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Animated Pose Templates for Modeling
and Detecting Human Actions
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Abstract—This paper presents animated pose templates (APTs) for detecting short-term, long-term, and contextual actions from
cluttered scenes in videos. Each pose template consists of two components: 1) a shape template with deformable parts represented in
an And-node whose appearances are represented by the Histogram of Oriented Gradient (HOG) features, and 2) a motion template
specifying the motion of the parts by the Histogram of Optical-Flows (HOF) features. A shape template may have more than one motion
template represented by an Or-node. Therefore, each action is defined as a mixture (Or-node) of pose templates in an And-Or tree
structure. While this pose template is suitable for detecting short-term action snippets in two to five frames, we extend it in two ways:
1) For long-term actions, we animate the pose templates by adding temporal constraints in a Hidden Markov Model (HMM), and 2) for
contextual actions, we treat contextual objects as additional parts of the pose templates and add constraints that encode spatial
correlations between parts. To train the model, we manually annotate part locations on several keyframes of each video and cluster
them into pose templates using EM. This leaves the unknown parameters for our learning algorithm in two groups: 1) latent variables for
the unannotated frames including pose-IDs and part locations, 2) model parameters shared by all training samples such as weights for
HOG and HOF features, canonical part locations of each pose, coefficients penalizing pose-transition and part-deformation. To learn
these parameters, we introduce a semi-supervised structural SVM algorithm that iterates between two steps: 1) learning (updating)
model parameters using labeled data by solving a structural SVM optimization, and 2) imputing missing variables (i.e., detecting actions
on unlabeled frames) with parameters learned from the previous step and progressively accepting high-score frames as newly labeled
examples. This algorithm belongs to a family of optimization methods known as the Concave-Convex Procedure (CCCP) that converge
to a local optimal solution. The inference algorithm consists of two components: 1) Detecting top candidates for the pose templates,
and 2) computing the sequence of pose templates. Both are done by dynamic programming or, more precisely, beam search. In
experiments, we demonstrate that this method is capable of discovering salient poses of actions as well as interactions with contextual

objects. We test our method on several public action data sets and a challenging outdoor contextual action data set collected by
ourselves. The results show that our model achieves comparable or better performance compared to state-of-the-art methods.

Index Terms—Action detection, action recognition, structural SVM, animated pose templates

1 INTRODUCTION

1.1 Backgrounds and Motivations

HUMAN action recognition has attracted increasing
research interest in recent years motivated by a range
of applications from video surveillance, human-computer
interaction, to content-based video retrieval. Building a
robust system for real-world human action understanding
presents challenges at multiple levels: 1) localizing the
actions of interest; 2) recognizing the actions; and 3) inter-
preting the interactions between agents and contextual
objects. Recent research has made major progress on
classifying actions under idealized conditions in several
public data sets, such as the KTH data set [1] and Weizmann
data set [2], where each video clip contains one person
acting in front of static or uncluttered background with one
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action per video clip. State-of-the-art methods have achieved
nearly 100 percent accuracy on these two data sets. On the
other hand, action understanding from real-world videos,
which commonly contain heavy clutter and background
motions, remains a hard problem.

In general, actions are building blocks for activities or
events, and thus are simpler than the latter in terms of the
number of agents involved and the time duration, but still
have diverse complexities in space and time:

1. In space, actions can be defined by body parts, such
as waving and clapping, by human poses, such as
walking, or by the human-scene interactions, such as
making coffee in an office and washing dishes in a
kitchen. In the last case, the whole image provides
contextual information for action recognition.

2. In time, actions can be defined in a single frame,
such as sitting and meeting, two to five frames such
as pushing a button and waving hand which are also
called action snippets [3], or a longer duration say in
5 seconds, such as answering a phone call.

In the following, we briefly review the literature in four
categories according to their space-time complexity:

1. Action recognition by template matching. The idea of
template matching has been previously exploited by research-
ers for action recognition. These approaches attempt to
characterize the motion by looking at video sequences as
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either 2D templates or 3D volumes. For example, Essa and
Pentland [4] built a detailed, physically based 2D templates
of the face using optical flow features. Recognition is then
done by directly pattern matching with the templates.
Bobick and Davis [5] use motion history images that capture
both motion and shape to represent actions. They have
introduced the global descriptors motion energy image and
motion history image, which are used as templates that
could be matched to stored models of known actions. Efros
et al. [6] also perform action recognition by correlating
optical flow measurements, but they focuses on the case of
low-resolution video of human behaviors, targeting what
they refer to as “the 30-pixel man.” Following this line of
research, Gorelick et al. [2] extend the concept of template
matching from 2D motion templates to 3D space-time
volumes. They extract space-time features for action
recognition, such as local space-time saliency, action
dynamics, shape structures, and orientation. One common
shortcoming of these types of template matching method is
that they rely on the restriction of static backgrounds which
allows them to segment the foreground using background
subtraction. In our method, there is no need of this kind of
foreground segmentation. Also, since all these method use
rigid templates, rather than the deformable templates used
in this paper, they are much more sensitive to appearance
and view-point variations.

