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Learning 3D Object Templates by Quantizing
Geometry and Appearance Spaces

Wenze Hu and Song-Chun Zhu

Abstract—While 3D object-centered shape-based models are appealing in comparison with 2D viewer-centered appearance-based
models for their lower model complexities and potentially better view generalizabilities, the learning and inference of 3D models has
been much less studied in the recent literature due to two factors: i) the enormous complexities of 3D shapes in geometric space; and
ii) the gap between 3D shapes and their appearances in images. This paper aims at tackling the two problems by studying an And-Or
Tree (AoT) representation that consists of two parts: i) a geometry-AoT quantizing the geometry space, i.e. the possible compositions
of 3D volumetric parts and 2D surfaces within the volumes; and ii) an appearance-AoT quantizing the appearance space, i.e. the
appearance variations of those shapes in different views. In this AoT, an And-node decomposes an entity into constituent parts, and
an Or-node represents alternative ways of decompositions. Thus it can express a combinatorial number of geometry and appearance
configurations through small dictionaries of 3D shape primitives and 2D image primitives. In the quantized space, the problem of
learning a 3D object template is transformed to a structure search problem which can be efficiently solved in a dynamic programming
algorithm by maximizing the information gain. We focus on learning 3D car templates from the AoT, and collect a new car dataset
featuring more diverse views. The learned car templates integrate both the shape-based model and the appearance-based model to
combine the benefits of both. In experiments, we show three aspects: 1) the AoT is more efficient than the frequently used octree
method in space representation; 2) the learned 3D car template matches the state-of-the art performances on car detection and pose
estimation in a public multi-view car dataset; and 3) in our new dataset, the learned 3D template solves the joint task of simultaneous
object detection, pose/view estimation, and part localization. It can generalize over unseen views and performs better than the version
5 of the DPM model in terms of object detection and semantic part localization.

Index Terms—Hierarchical Models, 3D Object Models, Structure Learning, And-Or Tree, Object Detection, Pose Estimation
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1 INTRODUCTION

1.1 Motivation and objective

IN the first three decades of research on object recog-
nition from middle 1960s to middle 1990s, the pre-

dominant theory was to represent objects in 3D shapes
for some obvious reasons [2], [6], [27]: i) 3D shapes are
essential for human perception, grasp and manipulation;
ii) complex objects can be decomposed into common
3D primitives (i.e. generalized cylinders) shared across
categories; and iii) 3D shapes can be better generalized
to novel views and poses. In addition, a parsimonious
3D model, from the perspective of learning, potentially
needs less training examples as information can be
pooled from different views. Despite these desirable
properties, the paradigm shifted in the late 1990s to 2D
view-based appearance models, as two factors defeated
the computation of 3D representations: i) The enormous
appearance variations create a gap between 3D shapes and
their input images; ii) Real world objects have larger
geometric variations than what the generalized cylinders
can account for.

The appearance-based methods have made remark-
able progresses in the past two decades, however, they
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are mainly focused on categorical classification and de-
tection. When an image is classified correctly, the object
may not be localized. When an object is detected, e.g.
by the popular deformable part model [7], its parts
may be located to wrong places. Thus the 3D shapes,
their parts and poses are left unsolved. Recently there
are increasing interests in revisiting the 3D representa-
tion paradigm [23], [29], [43] and to combine the two
methods. The potential benefits of integrating shape-
based and appearance-based models are substantial and
motivate the work in this paper.

The objective of this paper is to learn 3D object tem-
plates from real images, and to apply the 3D model
to solving the tasks of object detection, pose/view es-
timation, and part localization jointly. We focus on the
category of cars (sedans) as cars are solid 3D objects
and have been extensively studied in the literature.
As the training images are from different car instances
over different views, common geometric and appearance
structures must be extracted and shared across views
and instances to learn a coherent 3D template. Fig. 1
(a) displays a 3D car template which is projected to 2D
templates at different views in (b), deformed and in-
stantiated with appearance features in (c), and matched
to images in (d). As the 3D template is hierarchical
and compositional, a dynamic programming algorithm
is used to find the best matching and thus compute the
view, pose and parts simultaneously.
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Fig. 1. 3D object recognition. (a) A learned 3D car
template is composed of multiple 3D volumetric parts.
Within each volume a 2D planar panel is used to fit the
local surface. On each 2D panel, an appearance template
is defined and is decomposed into primitive 2D shapes,
line segments and sketches. (b) At each specific view, the
learned 3D template is projected to derive a 2D template.
(c) 2D templates are then deformed and instantiated with
appearance features (Gabor filters) to match the images
in (d).

1.2 Overview of the Proposed Method
To tackle the two factors – large geometric complex-
ities and appearance variations which defeated early
3D categorical modeling efforts, we propose an And-
Or Tree (AoT) structure to quantize the geometry and
appearance spaces in a principled way. The AoT is
composed of consecutive layers of And and Or-nodes.
An And-node represents a decomposition into parts in
2D or 3D, and an Or-node represents alternative ways of
the decomposition. In the quantized spaces, the structure
learning problem is transformed to a search task in a
finite AoT and can be solved efficiently by dynamic
programming.

As is shown in Fig. 2, we factorize the space of possible
3D templates into geometry and appearance spaces, and
thus the AoT is divided into two aspects: i) a geometry
G-AoT which is object-centered and shape-based; and ii) an
appearance A-AoT which is view-centered and appearance-
based.

1. Quantizing the geometry space by G-AoT. Consider a
car bounded by a 3D finite volume with M × N × K
atomic cubes. At the top 2-levels of the G-AoT, we
decompose the car into a number of 3D volumetric parts
according to the best fit to CAD models. Then each

Fig. 2. Overview of the And-Or Tree Structure. The AoT
is factorized as geometry-AoT and appearance-AoT to
quantize the geometry and appearance spaces respec-
tively

volume can be terminated or split in a few ways (i.e.
Or-nodes) along the x,y,z directions. Suppose a terminal
volume has m × n × k atomic cubes, there are a finite
number of ways to place a 2D planar panel inside
the volume surface. All the 2D panels in the selected
(through Or-node switches) terminal volumes form a 3D
surface to approximate the surface of the car. Fig. 1.(a)
shows an example of the selected panels. As the G-
AoT has many, technically over-complete, ways to divide
the volumes and tilt the surface panels, it has enough
flexibility to address the different car designs and their
geometric variations. We will show the efficiency of the
G-AoT in experiments in comparison with the octree
decomposition.

2. Quantizing the appearance space by A-AoT. As is
shown in the lower half of Fig. 2, each A-AoT defines
a simple and deformable shape template on each 2D
planar panel at the terminal node of the G-AoT in a
certain range of views. These deformable appearance
templates are simple shapes, such as circles, rectangles
and trapezoids and so on. These primitive shapes can
be parameterized and quantized into parametrized line
segments. The line segments are instantiated by active
curves [14] after their projections to 2D images, and
further decomposed into deformable Gabor filters [5],
as in the active basis models [38], to match with image
pixels. Therefore the 3D shape-based model is grounded
on images by an appearance-based model.

The AoT embodies a stochastic context free grammar.
By selecting the children of Or-nodes like switches on
the G-AoT, we can derive specific 3D templates, such
as the one shown in Fig. 1(a). By switching along the
selected A-AoTs, we can further derive the deformed 2D
templates, such as the ones in Fig. 1(b) and (c). Therefore,
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the AoT can generate a combinatorial number of config-
urations or templates, and thus has the expressive power
to represent large geometric and appearance variations
through small dictionaries of shape and appearance
primitives.

