linear su-
perposition of wavelet bases. Second, the vertices and
junctions in the crack pattern are missing, because we
assume all textons play the same role. To solve this
problem, we will have to label the textons as edge tex-
tons or vertex textons and then define neighborhood for

each type of textons respectively. We shall address the
two problems in future research.

5. An Integrated Model

After discussing the descriptive models for the hidden
texton layers, we now return to the integrated frame-
work presented in Section 3.
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The generative model for an observed image Iobs is
rewritten from Eq. (7),

p(Iobs; 	)=
∫

p(Iobs | T1, T2; �)

×
2∏

l=1

p(Tl ; βlo,βl) dT1dT2. (12)

We follow the ML-estimate in Eq. (2),

	∗ = arg max
	∈�

g
K

log p(Iobs; 	).

The parameters 	 include the texton templates �l ,
the Lagrange multipliers (βlo,βl), l = 1, 2 for two
Gestalt ensembles, and the variance of the Gaussian
noise, σ 2,

	 = (�,β, σ ), � = (�1, �2),

and β = (β1o,β1, β2o,β2).

To maximize the log-likelihood, we take the deriva-
tive with respect to 	, and set it to zero. Let T =
(T1, T2),

∂ log p(Iobs; 	)

∂	

=
∫

∂ log p(Iobs, T; 	)

∂	
p(T | Iobs; 	) dT

=
∫ [

∂ log p(Iobs | T; �)

∂	
+

2∑
l=1

∂ log p(Tl ;βl)

∂	

]

× p(T | Iobs; 	) dT

= E p(T|Iobs;	)

[
∂ log p(Iobs | T; �)

∂	

+
2∑

l=1

∂ log p(Tl ;βl)

∂	

]
= 0.

In the literature, there are two well-known methods
for solving the above equation. One is the EM algo-
rithm (Dempster et al., 1977), and the other is data
augmentation (Tanner, 1996) in the Bayesian context.
We propose to use a stochastic gradient algorithm (Gu,
1998) which is more effective for our problem.

A Stochastic Gradient Algorithm

Step 0. Initialize the hidden texton maps T and the tem-
plates � using a simplified likelihood as discussed
in the next section. Set β = 0.
Repeat Steps I and II below iteratively (like EM-
algorithm).

Step I. With the current 	 = (�,β, σ ), obtain a sam-
ple of texton maps from the posterior probability

Tsyn
m ∼ p(T | Iobs; 	) ∝ p(Iobs | T1, T2; �)

× p(T1; β1o,β1)p(T2; β2o,β2), m = 1, . . . , M.

(13)

This is Bayesian inference. The sampling pro-
cess is realized by a Monte Carlo Markov chain
which simulates a random walk with two types of
dynamics.5

• I(a). A diffusion dynamics realized by a
Gibbs sampler—sampling (relaxing) the trans-
form group for each texton. For example, move
textons, update their scales and rotate them,
etc.

• I(b). A jump dynamics—adding or removing a
texton (death/birth) by reversible jumps (Green,
1995).

Step II. We treat Tsyn
m , m = 1, . . . , M as “observa-

tions”, and estimate the integration in Eq. (13).
We learn 	 = (�,β, σ ) of the texton templates and
Gibbs models respectively by gradient ascent:

• II(a). Update the texton templates � by maximiz-
ing

∑M
m=1 log p(Iobs | Tsyn

m ; �); this is a model
fitting process. In our experiment, the texton tem-
plates �1, �2 are represented by 15 × 15 win-
dows and thus there are 2 × 225 unknowns.6 The
size of the windows seem adequate for our experi-
ments, but for textures with larger local structures,
we need to increase the window size. The trans-
parency of the template is also learned. For each
pixel in the foreground template, there is a boolean
variable which indicates whether the pixel is trans-
parent or not. Originally for all the pixels in the
foreground template the transparency indicator is
equal to 0. If we set the transparency equal to 1
then that pixel is not used in composing the fore-
ground. A Gibbs sampler is used to decide the
transparency indicators.