2. Action recognition by spatiotemporal interest points (STIP).
To overcome the large geometric and appearance variations
in videos of an action, researchers extracted and HoG and
HOF features around them for action classification in the
SVM framework [7]. Different approaches either pooled the
features in a bag-of-word (BoW) representation [1], [8] or
embraced a pyramid structure [9].

If we compare with the task of object recognition, it is
worth noting that a quantum jump in performance has been
achieved in the past few years when researchers departed
from the BoW features and adopted the deformable part-
based model (DPM) [10], especially for human detection in
images [11], [12]. Thus we expect that a better representa-
tion for human action should extend the DPM to the
temporal domain and capture some important information
missed by the STIP representations. First, body parts should
be explicitly modeled with rich appearance features, unlike
the BoW methods that rely on a codebook of quantized
features or “visual-words.” The quantization of code books
through K-mean clustering is often unreliable, largely
because these clusters have varying complexities and
dimensions. Second, spatial relations between parts should
be represented to account for the human poses. Third, the
motion information for each part and the poses as a whole
should be represented to account for the transitions and,
thus, temporal regularity in sequential poses.

The above observations motivated our animated pose
template (APT) model, and we shall overview these aspects
when we overview APT in the next section.

3. Action recognition by pose estimation. Encouraged by the
relative success of human detection using the deformable
part-based models, recently people have attempted to treat
action recognition as a pose-estimation problem in a single
image frame. Ferrari et al. [13] retrieved TV shots containing
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a particular 2D human pose by first estimating the human
pose, then searching for shots based on a feature vector
extracted from the pose. Johnson and Everingham [14] used
a mixture of tree-structured poses. Yang et al. [11] used HOG
features and support vector machines (SVMs) classifiers for
action recognition, where they argue that it is beneficial to
treat poses as latent variable in the SVM training because one
action typically contains multiple poses. Using similar
features, Yang and Ramanan [12] studied a mixture-of-parts
model in for pose estimation. In this case, however, they use
strong supervision of body parts and report that it works
better than latent parts model. We believe that this
discrepancy is most likely due to their different tasks.

However, these pose estimation work all use still images
rather than videos, and thus, they do not capture the motion
information in short or long time durations.

4. Action recognition by scene context. Many actions are
defined not by poses but by the human-object interactions.
Marszalek et al. [15] proposed to use scene background
context for action recognition. Lan et al. [16] used the
contextual information between a single person and a group
for better action and group activity understanding. Most
recent work studied joint models of body pose configura-
tion and object locations, for example, Gupta et al. [17],
Wang et al. [11], Yao and Fei-Fei [18], and Pei et al. [19].

But most of these work detect contextual objects through
object recognition jointly with poses in static images, and
the motion patterns are often not represented, except in Pei
et al. [19].

In summary, the literature in human action recognition
has made major progresses in various aspects; however,
these work still have not covered the full spectrum of
actions in space and time complexity.

1.2 Overview of Our Method
Motivated by the various shortcomings in existing methods
and the need to cover actions of different space-time
complexity, we present an APT model for recognizing short
term, long term, and contextual actions from real-world
videos. In the following, we overview our model and
algorithm in comparison to the existing methods:

Short-term actions as moving pose templates (MPTs). Short-
term actions or the so-called action snippets [3] refer to
actions observed in three to five frames (0.2-0.3 seconds of
video), and they contain rich geometry, appearance, and
motion information about the action. Fig. 1 shows two
examples for clapping and drinking. A more complex
action is often composed of a sequence of action snippets.
Fig. 2a shows three instances and each instance has three
snippets. By clustering these snippets, which implicitly
aligns them in time, we learn a dictionary of moving pose
templates: one for each snippet shown in Fig. 2b.

A moving pose template consists of two components
shown in Figs. 2c and 2d:

e A shape template having a root window (bounding
box) covering a number of deformable parts whose
appearance is modeled by the HOG features. Like
the DPM model for human detection [10], the
geometric relations between the parts are included
in a Gaussian distribution.