The AoT not only tackles the model complexity, but
also transforms the template learning problem to a struc-
ture search problem in the space of possible templates
defined by the AoT. The learning algorithm finds the
optimal 3D template which best explains the training
images from different views in terms of maximizing the
information gain criterion. The information gain is de-
fined based on our probabilistic image model, in which
the image likelihood is defined on individual Gabor
responses. As the information gains can be factorized
along the AoT hierarchy, this structure search problem
can be efficiently solved by dynamic programming.

After the template is learned through dynamic pro-
gramming, we further enrich the appearance model with
texture features in the interior area of the selected 2D
simple shapes and retrain all feature weights using SVM.
In this way, the enriched model not only captures the
rough outline of the objects, but also gains discriminative
power through the shade and texture info of the object.

Given a testing image, we generate 2D templates by
projecting the 3D template to a set of hypothesized
views, and deform these 2D templates according to the
A-AoTs to match the image. The matching process is an-
other round of dynamic programming, as it tries to find
the best deformation with maximum likelihood ratios
among all the possible template deformations. In this
way, the 3D template can be used to detect objects from
arbitrary and even unseen views in the view sphere,
estimate their poses by reporting the hypothesized view,
and localize semantic parts by tracing the 2D positions
of deformed Gabor filters of each semantic part.

1.3 Related Literature

Our work is related to the following three threads of
research in the literature.

1, Object-centered and viewer-centered models for
3D object recognition. Early models for 3D object
recognition can be categorized to object-centered models
and viewer-centered models. The object-centered models
were studied by Binford et al. [3] in the 1970s, and were
further developed into models such as Geons [2] by
Biederman et al. and 3D primitives [6] by Dickinson et
al. In fact, many of these primitives are still used as
building components in modern CAD softwares. The
advantages and drawbacks of this representation have
been discussed in Section 1.1. To solve the appearance
gap, later work ( [1], [12], [19], [24], [40] ) proposed to
use point-based 3D models, and replace explicit image
appearance descriptions by image summary statistics
such as SIFT [26] or its quantized version [12]. Though
the SIFT descriptors are robust to global lighting changes
and affine transforms, they do not generalize well across

object instances and large view spans. Recent 3D object
models try to use 3D panels with HOG descriptors as the
representation, which gets good performance in terms
of object detection and pose estimation. Different from
our work, the panels are either pre-defined [30] or
completely learned from CAD data [39].

Viewer-centered models can be dated back to the
aspect-graph representation by Koenderink and Doorn
[17], [18]. These models are popular [28], [33], [35] as
there is no need to construct a view consistent 3D model,
and they can utilize recent developments on appearance-
based object classification ( [4], [20]) for single or a
few views. Because the view consistency prior is not
explicitly used, information in individual images is not
shared across views, which suggests that more training
examples should be used to learn a robust model for
each view.

2, Recent models combining the two types of repre-
sentations. Some recent methods try to share the 3D ge-
ometry of object parts across views, while keeping their
part appearance view specific. Among them Liebelt and
Schmid [23] constructed view specific spatial pyramid
models for both the object and its parts using training
images, and associate them to 3D space using CAD
images rendered at the same views. Pepik et.al. [29]
extended the deformable part based model (DPM) [7]
by initializing part positions and sizes in different views
together in the 3D space, so that part geometry consis-
tency can be achieved. Hejrati and Ramanan [11] use a
2D representation to detect the locations of key object
parts, which are then fitted into a 3D model to estimate
the 3D shape of the object as well as its pose. Though
achieving high detection performance, these models use
quasi-densely sampled appearance features, resulting in
models with high model complexity. With comparable
performance in object recognition tasks, our model uses
much less features, as these appearance features are
reused (shared) across views. Besides, as a 3D model,
the model complexity of our model does not change as
the number of views increases.

3, Learning hierarchical compositional models. Our
model can be considered a 3D extension of the And-Or
graph and the stochastic image grammar [42]. Similar
problems of learning compositional models have been
studied in single view object modeling problems. Most
of the existing methods [8], [32], [41] learn the hierarchy
layer-by-layer in a bottom-up greedy fashion, and do
not necessarily optimize a consistent objective function
in learning different layers. In particular, Si and Zhu
[32] proposed an AoT learning algorithm for view-based
object modeling, the key differences of the two methods
are: a) The AoT model space in [32] has open structure
and is continuous, while the AoT model space in this
paper is discrete and finite. b) For the terminal nodes,
Si and Zhu [32] uses sketch, color and texture features,
while the current model only uses sketch part to learn
the AoT. The texture part is later added to our represen-
tation as ”negative” features in a discriminative retrain-
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(a) (b) (c) (d) (e)

Fig. 3. Illustration of the learning process. (a) Initial volumes for rough parts from CAD models of car. (b) Each
volume consists of basic cubic units. The size of each volume is slightly different from that in (a) because of volume
size rounding. (c) The selected meaningful parts. (d) Selected 2D panels within each part volume. (e) The shape
templates chosen for each 2D panel. The AoT search optimizes the selections from (b) to (c), (d) and (e).

ing step. This further simplifies the structure learning
problem. c) The AoT structure learning problem in [32] is
solved using a greedy pursuit approach. By quantizing
the model space, our learning algorithm directly opti-
mizes the information gain criterion and finds the global
optimal efficiently using dynamic programming.

The space quantization approach similar to our AoT
is the quad-trees [34] and beamlet [16] in image coding,
where image lattice is recursively decomposed into equal
sized sub-lattices. In contrast to such dyadic decomposi-
tion, the AoT allows multiple decompositions at each
node, thus embeds more expressive power than the
quad-tree in 2D or the octree in 3D case. The bottom lev-
els of our AoT is based on the active curves model [14],
which is composed of deformable Gabor filters in an
active basis model [38].

1.4 Contributions

This paper makes the following contributions.
1) We propose a 3D And-Or Tree representation and

learn 3D hierarchical and compositional templates
for cars. It integrates 3D shape-based models with
2D appearance models and fills in the appearance
gap between the shapes and images.

2) By quantizing the spaces of geometry and appear-
ance variations with the 3D AoT, we transform the
structure learning problem into a structure search
problem and solve it by dynamic programming.
This framework can be used in other object cat-
egories.

3) We introduce a new 3D car dataset with object
views and parts annotated manually. Compared
with existing 3D car datasets, our dataset features
much more widespread views and part annota-
tions, and provides a new benchmark to test vari-
ous 3D object category modeling methods.

4) Using the new dataset, we show in experiments
that the proposed method can learn meaningful 3D
car template with less than 100 shapes, generate
boundaries of object instances in different views,
detect objects, estimate their poses and localize the
semantic parts. Using the most recent version of the
DPM model as a baseline [9], our model achieves
slightly better performance in object detection and

much better performance in object part localization.
Since DPM does not localize semantic parts, we
use positions of its parts to predict semantic part
locations.

In comparison to a previous conference version [13],
we reformulate the AoT using a clear layered definition,
and add more discussion and details about the imple-
mentation. We significantly expand the experiments: i)
we add experiments showing the capacity and efficiency
of the AoT in space quantization in the context of recon-
structing 3D CAD models; ii) we test the performance of
the proposed 3D object template on view generalization;
iii) we improve the object detection performance by
incorporating texture features in the 2D surface panel;
and iv) we add a quantitative evaluation of semantic
object part localization against the latest release of the
DPM model.