• II(b). Update βlo,βl , l = 1, 2 by maximizing∑M
m=1 log p(Tsyn

m ; βlo,βl). This is exactly the
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maximum entropy learning process in the descrip-
tive method (see Eq. (11)) except that the texton
processes are given by Step I.

• II(c). Update σ for the noise process.

In Step I, we choose to sample M = 1 example each
time. There are two reasons for this choice. (1) The
images are usually quite large and stationary, there-
fore, spatial averaging for one image already has large
sample effect. (2) The iterative algorithm is cumula-
tive. If the learning rate in Steps II(a) and II(b) is slow
enough, then the long run behavior also exhibits large
sample effect. It has been proved in statistics (Gu,
1998) that such an algorithm converges to the opti-
mal 	 if the step size in Step II satisfies some mild
conditions.

The following are some useful observations.

1. Descriptive model is part of the integrated learn-
ing framework, in terms of both representation and
computing (Step II(b)).

2. Bayesian vision inference is a sub-task (Step I) of
the integrated learning process. A vision system,
machine or biological, evolves by learning genera-
tive models p(I; 	) and makes inference about the
world T using the current imperfect knowledge 	—
the Bayesian view of vision. What are missing in
this learning paradigm are “discovery process” that
introduces new hidden variables.

In this paper, we separate the learning of the tem-
plates � and the learning of β for computational effi-
ciency. That is, we iterate Steps I and II while fixing
βlo = 2.0 and βl = 0, i.e., we only control the den-
sity of the textons. After that, we learn βl based on
the sampled texton maps, while keeping the learned �

fixed.

6. Effective Inference by Simplified Likelihood

In this section, we address some computational issues
in the integrated model, and propose a method for ini-
tializing the stochastic gradient algorithm (in Step 0).

6.1. Initialization by Likelihood
Simplification and Clustering

The stochastic algorithm presented in the above sec-
tion needs a long “burn-in” period if it starts from an

arbitrary condition. To accelerate the computation, we
use a simplified likelihood in Step 0 of the stochastic
gradient algorithm. Thus given an input image Iobs, our
objective is to compute some good initial texton tem-
plates �1, �2 and hidden texton maps T1, T2, before
the iterative process in Steps I and II.

A close examination reveals that the computa-
tional complexity is largely due to the complex
coupling between the textons in both the generative
model p(I | T1, T2; �) and the descriptive models
p(T1; β1o,β1) and p(T2; β2o,β2). Thus we simplify
both models by decoupling the textons.

Firstly, we decouple the textons in p(T1; β1o,β1)
and p(T2; β2o,β2). We fix the total number of textons
n1 +n2 to an excessive number, thus we do not need to
simulate the death-birth process. We set β1 and β2 to
0, therefore p(Tl ; βlo, βl) becomes a uniform distribu-
tion and the texton elements are decoupled from spatial
interactions.

Secondly, we decouple the textons in p(Iobs | T1,

T2; �). Instead of using the image generating model
in Eq. (5) which implicitly imposes couplings between
texton elements through Eq. (8), we adopt a constraint-
based model

p(Iobs | T, �) ∝

× exp

{
−

2∑
l=1

nl∑
j=1

∥∥Iobs
Dl j

− G[Tl j ] � �l

∥∥2
/2σ 2

}
,

(14)

where Iobs
Dl j

is the image patch of the domain Dl j in the
observed image. For pixels in Iobs not covered by any
textons, a uniform distribution is assumed to introduce
a penalty.

We run the stochastic gradient algorithm on the de-
coupled log-likelihood, which reduces to a conven-
tional clustering problem. We start with two random
texton maps and the algorithm iterates the following
two steps.

I. Given �1 and �2, the algorithm runs a Gibbs sam-
pler to change each texton tl j respectively, by mov-
ing, rotating, scaling and stretching the rectangle,
and changing the cluster into which each texton
falls according to the simplified model of Eq. (14).
Thus the texton windows intend to cover the entire
observed image, and at the same time try to form
tight clusters around �.
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Figure 11. Result of the initial clustering algorithm, which provides a rough but reasonable starting solution for generative modeling. The
initial clustering algorithm simplifies the models by decoupling the textons to accelerate the computation.