YAO ET AL.: ANIMATED POSE TEMPLATES FOR MODELING AND DETECTING HUMAN ACTIONS 3

Fig. 1. Action snippets contain rich appearance, geometry, and motion information in three frames: 1) the static pose, 2) the short-term motion

velocities (illustrated by blue arrows).

o A motion template specifying the motion of the parts
by the Histogram of Optical-Flows (HOF) features.
We compute motion velocities of parts by the Lucas-
Kanade algorithm [20] to avoid the complexity of
establishing temporal correspondence of parts be-
tween frames, since tracking body parts in cluttered
video is a notoriously hard problem. The same shape
template may have different motion templates, for
example, in the clapping action, the raised arms
could be moving upwards or downwards.

In comparison with the popular STIP representations, the

moving pose templates represent the human geometry,
appearance, and motion jointly and explicitly. Thus, it is a
stronger model.
Long-term actions as animated pose templates. Long-term and
continuous action, such as walking and running can be
represented by a sequence of moving pose templates and
we call it the animated pose template.

The term “animation” has been used in motion picture as a
technique of rapidly displaying a sequence of images to
create an illusion of continuous movement. The famous

clips w/
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action
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(c)Shape
templates
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(d) Motion
templates st
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Fig. 2. Moving pose templates. (a) Training action examples with
annotated bounding boxes for the shape template, (b) three action
snippets with optical-flow map (speed illustrated with color) for its
parts, (c) the shape template has a root bounding box and a number
of parts with HOG features, and (d) motion templates with HOF
features for its parts.

example is the galloping horse [21] created by Muybridge
and is shown in Fig. 3. In this example, it is relatively easy to
track the rider and the body of the horse over frames;
however, it is hard or impossible to track (establishing
correspondence between) the fast moving legs. The displace-
ment of the horse legs is so large between two consecutive
frames that conventional optical flow algorithms will fail.

Gong and Zhu [22] studied the issue of intrackability as a
measure for the entropy of the posterior probability of
velocity. They show that motion in a video can be
partitioned as trackable motion, for which motion corre-
spondence can be computed reliably, and intrackable
motion, for which we need to compute a reduced or
projected representation, such as a histogram of velocity in
an area. The intrackability is affected by factors, such as
object density, image scaling (sampling rate in space and
time), and stochasticity of the motion.

Our animated pose template is a generative model based
on the moving pose templates (or snippets):

e The shape templates between consecutive action
snippets are considered trackable. So we will track
the bounding boxes for the root node and its parts
over time by Hidden Markov Model (HMM) model.
The HMM model captures the spatial constraints on
the movement of bounding boxes between frames
and the transition between the type of pose templates
(label of index in the pose template dictionary).

e The details inside each part are considered intrack-
able, and thus, we calculate the histogram of the
flow without pixel level correspondence.

In our previous work [23], we animated a sequence of
static active basis templates (sketches) without motion
information or correspondence between parts. The current
work is a step forward and the detection results show
improved performance. The limitation of our model in this
paper is our assumption that the human actions are viewed
at a medium resolution and the motion information can be
captured with Optical Flow (i.e., no dramatical displace-
ments between frames). It is beyond the scope of this paper
to study the multiresolution action representation.

Animated pose template with contextual objects. With the
discovery of mirror neurons in monkeys [24], there are
increasing work studying action embedded in the scene

| i

Fig. 3. Five video frames from E. Muybridge’s “galloping horse” [21].




Fig. 4. Actions as interactions between an agent and contextual
objects. Three examples from three action data sets that we use in
the experiments.

contexts. Various research has demonstrated in vision that
objects in scenes support important contextual information
for human action understanding [25], [15], [18], and in
return human action recognition helps identifying the
objects [19].

Fig. 4 displays three examples 1) from the UCLA data
set, 2) from the coffee and cigarette data set [26], and 3) from
the CMU human-object interaction data set [17]. The objects
are annotated with bounding boxes together with the body
parts in training examples, such as the button, trash can,
and venting machine in the UCLA data set. These boxes are
added to the shape templates and, therefore, are trained in
the same process.

In summary, our representation considers the complex-
ities in geometry, appearance, motion, intrackability, and
context in a coherent framework.

Effective inference by dynamic programming in space and
time. Our representation benefits the inference process.
Since the moving pose template has an And-Or tree
structure and the animated pose template adopts HMM in
temporal transition, we can use dynamic programming for
fast inference in two steps:

1. Detecting top candidates for the moving pose
templates for action snippets by dynamic program-
ming; and

2. computing the animated pose templates with con-
textual objects by beam search in time using the top
candidate moving pose templates. The beam search
is a simplified version of dynamic programming as
the number of possible candidate pose templates is
enormous at each frame.