The rest of the paper is organized as follows: Sec-
tion 2 introduces the And-Or tree design for space
quantization. Section 3 presents the probabilistic image
model and the information gain criterion. Section 4
and 5 presents the bottom-up and top-down learning
and inference algorithms. Our proposed dataset and
experiment results are presented in Section 6.

2 AND-OR TREE REPRESENTATION

In this section, we elaborate on how the G-AoT and
A-AoT shown in Fig. 2 quantize the geometry and
appearance variations respectively.

2.1 G-AoT for Geometry Space Quantization
The root of the G-AoT is an And-node represent-

ing the 3D bounding volume of the car category. This
volume is decomposed into 12 Volumes of Interests
(VoIs), each representing the bounding volume of the
semantic parts. These parts are extracted from a 3D CAD
model representing the typical shape of the cars and
the i-th part is a rectangular volume with mi × ni × ki
atomic cubes. The relative sizes and locations of these
components are shown in Fig. 3(a).

An Or-node in the G-AoT corresponds to a volume,
which can be either terminated as leaf-nodes or split
into two And-nodes in multiple ways. For example,
the top red dashed ellipse in Fig. 4(a) is an Or-node,
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Perspective Projection

OR node              AND node               LEAF node                    Gabor wavelet     

         Panel                   Volume                   Line Segment                Active Curve

(a) Geometry And-Or tree (b) Appearance And-Or trees

∆(0)

∆(1),∆(2)

∆
(3)
2D

∆
(3)
3D

∆(4)

∆(5)

Fig. 4. (a): Geometry And-Or Tree (G-AoT), where And-nodes represent combinations of two sub-volumes occupying
larger sub-volumes, Or-nodes connect to multiple And-nodes representing possible combinations for the same sub-
volume, and leaf-nodes represent panels inscribing their parent volumes. (b): Each panel represents the geometry of
a shape template, and is connected to an Appearance And-Or Tree (A-AoT). Here And means composition and Or is
for deformation. It extends the G-AoT to image space since its leaf-nodes are Gabor filters.

and is denoted by V O
X,D with X = (0, 0, 0) being the

3D coordinate of the innermost vertex of the volume,
D = (3, 2, 2) is the size of the volume. It is split along
one dimension and the split is denoted by

V O

X,D → V A

X,D,C . (1)

For example, the red subtree in Fig. 4(a) is: V O
(0,0,0),(3,2,2) →

V A
(0,0,0),(3,2,2),(2,0,0) with C = (2, 0, 0) indicating that the

split is perpendicular to the first dimension at position
2.

An And-node in the G-AoT represents a volume split.
For example the solid green node in Fig. 4(a) is denoted
by V A

(0,0,0),(3,2,2),(0,1,0). Its split is expressed as

V A

X,D,C → V O

X,D1
V O

X+C,D2
, (2)

where D1 and D2 are the sizes of the two volumes
after splitting. So, the green sub-tree can be denoted as
V A

(0,0,0),(3,2,2),(0,1,0) → V O
(0,0,0),(3,1,2)V

O
(0,1,0),(3,1,2).

A leaf-node of the G-AoT stops the volume decom-
position and places a planar panel inside the volume to
fit the 2D surface of the object. We define two types of
panels: those on the frontal surface of the volume, and
diagonal of the volume. The panels are illustrated by
the line-shaded parallelograms in Fig. 4(a). Though only
a restricted set of panels is allowed, they still represent
large variations in positions, sizes and orientations. Fig. 5
shows a cross-section view of these panels in a 3D VoI,
where panels are defined on sub-volumes inside the VoI
according to the rules above.

	  
 	  

Depth direction 

Fig. 5. The cross-section view of the alternative panels
inside a VoI, which will be selected to fit the 3D surfaces.

2.2 A-AoT for Appearance Space Quantization

While the G-AoT is object-centered and shape-based, the
A-AoT is view-centered and appearance-based. For each
leaf-node in the G-AoT, the A-AoT defines the image
appearance of its panel for a range of views where the
panel is visible. In experiments, a panel is considered
visible if the inner product between its surface normal
and the inverse of camera view direction is larger than
0.6. Fig. 4.(b) shows a number of shape primitives –
trapezoid, rectangle, circle etc assigned to a panel. Each
of them is an Or-node in the A-AoT and branches to a
number of quantized views as projected shape primitives
on the image plane. Such nodes are invariant to local
view changes.

These projected shape primitives are further decom-
posed into line segments which are split into deformable
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sketches. The primitives are organized in layered dictio-
naries ∆(k) in Fig. 4.(b), where even numbered layers
are for the And-nodes, odd ones for Or-nodes, and
k = 0 for leaf-nodes. Table 1 defines these quantized
primitives, their parameters and value ranges, which we
shall elaborate in the following.

∆(5) includes three types of distinctive shapes defined
on the planar panels in 3D space – i) circles; ii) trapezoids
with rectangles as special cases; and iii) parallel lines.
The trapezoid and parallel lines further contain 6 sub-
types shown in Table 1. We call them the dictionary of
shape templates ∆(5) = {S}.

Fig. 6. An example of the 3D deformation for the shape
templates. We allow the template to rotate round panel
center and translate along the axis directions.

∆(4) includes the deformed shape templates. We allow
each S in ∆(5) to translate along the two axis of the panel
sides and rotate and scale in the panel plane (see Fig. 6),
each at three discrete levels specified in column 5 of
Table 1. Thus we derive a set of 3×3×3×3 = 81 deformed
shape templates dS for each S in ∆(5). Let ∂S denote the
equivalent class of S subject to bounded deformations.
Then ∆(4) is the union of all these deformed templates

∆(4) = ∪ ∂S, for S ∈ ∆(5). (3)

∆(3) is defined both on the panels in 3D ∆
(3)
3D and

on image planes ∆
(3)
2D . ∆

(3)
3D contains the line segments

L composing the deformed shape templates in ∆(4),
and they are realized as a subset of active curves A on
images. The latter are denoted by ∆

(3)
2D .

For the convenience of parameterizing trapezoid
shape templates S, the line segments L are parameter-
ized in the coordinates of the panel, with the origin
at the center of the panel, and two axes along the
side directions of panels. In this coordinate system, a
line segment is parameterized by (u, v, o, ι), which are
center position (u, v, ) along the two coordinate axes, line
orientation o and length ι respectively. Trapezoid shape
templates can then be decomposed and parameterized
by those of constituent parallel line segments. For exam-
ple, as a special case of the trapezoid shape templates,
a rectangular shape template dS ∈ ∆(4) with width and
height as (w, h) can be decomposed into:

dS → L0,−h/2,0,wL0,h/2,0,wL−w/2,0,π/2,hLw/2,0,π/2,h, (4)

and indexed by (0,−h/2, 0, w, 0, h/2, 0, w).
Thus, in 3D space:

∆
(3)
3D = {L | L ∈ ?dS, dS ∈ ∆(4)}, (5)

where ?dS denotes the set of line segments by applying
the rules of decomposition.

On the image plane, these line segments are realized
by a subset of active curves indexed by their parameters
as Ax,y,o,l, where (x, y, o, l) are for center position (x, y),
orientation o and length l.

∆
(3)
2D =

{
A | A = P(L, ω), L ∈ ∆

(3)
3D , ω ∈ Ω

}
(6)

where ω denotes a view in the set of views Ω, and P
denotes the projection function that projects L to A.