II. Given T1 and T2, the algorithm updates the texton
�1 and �2 by averaging

�l = 1

nl

nl∑
j=1

G−1[Tl j ] � Iobs
Dl j

, l = 1, 2,

where G−1[Tl j ] is the inverse transformation. The
layer order d1 and d2 are not needed for the simpli-
fied model.

This initialization algorithm for computing (T1, T2,

�1, �2) resembles the transformed component analysis
(Frey and Jojic, 1999). It is also inspired by a clustering
algorithm by Leung and Malik (1999), which did not
engage hidden variables, and thus compute a variety of
textons � at different scales and orientations. See also
the work of Miller (2002). We also experimented with
representing the texton template � by a set of Gabor

bases instead of a 15×15 window. However, the results
were not as encouraging as in this generative model.

6.2. Experiment II: Texton Clustering

In this subsection, we present one experiment for ini-
tialization and clustering using the method outlined in
Section 6.1.

Figure 11 shows an experiment on the initialization
algorithm for a crack pattern. 1055 textons are used
with the template size of 15 × 15. The number of tex-
tons is as twice as necessary to cover the whole image.
In optimizing the likelihood in Eq. (14), an anneal-
ing scheme is utilized with the temperature decreasing
from 4 to 0.5. The sampling process converges to a
result shown in Fig. 11.

Figure 11(a) is the input image; Figs. 11(b) and
(d) are the texton maps T1 and T2 respectively.
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Figure 12. Generative model learning result for the crack image. (a) input image, (b) and (d) are background and foreground textons discovered
by the generative model, (c) and (e) are the templates for the generative model, (f) is the reconstructed image from the generative model. Due
to an accurate generative model, the results after learning have more precise texton maps and accurate texton templates compared to the initial
results in Fig. 11.

Figures 11(c) and (e) are the cluster centers �1 and
�2, shown by rectangles respectively. Figure 11(f) is
the reconstructed image. The results demonstrate that
the clustering method provides a rough but reasonable
starting solution for generative modeling.

7. Experiment III: Integrated
Learning and Synthesis

In this section, we show some experimental results ob-
tained by the integrated model. For an input image, we
first do a clustering step as Section 6 showed. Then we
run the stochastic gradient algorithm on the full models
to refine the clustering results.

Figure 12 shows the result for the crack image
obtained by the stochastic gradient algorithm, which
took about 80 iterations of the two steps (Step I and
II), following the initial solution (Step 0) shown in
Fig. 11. Figures 12(b) and (d) are the background
and foreground texton maps T1 and T2 respectively.
Figures 12(c) and (e) are the learned textons �1, �2 re-
spectively. Figure 12(f) is the reconstructed image from
learned texton maps and templates. Compared to the re-
sults in Fig. 11, the results in Fig. 12 have more precise
texton maps and accurate texton templates due to an ac-
curate generative model. The foreground texton �2 is a
bar, and one pixel at corner of the left-top is transparent.

The integrated learning results for a cheetah skin
image are shown in Fig. 13. It can be seen that in the
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Figure 13. Generative model learning result for a cheetah skin image. See Fig. 12 caption for explanations.

foreground template, the surround pixels are learned as
being transparent and the blob is exactly computed as
the texton. Figure 14 are the results for a brick image.
No point in the template is transparent for the gap lines
between bricks.

Figure 15 shows the learning of another short crack
patterns. Figure 16 displays a pine corn pattern. The
seeds and the black intervals are separated cleanly, and
the reconstructed image keeps most of the pine struc-
tures. However the pine corn seeds are learnt as the
background textons and the gaps between pine corns
are treated as foreground textons.

We also do one experiment on a bark image (Fig. 17).
The result shows that the details of the bark are not
modeled well. For such patterns, the linear superposi-
tion of the templates might do a better job. We shall
investigate this issue in our future work.