∆(2) contains the deformed active curves in ∆
(3)
2D . Each

active curve Ax,y,o,l is allowed to translate in the range
∂x, ∂y, and rotate in a small orientation range ∂o, which
derives an equivalent class ∂Ax,y,o,l

∂Ax,y,o,l =

Ax′,y′,o′,l
∣∣∣∣∣∣
x′ = x+ δx cos o′, δx ∈ ∂x
y′ = y + δy sin o′, δy ∈ ∂y
o′ = o+ δo, δo ∈ ∂o

 ,

and ∆(2) is the union of all these classes,

∆(2) = ∪ ∂Ax,y,o,l, for ∈ Ax,y,o,l ∈ ∆
(3)
2D . (7)

∆(1) contains the edges decomposed from the active
contours A ∈ ∆(2). Following the terminology in [14],
an active curve A is decomposed into a sequence of
weakly overlapping basis elements B, which are placed
along the curve and are parameterized by position (x, y)
and orientation o. l is the length or the number of basis
elements in A,

Ax,y,o,l → Bx,y,oBx+
1 ,y

+
1 ,o
Bx−1 ,y

−
1 ,o
· · ·Bx−

l
,y−

l
,o. (8)

In the above notation, x±i = x±i−1 ± 0.9b cos o and y±i =
y±i−1 ± 0.9b sin o, and b is the length of active basis B
in pixels. Note that the length of the A is measured by
the number of used active basis elements, which can be
converted to pixel units using the length of B.

Therefore ∆(1) is a set of quantized elements decom-
posed from ∆(2)

∆(1) = {B | B ∈ ?A, A ∈ ∆(2)}. (9)

?A denoted the decomposed set of basis from active
curve A.

∆(0) contains the deformed Gabor basis in ∆(1), which
are a set of Gabor functions. These deformed basis, as
leaf-nodes of A-AoT, ground the templates onto image
pixels. For each basis Bx,y,o ∈ ∆(1) at specific locations
(x, y) and orientations o, we allow translations and ro-
tations in bounded ranges and derive a deformed set

∂Bx,y,o =

Bx′,y′,o′
∣∣∣∣∣∣
x′ = x+ δx cos o′, δx ∈ ∂x
y′ = y + δy sin o′, δy ∈ ∂y
o′ = o+ δo, δo ∈ ∂o
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layer ID Template
type Appearance Parameters Deformation Range Instantiation

∆(5), ∆(4)

Circles
center u, v,
radius r,

# of segments n

∂u = {−.1w, 0, .1w},
∂v = {−.1h, 0, .1h},
scale: {.9x, 1x, 1.1x}

u = w/2, v = h/2,
d = min(w, h),
r ∈ {.9d, 1d, 1.1d}

Trapezoids
(rectangles)

Parameters of
parallel lines
{L1, L2}

above with in plane
rotation {−π/ρ, 0, π/ρ}

vL1
= 1/8h, vL2

= 7/8h,
long line length ι = 0.9w,

short line length ι ∈ [.5w, .9w],
L3 and L4 by connecting L1 and L2

Parallel
Lines same as above same as above same as above except no L3, L4

∆(3), ∆(2)

Line
segments

L = {center (u, v) ,
orientation θ

length l}
deformation realized in

active curves u = w/2, v= h/2, θ = 0, ι = 0.9w

Active
Curves

l = { center (x, y),
orientation o,

length l }

∂x = {−1, 0, 1}pixels,
∂y = {−1, 0, 1} pixels,
∂o = {−π/ρ, 0, π/ρ}

(x, y) ∈ image lattice Λ , o ∈ O,
l ∈ {1, 2, · · · , 5}

∆(1), ∆(0) Active Basis
B = {center x, y,

orientation o,
scale s}

same as above (x, y) ∈ Λ, o ∈ O, filter size set to
17× 17

TABLE 1
List of visual concepts used in our representation, their parameters, deformation ranges and instantiating ranges. w

and h in column 5 and 6 denote the width and height of the panel respectively.

Then ∆(0) is the union of all these deformed basis
functions,

∆(0) = ∪ ∂Bx,y,o, forBx,y,o ∈ ∆(1). (10)

Each Gabor basis element is the translated and ro-
tated versions of the original Gabor function G(x, y) ≈
exp{−[(x/σx)2+(y/σy)2]}eix with σx = 5, σy = 10, which
is further normalized to have zero mean and unit `2
norm.

Summary, dictionaries ∆(k), k = 5, 4, 3, 2, 1, 0 represent
the layered and quantized decomposition from the 3D
panel (at the leaf-node of G-AoT) to the Gabor functions
on pixels. ∆(5) is decomposed to ∆(3), and ∆(3) is further
decomposed to ∆(1). The ∆(4), ∆(2) and ∆(0) are the
deformed versions of ∆(5), ∆(3) and ∆(1) respectively.

2.3 AoT, Parse trees and Templates
The AoT specifies a large number of geometric and
appearance configurations, most of which are invalid for
the car category. The learning process will prune the
AoT by removing the unused or less frequently used
branches under the Or-nodes, and thus achieve at a
parsimonious model – a hierarchical 3D car model. We
flatten the model into a 3D template Tpt which is shown
in Fig. 3.(e). This Tpt is general enough to account for
the variations within the category.

Each realization of the AoT or the Tpt is a parse tree
pt. The parse tree is derived by iteratively selecting a
branch at each Or-node. At any specific view ω, the 3D

object template is further instantiated to a deformable 2D
template, by selecting Or-nodes at the A-AoT. Fig. 1(c)
shows a few of such 2D templates.

It is also worth noting that as the pruned branches of
the AoT are all from the G-AoT, the 3D template Tpt
can also be viewed as a parse tree of the G-AoT.

3 PROBABILISTIC MODEL ON IMAGES

In this section, we define a probability model p(I|ω, pt)
for any image I given view ω and a parse tree pt. The
probability formulation is needed for the 3D template
learning presented in the next section.

Let Λ be the domain (i.e. part of the image lattice)
occupied by the object. For a parse tree pt, we have a set
of nS deformed shape templates {dSi, i = 1, ..., nS} ⊂
∆(4) visible for given view ω. So we can further divide
Λ into the domains of the visible parts

Λ = ∪Λi, i = 1, ..., nS . (11)

Each part dSi is further divided into ni active curves
{Aij , j = 1, ..., ni} ⊂ ∆(2) each occupying a sub-domain
Λij , thus we have

Λi = Λi0 ∪ [∪Λij ], j = 1, ...ni (12)

where Λi0 refers to the empty pixels inside Λi but not
in the set {Λij , j = 1, ..., ni}. They correspond to the
flat or shading areas in the car. Then each active curve



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

Aij is divided into nij Gabor basis functions {Bijk, k =
1, ..., nij} ⊂ ∆(0) with their domains

Λij = ∪Λijk, k = 1, ..., nij (13)

Each Λijk is an image patch and adjacent patches may
overlap slightly.

Let Λ denote the pixels not covered by the Gabor basis
functions. It includes the background and the empty
areas {Λi0} on the 2D panels. The image is then divided
into two components:

I = (IΛ, IΛ).

The likelihood for image I, for a view ω and a parse
tree pt, is factorized as follows, due to the context free
assumptions in the AoT,

p(I |ω, pt) = p(IΛ, IΛ|ω, pt)
= p(IΛ)p(IΛ |ω, pt)
= p(IΛ)

∏
i,j,k

p(IΛijk
|Bijk) (14)

These image patches are conditionally independent after
these positions and orientations are decided by the view
ω and the deformed 2D template (flattened configuration
from the parse tree pt).

Following the active basis template [38] and active
curve model [15], we take a reference model q(I) for
generic natural images instead of a specific object tem-
plate. Since the patches are decided by ω, pt, then q(I) =
q(I|ω, pt). q(I) is factorized into the product of the patch
probabilities q(IΛijk

).
We compute the probability ratio

p(I |ω, pt)
q(I |ω, pt)

=

∏
ijk p(IΛijk

|Bijk)∏
ijk q(IΛijk

)
. (15)

Since p(IΛ) uses the same background model as q(I), the
background probabilities are cancelled in the ratio.

It is worth noting that the empty patches in {Λi0, i =
1, ..., nS} contain useful information against the back-
ground. They have near zero Gabor responses and can
be used as ”negative features” to down-weight cluttered
areas (such as trees) to overcome false positives. Further-
more, for the car category, these patches contain impor-
tant shading information for the body parts. We ignore
such patches in the stage of learning the car template,
and we will extract features from these patches in the
discriminative training stage for improving detection.

As each image patch IΛijk
is still of high dimension-

ality, we project it to a one dimensional probability ratio
along the response of basis functions Bijk

rijk = ‖ < IΛijk
, Bijk > ‖2,

and the latter is a one dimensional exponential distribu-
tion following the information projection principle [38].

p(IΛijk
|Bijk)

q(IΛijk
)

=
p(rijk)

q(rijk)
=

1

Zijk
exp{λijkh(rijk)}. (16)

The above model has four aspects.

• q(rijk) is a histogram of filter responses pooled over
a set of natural images. It has high probabilities near
zero and has a heavy tail.

• h is a sigmoid transform that saturates the large
Gabor filter response to τ :

h(x) = τ
[
2/(1 + e−2x/τ )− 1

]
.

It has high filter response when the patch coincides
with an edge/bar feature in the image.

• λijk reflects the importance of the correspond-
ing active basis element in the learned template,
and should be estimated so that the expectation
Eλ[h(rijk)] matches the corresponding observed
mean response from training images. If training
images have a common edge or bar at patch Λijk,
then it is a salient feature against the background,
and thus λijk is higher. To simplify the learning
approach below, we skip this estimation step and
instead use a constant λ for all the basis functions in
our template. This parameter will be adjusted later
in the discriminative training step.

• Zijk can be computed using numerical integra-
tion to normalize the 1D probability p(rijk) =

1
Zijk

q(rijk) exp{λijkh(rijk)}.
In summary, the log-probability ratio of a car against

the background is

log
p(I |ω, pt)
q(I |ω, pt)

=
∑
ijk

λijkh(rijk)− logZijk, (17)

and the corresponding ratios conditioned on And and
Or-nodes along the pt can be defined on its descendant
terminal nodes respectively.

4 LEARNING THE 3D CAR TEMPLATE

In this section, we present an algorithm for learning the
car template Tpt from a set of training images which are
annotated with views and assumed to be drawn from a
distribution f .

{(I(m), ω(m)), m = 1, 2, ...,M} ∼ f(I, ω).

4.1 Maximum Information Gain

Learning the 3D template Tpt is performed in a genera-
tive framework. The objective is to learn the probability
p(I, ω|Tpt) to approximate an underlying true model
f(I, ω). It starts from the reference model q and maxi-
mizes the reduction of Kullback-Leibler divergence,

Tpt∗ = arg maxKL(f ||p)−KL(f ||q) (18)
= arg maxKL(p||q) (19)

≈ arg max

M∑
m=1

log
p(I(m) |ω(m),Tpt)

q(I(m)|ω(m),Tpt)
(20)

Eqn. (19) follows the Pythagorean theorem for the ex-
ponential family of models, and Eqn. (20) replaces the
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expectation by sample mean and an assumption of uni-
form distribution on the view ω.

The target function in Eqn. (20) is called the ”informa-
tion gain” IG(Tpt) of Tpt. As the Tpt is a parse tree in
G-AoT, this term is equal to the information gain of the
root node of the AoT.

Thanks to the AoT structure and the context-free (or
equivalently the conditional independence) assumption,
this maximum information gain can be unfolded by the
log-probability ratio in Eqn. (17) to four layers of sum-
mation over indices m, i, j, k, so that it can be computed
recursively by a dynamic programming algorithm that
finds the best IG of all Tpt as well as the global optimal
templateTpt.

For each And-node A of the G-AoT, its information
gain is the sum of its children nodes in ch(A),

IG(A) =
∑

B∈ch(A)

IG(B). (21)

For each Or-node B of the G-AoT, its information gain
is the maximum of its children nodes.

IG(B) = max
A∈ch(B)

IG(A). (22)

Eqn. (21) and (22) constructs a recursion, which stops
at leaf-nodes of G-AoT. The information gain of each
shape template on the leaf-nodes can then be computed
in a similar recursion on the A-AoT, which results in a
summation over Gabor element responses as:

IG(Si) =
∑
m

∑
jk

λijkh(r
(m)
ijk )− logZijk. (23)

Once the information gain is computed for every node
in the AoT, we can search for the optimal template Tpt
that has the highest information gain IG(Tpt) by back
tracking the best child node of each Or-node in Eqn.(22).

Since the recursion alternates between layers of And
and Or-nodes, we call such an algorithm the And-
Or search. The recursion also keeps decomposing the
problems into overlapping sub-problems, so the And-Or
search algorithm is a case of the dynamic programming
algorithm.

It is also worth noting an important fact. If our objec-
tive is to compute multiple templates for modeling struc-
tural variations, such as different types of vehicles (truck,
bus, van, convertibles), the solution will be a pruned
AoT which can derive multiple templates. This can be
done recursively by an Inside-outside algorithm which
guarantees a local optimal solution instead of a global
one. This method was reported in scene modeling [36],
[37].

4.2 And-Or Search Algorithm

Converting the recursions into iterations, the final And-
Or Search algorithm consists of one bottom-up pass
and one top-down pass. The bottom-up pass computes
the information gains at the leaf-nodes and then uses

the sum and max operations at And and Or-nodes
recursively to compute optimal information gain of all
nodes in the AoT. The top-down pass is a series of arg-
max operations that retrieves the optimal template Tpt
as well as its deformations on each training image.

The bottom-up pass starts from computing the log-
likelihood ratios of active basis and active curves in
∆(0) to ∆(3). As these nodes in A-AoTs are numerous,
we choose to generate these nodes online, only when
their ancestor shape templates S are being visited. Cor-
respondingly, we choose to densely pre-compute the
likelihood ratios of these active basis and line segments
in parallel and save them in the form of score maps,
which can be used for fast retrieval by the projected L
in S. Details of these sum-max operations can be found
in [14] as the steps of computing S1,M1,S2,M2 maps.

The bottom-up pass then continues to compute the
information gains of the shape templates, which consists
of a series of sum for likelihood ratio of individual
deformed shape templates on each image, max over de-
formations and then another sum over different images
Im.