We extend our model to three layers, i.e. L = 3 and
do one experiment on a pattern of text (Fig. 18), which
has white background and two type of letters as fore-

ground. Figure 19 shows the learning process. Three
templates—white background, letter ‘A’ and letter ‘B’
were inferred gradually.

After the parameters � and β of a generative model
are estimated, new random samples could be drawn
from the generative model. This proceeds in three steps:
First, texton maps are sampled from the Gibbs models
p(T1;β1) and p(T2;β2) respectively. Second, back-
ground and foreground images are synthesized from
the texton maps and texton templates. Third, the final
image is generated by combining these two images ac-
cording to the occlusion model.

We show synthesis experiments on three patterns.

1. Figures 20 and 21 are two synthesis examples of
the two layered model for the cheetah skin pattern.
The templates used here are the learned results in
Fig. 13.

2. Figure 22 shows texture synthesis for the crack pat-
tern computed in Fig. 15.
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Figure 14. Generative model learning result for a brick image. See Fig. 12 caption for explanations.

3. Figure 23 displays texture synthesis for the brick
pattern in Fig. 14. To capture the vertical and
horizontal distances of the brick, we add four more
neighbors in addition to four nearest neighbors to
the feature space. The new four neighbors are those
nearest neighbors which have the same orientation
as the concerned texton. The T-junctions are not cap-
tured because we do not have such feature statistics.

Note that, in these texture synthesis experiments, the
Markov chain operates with meaningful textons instead
of pixels.

8. Discussion

In this paper, we present a class of statistical mod-
els for visual patterns. The models integrate and ex-
tend descriptive and generative methods, and provide a
mathematical definition for textons and their perceptual

organizations. The hierarchical model can be consid-
ered as a generalization of the hidden Markov model,
and the hidden Markov structure is non-causal in our
model.

The model has some advantages over previous pure
descriptive method with Markov random fields on pixel
intensities. First, from the representational perspec-
tive, the neighborhood in the texton map are much
smaller than the pixel neighborhood in FRAME model
(Zhu et al., 1997). The generative method captures
more semantically meaningful elements on the tex-
ton maps. Second, from the computational perspective,
the Markov chain operating the texton maps can move
textons according to affine transforms and can add or
delete a texton by death/birth dynamics, thus it is much
more effective than the Markov chain used in traditional
Markov random fields which flips one pixel intensity
at a time.

We show that the integration of descriptive and gen-
erative methods is a natural path for visual learning.
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Figure 15. Generative model learning result for a crack image. See Fig. 12 caption for explanations.

Figure 16. Generative model learning result for a pine corn image. See Fig. 12 caption for explanations.
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Figure 17. Generative model learning result for a bark image. The details of the bark are not modeled well by our current generative
model.

Figure 18. A text file with two foreground letters to test our model
on three layers textons.

We argue that a vision system could evolve by pro-
gressively replacing descriptive models with generative
models, which realizes a transition from empirical and
statistical models to physical and semantical models.

The following are important issues that should be
addressed in future research.

First, the Gestalt model based on nearest neighbors is
too simple for many spatial patterns. We need to intro-
duce more descriptive feature statistics for descriptive
modeling, or replace it with more abstract concepts
such as curves and graphs as another hierarchy of gen-
erative model. We also need to explore more efficient
inference and synthesis algorithms for Gestalt model.

Second, the model for local textons based on im-
age windows is quite limited. In a recent paper (Zhu
et al., 2002), we explore combination of linear bases,
and local shape and shading models. We also explore
motion elements. But there is still much work to be
done in order to find good local descriptors in term of
generative models.

Third, some texture patterns (like foliage) are intrin-
sically complex (e.g., with a huge number of leaves),
so that there may not exist low dimensional sparse rep-
resentation in terms of textons. Such patterns may have
to be modeled by the descriptive FRAME model (Zhu
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Figure 19. Generative model learning result for a text image. Six main steps are shown to illustrate the improving of textons and templates
with learning.

Figure 20. An example of a randomly synthesized cheetah skin image. (a) and (b) are the background and foreground texton maps respectively
sampled from p(Tl ; βlo,βl ); (d) and (e) are synthesized background and foreground images from the texton map and templates in (c); (f) is the
final random synthesized image from the generative model.
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Figure 21. Second example of a randomly synthesized cheetah skin image.

Figure 22. An example of a randomly synthesized crack image. See Fig. 20 notation for explanations.
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Figure 23. An example of a randomly synthesized brick image. See Fig. 20 notation for explanations.

et al., 1997). On the other hand, some patterns may
contain clear textons amid stochastic background (like
twigs and straws), and in that case, the noise in the gen-
erative part of the model should be replaced by FRAME
model (Zhu et al., 1997).

Appendix: Deriving the Gibbs Model
for Texton Process

A texton pattern on a large lattice � → Z is summarized
by a Julesz ensemble (or micro-canonical ensemble),

��(N , H) = {T� : N (T�) = N , H(T�) = H}

where � is a large lattice (or more rigorously, � → Z),
T� is the texton map defined on lattice �, with N (T�)
being the number of textons on T�, and H(T�) the
collection of the 22 histograms of Gestalt features. N
and H are two parameters that defines the Julesz en-
semble ��(N , H).

Now, suppose we look at all the large texton maps
T� in the Julesz ensemble ��(N , H) through a small
window �0 ⊂ �, and we are interested in the fre-
quency distribution of all the small texton maps that
we see from this window. This frequency distribution
is called the Gestalt ensemble (or the grand-canonical
ensemble). In probabilistic language, let T� be a ran-

dom texton map sampled from the uniform distribution
over the Julesz ensemble ��(N , H), and let T�0 be the
part of the large T� on the small lattice �0, then we
are interested in the probability distribution of T�0 .

For a T� ∈ ��(N , H), if T�0 = T0 for a specific
T0, then N (T�\�0 ) = N − N (T0) and H(T�\�0 ) =
H − H(T0), where � \ �0 is the rest of the lattice.
Clearly, the number of large texton maps in ��(N , H)
with T0 on�0 is the same as the number of textons maps
T�\�0 in ��\�0 (N − N (T0), H − H(T0)). Therefore,
the frequency of T0

p(T0) ∝ |��\�0 (N − N (T0), H − H(T0))|,

A Taylor expansion of log p(T0) at (N , H) gives

log p(T0) = C − ∂ log |��\�0 (N , H)|
∂ N

N (T0)

−∂ log |��\�0 (N , H)|
∂H

H (T0)

= C − β0 N (T0) − βH(T0),

where C is a constant, β0 and β are identified with the
derivatives of the log of the volumes of the Julesz en-
semble ��(N , H) with respect to N and H. Therefore,
the Gibbs form of the p(T0) is derived.
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Notes

1. There is a third category of methods that can be called discrimi-
native. The goal of discriminative methods is not for modeling vi-
sual patterns explicitly but for approximating the posterior prob-
abilities directly, for example, pattern recognition, feed-forward
neural networks and classification trees, etc. Thus we choose not
to discuss it because our focus is on statistical modeling. See,
however, Tu and Zhu (2002) that incorporates the discriminative
methods in Markov chain Monte Carlo posterior sampling.

2. Interested readers are referred to a recent paper (Roweis and
Ghahramani, 1999) for discussion of the problem with existing
generative models.

3. In PCA, since the bases are orthogonal, ak can be computed as
transform, but for over-complete basis, the ak have to be inferred.

4. We may introduce additional layers of hidden variables for curve
processes that render the textons. But our model stops at the texton
level in this paper.

5. This sampling process is almost identical to the simulation of
the Gestalt ensemble in Section 4.3, except that a likelihood
p(Iobs | T1, T2; �) is engaged in the posterior p(T | Iobs; 	).

6. Each point in the window can be transparent, and thus the shape
of the texton can change during the learning process.
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