After the information gains for each shape template,
a.k.a, leaf-node of G-AoT are computed in the form of
Eqn.(23), the bottom-up pass goes to G-AoT and the
information gains are computed according to Eqn.(21)
and (22). In implementing the And-Or search in G-AoT,
we need to decide the visiting order of these nodes so
that children nodes are processed before their parents.
We simply assign the height of the And and leaf-nodes
to be 2v and that of Or-nodes to be 2v+1, where v is the
size of the volume. As operations within each layer of the
tree can be computed independently, they can be done
in parallel, which makes the algorithm more efficient.

After the information gain for the root node is com-
puted, we simply trace back from the top of the tree,
repeatedly compute arg-max on each selected Or-node,
record its selected child node, and further goes down
until individual Gabor filters on each image are selected.
Along the hierarchy, the recorded volumes in leaf-nodes
of G-AoT constructs a partition of the object volume,
the shape templates S form a 3D car template, and the
individual Gabor filters render deformed templates for
different car images.

5 INFERENCE ALGORITHM

We solve for a joint inference task: i) Detection by search-
ing the domain Λ with maximum score; ii) View/pose-
estimation by searching all quantized views and camera
distance; iii) Part localization by finding the parts in the
templates. This is implemented by a dynamic program-
ming method illustrated in Fig. 7.

5.1 Projecting 3D Template to 2D Image Plane

On a testing image I, we project the 3D template into 2D
templates by specifying a set of views ω, and perform the
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Fig. 7. The inference process. (Left) A few nodes in the template Tpt hierarchy. (Right) Score maps for each node on
the left. The score maps are normalized such that intensities are only comparable on score maps in the same layer.

inference task by running sliding windows using these
2D templates.

The view vector ω = (ξ, η, d) includes three variables
– pan, tilt and camera distance respectively. We fix the
internal camera parameters by assuming a general focal
length, and discretize the external parameter space of
pan, tilt, and camera distance to the origin of the world
frame. For simplicity, roll angle of the camera is set to
zero. More specifically, in experiments, we search pan
angle at 15◦ interval in [0◦, 360◦), tilt angle at 5◦ interval
from [5◦, 90◦), and 18 camera distances for each pan and
tilt angle combination to account for image scaling and
the perspective projection effects.

For a view ω, the 3D template Tpt is projected to a 2D
deformable template in the way discussed in Section 2,
with each 3D in-plane deformation of each shape tem-
plate realized by a different set of the active curves. For
each ω = (ξ, η, d), we assume the camera is looking at
object center, and generate a 2D deformable template.
We then run sliding window using this 2D deformable
template over the testing image.

For each window, we start from a generic model
p0 = q(I|ω, pt) as the current interpretation, and then
maximizing the posterior probability which is equivalent
to maximizing the log-likelihood ratio as we assume a
uniform distribution on the discretized views and parse
trees.

(ω, pt)∗ = arg max p(ω, pt|I) (24)

= arg max log
p(I |ω, pt)
q(I |ω, pt)

Following Eqn.(17), we derive the score function,

Score(ω, pt) = log
p(I |ω, pt)
q(I |ω, pt)

(25)

=
∑
ijk

λijkh(rijk)− logZijk.

Similar to the optimization problem in learning, the
best score can also be found using the dynamic program-
ming. Fig. 7 illustrates a few nodes in the template Tpt

on the left side, and their corresponding score maps on
the right side.

Though all three views on the top row have high
scores at the object location, the peak at the correct view
has a significantly higher score than others. The mean-
ingful shape templates, such as these for the windshield
and wheels, are also highly salient in their score maps.

5.2 Discriminative Retraining

The model discussed so far is fully generative and par-
simonious in the sense that it only extracts the sketches
at sparse locations and the parameters λijk are shared
across views. This model is sufficient for learning the
template Tpt. In the detection task, we further retrain the
score function by adding new features and retrain the
feature weights through some common discriminative
steps so that its performance can be compared against
the discriminatively trained models like DPM.

1, Adding negative features in empty areas. Recall that in
Eqn.(12) each part has area Λi0 unoccupied by the basis
functions and have flat/smooth shading pattern that can
be used to down-weight clutter as ”negative features”.
We evenly sample points in Λi0 on the 2D panel of Tpt,
and extract Gabor responses at projected positions and
orientations and concatenate them in a vector φ(IΛi0

). As
their values are near zero, we do not use the sigmoid
function h() for simplicity. These features are added to
the score function for linear SVM training.

So we rewrite the score function as,

Score′(ω, pt) =
∑
ijk

λ̃ijkh(rijk) +
∑
i

< λi0, φ(IΛi0) > .

Though it is more elegant to directly include these fea-
tures into our 3D template learning formulation, we feel
this is not necessary as it will significantly increase the
computational complexity and the cluttered background
is not a problem as the view labels are already given in
training stage. Our choice will also reduce the complex-
ity in inference step as computing the deformation of
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these dense features will be slower than only extracting
them after the the deformation is determined by the
sketch information.

2, Discriminative regression on parameters. Our reference
model q() represent the background and is pooled from
generic natural images. From a discriminative perspec-
tive, q() governs the negative samples, and should be
re-calibrated to compensate the error introduced by po-
sition and orientation invariant assumption in the active
basis model. This leads to adjusted weights on the scores
of active curves. To this aim, we use SVM to re-train
the weights λ̃ijk and vectors λi0 in the adjusted score
function Score′(ω, pt).

3, Hard negative training. We collect negative training
examples for the SVM reweighing in the way similar
to the hard negative mining steps in deformable part
based model [7]. We use the equally weighted original
model to run sliding windows on positive examples,
crop high score windows whose intersection over union
with ground truth window are less than 50 percent,
and extract both sketch features and negative features
from these windows as negative training data. Note that
we only perform one round of negative data collection,
where in DPM, this step is repeated each time a new
weighting of the model features are learned.

In implementation, we proceed in two steps for speed
considerations. Step 1. We compute the score maps
for the sketch-only (with the first term) at enumerated
views, we select the top 100 highest score windows as
seed windows in each view. In Step 2, we update the
score of these windows using both sketch and the nega-
tive features. The object detection windows are then re-
ported using non-maximum suppression through these
seed windows by the criterion that reported windows
should not overlap more than 50 percent with each other.

6 EXPERIMENTS

In this section, we compare 3D car templates learned
from different datasets in joint inference tasks: car detec-
tion, view and 3D pose estimation, and part localization.
We also study the capacity and efficiency of the AoT
representation and evaluate how the 3D car template can
generalize to novel views.

6.1 Image Datasets and Parameter Settings

In the literature, there are a few widely used datasets
emphasizing 3D object recognition ( [21], [31]), but they
only provide images from a few specified views or lim-
ited ranges of views. For example, the widely used 3D
car dataset in [31] contains cars whose views are shown
in Fig. 8(b). As the images are essentially clustered
around 8 views, they cast the task to a multi-class object
recognition problem and have saturated performance
with average precision (detection) to be over 99%. Such
datasets are not particularly suitable for evaluating 3D
modeling and parsing.
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(a) Our dataset (b) existing 3D car dataset

(c) Examples from our dataset

Fig. 8. (a) View distribution of our dataset; (b) View distri-
bution of the 3D car dataset in [31]. The angular direction
represents pan angle and radius direction represents tilt
angle. (c) Sample images of our dataset.

We introduce a new dataset of car images. These
images are collected in uncontrolled environments from
the Internet and at the intersections and parking lots on
UCLA campus. Fig. 8.(c) shows some examples. The im-
ages are taken from different distance and thus may have
perspective projection (foreshortening) effects. For each
image, we label the object views using an annotation
tool (public code released by the authors [15]). Fig. 8(a)
shows the view distribution of our datasets, which are
evenly distributed over the viewing hemisphere. We also
labeled the contours of objects and their semantic parts,
so the dataset can be used to evaluate on other tasks,
such as part localization and segmentation. More details
of the image and annotations can be found in the dataset
webpage 1.

For parameters in G-AoT, we set the minimum volume
size to 2 × 2 × 1 in unit size, where 1 is along the
depth direction, and unit size is set to 150 mm. For
parameters in A-AoT, we set the Gabor filter size to
17×17 in pixels, and basis response saturation threshold
τ to 6, which is the same as in active basis model [38].
The range of λ in [38] is [0, 5] with 5 corresponding to
the highest possible expected response. We set it to 2.0
which corresponds to about 90% of the highest expected
response. Experiment using different values of λ shows
that the learned template does not change much when
λ is in range [2.0, 3.0]. These parameters are fixed for all

1. http://www.stat.ucla.edu/∼wzhu/3DAoT
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the experiments.

6.2 The capacity of AoT

Volume Size V A V O leaf # of Tpt

(5, 5, 5) 1,170 270 10,206 2,7969 ×106

(8, 8, 8) 99,684 11,340 394,065 7.2096 ×1025

(10, 10, 10) 628,540 55,440 1,967,328 2.2061 ×1048

TABLE 2
Capacity of the G-AoT.

In the first experiment, we study the capacity of the G-
AoT in representing different 3D object shapes. For this
purpose, we start with one volume at the root of the
G-AoT and grow the G-AoT using the rules in Section
2.1 as well as the parameters specified above. The size
of the volume is shown in the first column of Table 2.
We count the number of And, Or and leaf-nodes in G-
AoT, and compute the number of possible parse trees
corresponding to possible 3D object templates Tpt inside
the volume. This can be computed using the bottom-
up pass of the And-Or search, with IG replaced by the
number of sub-compositions, and sum-max operations
replaced by product-sum operations for And and Or-
nodes respectively.

The results are shown in Table 2. Due to the And-
Or structure, the number of possible 3D templates are
exponentially larger than the number of nodes in AoTs
at every volume size. This demonstrates the expressive
power of the AoT representation for quantizing a large
space by using only a much smaller number of nodes.

6.3 Representation Efficiency of G-AoT

In the literature of image coding and compression,
the representational efficiency of a coding scheme and
dictionary is usually evaluated by the rate-distortion
curve, which computes how fast the approximation error
decreases as the coding length (i.e. number of coding el-
ements) increases. One good example is the beamlet [16]
which evaluates the efficiency of the beamlets dictionary
(line segments quantized in a square) to approximate
2D curves. Following such methods, we evaluate the
effectiveness of the G-AoT for quantizing 3D vehicle
shapes.

We collected 20 3D CAD models for four vehicle
categories: sedan, SUV, truck and mini-van from the
SketchUp 3D warehouse, and test how well the G-AoT
can approximate these 3D shapes in coarse-to-fine levels
as we reduce the sizes of the atomic volume in the leaf-
nodes of the G-AoT. We compare the G-AoT against the
popular 3D octree as a baseline, which, in contrast to
allowing multiple possible volume splits by Or-nodes,
simply partitions the parent 3D cuboid into 8 equally
sized children cubes. Within the leaf volume, we fit the
2D panel to the corresponding panel in the CAD model.

The error is defined by the average distance between the
panel and facet vertices.

We learn the best 3D panel composition using the
And-Or search with the information gain of each tem-
plate replaced by the total area of facets within a certain
distance threshold (≤ 1 inch) from the corresponding
panel.

Fig. 9 plots the proportion of areas with error under
1 inch as the unit size increase (fine-to-coarse) from 100
millimeters to 400 millimeters. It is clear to see that in
all cases, the AoT explains more area than the octree,
which suggests the best template encoded by AoT is
always closer to the true CAD models than that of the
octree. Fig. 10 shows a fine-to-coarse approximation to
a minivan shape by the G-AoT learning process. This
illustrates the errors underlying the curves in Fig. 9.

6.4 Learning Object Templates

In the following experiments, we randomly pick 160 of
the 360 images dataset as training examples, and the
remaining 200 as testing examples. Fig. 1 and Fig. 3.(e)
show the learned template for car images, which takes an
i7 quad-core machine about 40 minutes. The initial vol-
umes in Fig. 3.(a) are decomposed, through the learning
process, into clearly interpretable parts and 2D panels
for wheels, doors, windows, headlights and grills. The
combination of these individual shape templates form
a car shape, which demonstrates that the 3D templates
represented by AoT include meaningful ones, and they
can be searched through by the proposed algorithm.
Deformed templates in Fig. 1 also demonstrate that
the proposed hierarchies of deformations can adapt the
shape templates to its variants observed in images.

6.5 Detection and View Estimation

We report the detection and view estimation results on
two datasets.

On the 3D car dataset in [31], the detection is measured
by the average precision of the bounding box and the
pose estimation is measured by the MPPE (Mean Preci-
sion of Pose Estimation). Table 3 shows the results by a
range of methods on this dataset. Our model achieves
comparable performance on detection and pose estima-
tion. As we mentioned before, the images in this dataset
are clustered in 8 distinct views and can be resolved
by 2D multi-class detection methods. This observation
is confirmed by the fact that latest 2D view-based DPM
model achieved saturated performance. So it is no longer
suitable for 3D car benchmark.

On our newly collected dataset, we run the inference
steps in Section 5 to perform object detection. We use
the released version 5 of DPM model as a baseline for
object detection on this dataset for two reasons: i) it
represents state-of-the-art results for object detection on
various categories including the 3D car dataset above;
and ii) there is no publicly available code from other
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Fig. 9. Comparison of representation efficiency between the G-AoT and commonly used Octree. Horizontal axis
represents the side length of minimum volumes in millimeters from fine-to-coarse, and the vertical axis represents
the percentage of CAD model surfaces inside VOI and represented by the computed solution. The And-Or tree
outperforms Octree consistently across all the four vehicle categories at all granularity.
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Fig. 10. Fine-to-coarse approximation to a minivan shape by the learned 3D template from G-AoT.

Fig. 11. Sample experiment results. Row 1: The 3D wire frame showing the detected cars and their estimated poses.
Row 2: Semantic part localization results by our method. Row 3: The deformed templates for each detection. Dots in
templates show the positions of sampled patches for negative features. Row 4: The semantic part localization results
of the baseline method using the DPM model (release 5).
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Method DPM [25] [23] [10] [29]1 [29]2 ours
AP 99.6 96 76.7 99.2 99.9 99.7 99.4

MPPE 86.3 89 70 85.3 97.9 96.3 94.2

TABLE 3
Performance comparison of 2D car detection and pose

estimation tasks in terms of AP and MPPE on the 3D Car
dataset [31]. [29]1 and [29]2 refer to DPM-VOC+VP and

DPM-3D-Constraints respectively.

Fig. 12. Some failure examples with templates imposed
on testing images. (Left) Close camera position our of the
computed range; (Middle) The template matches better
on part of the object image area that resembles another
view of the car; (Right) Background structure resembling
car.

3D car recognition method, and therefore we cannot test
their method on this dataset.

Fig. 7 illustrates the detection process by dynamic
programming. Fig. 11 shows more examples of detection
at various poses and scales. Our model can also be used
to estimated view angles of the detected cars, which are
more informative than most of the recent models which
only report view category labels. For example, using
the reported view angles, we can directly project a 3D
wireframe onto the image in row 1.

Fig. 12 shows some failure results of our method. The
reasons of these failures can be attributed to the fol-
lowing factors. i) The hypothesized camera focal length
is too far away from the actual value and thus cannot
model the severe perspective effects in very close views
(left column); ii) View confusion – the template matches
better on part of the object image and that part of image
resembles another view of a car (middle). iii) structured
background matches the template better (right).

To quantitatively evaluate the performance of our
model on object detection, we compute the precision
recall curves on our dataset. We use a common protocol
used in the detection literature. That is, a detection
is considered correct if the intersection of the object
detection window and the human annotated window is
larger than half of their union area. We compare against
the version 5 of the DPM model, by converting our
dataset annotation to the VOC format, and directly using
code from [9] on the converted dataset. We train 5 DPM
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Fig. 13. Object detection performance on our dataset.
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Fig. 14. Pose estimation error on our dataset. The hori-
zontal axis is the error of Pan angle, and the vertical axis
is the percentage of images falling in each error bin.

models with 1 to 5 mixture components respectively, and
select to show the precision recall curve with the best
average precision in Fig. 7. We report all the average
precisions of the 5 DPM models in Table 4. The experi-
ment shows our model performs slightly better than the
DPM model in the detection task.

TABLE 4
Object detection performance of the DPM model with

different number of components

# DPM components 1 2 3 4 5
Avearge precision 0.8534 0.8865 0.8939 0.8798 0.8825

For correctly detected instances, we also plot the his-
togram of view estimation errors on pan angles, which is
shown on Figure 14. From the plot, we can see that ma-
jority of the instances are detected at the correct angles.
We notice that a few of the estimates are totally flipped
from head to tail, which suggests we should model more
details of the head and tails at higher resolutions, as the
general shape of cars at flipping views are similar. We
did not compare with the DPM model on this task, as it
does not have the view angle output.

6.6 View Generalization

In early theory, one benefit of object-centered model
over viewer-centered model is that the 3D model can
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TABLE 6
Part localization performance in term of detection rate, where numbers in italic type are the best among the baseline

models.

Windshield Rear Window Frontal left wheel Back left wheel Back right wheel Frontal right wheel
Ours 0.8125 0.6000 0.5625 0.5077 0.5079 0.5152

Baseline, 1 CPN 0.4688 0.2375 0.1194 0.0882 0.1884 0.0845
Baseline, 2 CPN 0.3333 0.125 0.0896 0.0588 0.0725 0.1111
Baseline, 3 CPN 0.4385 0.0875 0.1045 0.4412 0.3333 0.1528
Baseline, 4 CPN 0.2061 0.0741 0.1343 0.1324 0.0725 0.1389
Baseline, 5 CPN 0.3588 0.1852 0.1642 0.2941 0.1884 0.1389

TABLE 5
Results from view generalization experiment

# of train
/test views 20/4 18/6 16/8 12/12 8/16 6/18 4/20

Ours 0.9102 0.9513 0.9138 0.9289 0.8465 0.6699 0.6152
DPM 0.9133 0.9011 0.8597 0.8772 0.8081 0.6943 0.6436

be easily generalized to novel views unseen in training.
To show the view generalization ability of our model,
we uniformly partition the viewing hemisphere into 24
view bins (8 along the pan angle multiplied by 3 along
tilt angle). In each trial, we learn a 3D car template from
images in a selected set of bins, and test on images in
the remaining view bins. Table 5 shows the 7 trials with
different partition of views for training and testing. For
comparison, we train the DPM model with 3 components
and compare the average precisions on the bottom of the
same table.

The results can be interpreted in 3 groups. i) When
the number of training views is large, the DPM and
our model performs comparably, which is consistent
with our results in detection experiment in section 6.5.
ii) When the number of training and testing views are
comparable, our model outperforms the DPM model. iii)
When the training views are much fewer than testing
views, the DPM outperforms our model (the margin
is smaller than we had in the case ii). We find this is
because our algorithm fails to learn a meaningful 3D
model while the hard negative mining step in the DPM
model makes it a better non-background classifier.

6.7 Part Localization

By retrieving the template deformations, our model also
estimates the rough boundaries of semantic object parts.
Locations and sizes of these object parts are useful
for various applications: i) In scene parsing and event
understanding, one often needs to describe the rela-
tionships between humans and vehicles, e.g. a person
entering the car from the driver seat will be identified
as the driver. ii) For fine-grained vehicle recognition, we
can use them to re-identify a car instance in different
camera views, or recognizing the make and model; and
iii) The localizations of parts are needed for identifying
the damages of parts for insurance agents.

As the baseline DPM model was not trained for car
parts, a direct comparison against the DPM model is not
meaningful. Similar to the way that DPM model refines
object bounding boxes by its part locations, we extend
the DPM model to predict the locations of semantic
parts. The extension is based on linear regression, where
the DPM part bounding boxes are predictors, and our
semantic part bounding boxes are outcomes. We train
one regression model for each DPM mixture component,
and use the corresponding model to predict semantic
parts when the detection is activated by the component.
Fig. 11 shows the semantic part localization results from
our model (row 2) and the baseline DPM method with
3 components (row 4) where the part windows are
predicted from DPM parts. It can be seen that our results
are much better.

It can also be seen in columns 4 and 6 of Fig. 11 that
the baseline method predicted positions of the invisible
wheels to the visible side of the car. This is because in
the training stage the DPM model misclassified some
cars into its flipped poses, and their bounding box data
are then mixed together in fitting the regression model.

To quantitatively evaluate the part localization per-
formance, we compute the detection rate of these se-
mantic parts on the correctly detected cars, and show
the numbers of our model against the baseline model
using 1-5 components in Table 6. It can be seen that our
model significantly outperforms the baseline method. In
our method, the detection rates for the windshield and
rear window are significantly higher than the wheels, we
believe this is because these parts are closer to the object
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center, so are less sensitive to quantization error of the
search grid.

7 DISCUSSION

In this paper, we present a 3D And-Or tree structure
for quantizing the geometry and appearance space and
for learning 3D car templates to solve a few vision
tasks jointly. The learned template is a hierarchical and
compositional model integrating the 3D shape-based
representation in a G-AoT and appearance-based model
in the A-AoT. In experiments we demonstrate that the
proposed method can learn meaningful 3D car templates
from view labeled images, and yield better performance
in object detection, pose estimation, and semantic part
localization than the most recent DPM model which is
2D view-based.

There are a few issues that are worth further study in
future research.

1) The hierarchical representation can be augmented
to represent object attributes, such as the make
and model of the vehicle, for fine-grained object
recognition and parsing.

2) We shall learn shared 3D parts across multi-
categories, as it was done in the unsupervised
learning of 2D AoT [8], [32] and extend the frame-
work to representing articulated 3D objects.

3) In applications such as video surveillance, cars of-
ten appear with external occlusions. A preliminary
study of the And-Or Tree representation for occlu-
sion is presented in [22], and it is of our interest
to understand how occlusion can be modeled to-
gether with other factors such car types mentioned
above.
The current method performs object detection by
performing top-down projection of templates into
individual views, which is much slower than the
view-based method such as DPM. To reduce the
number of projections, we shall further analyze
our 3D model and partition the views in coarse-
to-fine and replace the pure top-down inference be
replaced by combining top-down and bottom-up
inference.
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