Furthermore, in Section 3 we show that a cascade algorithm
can be used to further accelerate the computation to near
real time.

Learning by semi-supervised structural SVM. To train the
model, we collect annotated parts and contextual objects
with bounding boxes on several keyframes of each video
clips of the same action category, and cluster them into pose
templates using EM algorithm. This leaves the unknown
parameters for our learning algorithm in two groups: 1) latent
variables for the unannotated frames including pose labels
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and part locations, and 2) model parameters shared by all
training samples such as weights for HOG and HOF
features, canonical part locations of each pose, coefficients
penalizing pose-transition and part-deformation.

To learn these parameters, we use a semi-supervised
structural SVM algorithm that iterates between two steps:

1. Learning (updating) model parameters using labeled
data by solving a structural SVM optimization.

2. Imputing missing variables (i.e., detecting actions on
unlabeled frames) with parameters learned from the
previous step and progressively accepting high-
scores frames as newly labeled examples. This
algorithm belongs to a family of optimization
methods known as the concave-convex Procedure
(CCCP) that converge to a local optimal solution.

We test our method on several public action data sets
and a challenging outdoor contextual action data set
collected by ourselves. We demonstrate that our method
is capable of discovering salient poses of actions as well as
interactions with contextual objects. The result shows that
our model achieves comparable or better performance
compared to state-of-the-art methods.

Contributions. Our main contribution is a comprehensive
model—APTs to represent human actions of diverse
complexities in space (geometry, appearance, and context)
and in time (short-term and long-term motion). This model
accounts for the trackability of various components.

As the model is represented in an And-Or tree structure in
space (short-term motion) and an HMM structure in time, it
enables effective inference by dynamic programming in both
space and time, and achieves near real-time solutions in
cluttered videos, as well as results comparable to or better
than the state of the arts in several challenging data sets.

Our model can be trained by the semi-supervised
structural SVM framework for the large number of
parameters. This framework has been successful in the
object recognition task [27], [28].

This paper significantly extended our conference version
[23], where each pose was represented by an active basis
templates without parts, motion, or context objects.

The remainder of the paper is organized as follows: In
Section 2, we introduce the formulations of animated pose
templates. In Section 3, several inference strategies are
introduced for detecting short-term action snippets and
long-term actions. Section 4 presents the learning algorithm.
In Section 5, we present the experimental results and
comparison with other state-of-the-art methods on four
public data sets and a contextual action data set we collected.

2 REPRESENTATION

In this section, we present the formulation of the animated
pose template model in three incremental steps: 1) moving
pose templates for short-term action snippets; 2) APTs to
account for long-term transitions between the pose tem-
plates; and 3) APT augmented with contextual objects.

2.1 Moving Pose Templates

Each action is composed of a sequence of key poses or
action snippets, and the number of poses depends on the
complexity of the action. For example, Fig. 5 displays three
poses for a hand-clapping action from the MSR data set.



YAO ET AL.: ANIMATED POSE TEMPLATES FOR MODELING AND DETECTING HUMAN ACTIONS 5

‘7 Ornode

O And node

Leaf node

Pose 3
Example
Frames
‘ b AN | [ P
{f.f;_- L j; i
S a et e i
Root HoG :.ii?‘ PEVEMIDINR SPrvI o
template et ..::}'.,1'1:.\!‘
‘ pe A o et
- | Ent S
= "Sl’l © ZSS ©
Part HOG_& 0O o Ez:? :57T o © P ey o
Coromoters” 7o ol Rl EZd| ]'\W’: o0 o
= 7 @@ /
1" e " e )i
\ s> Y
/ Y
(11} L L]}
[ | e
Part HoF = (o A [N et
1
templates | s Eﬁ“ e 220oe | IES RS P B
N N e DERNENN I T T
> NS - - I‘rjl F :F:F ‘ TR
}—>t>[+7—> | <N — N 2
N 220 =2

Fig. 5. A hand-clapping action includes six moving pose templates and is represented by a 2-level And-Or tree structure. Each moving pose consists
of a shape template and a motion template. The shape template has one “root template” with HOG features for the entire bounding box at a coarse
level and some (six in this case) “part templates” with finer scale HOG features. These part templates can deform with respect to the root template
governed by 2D Gaussian functions whose mean and variance are illustrated by ellipses. A shape template can be associated with some (two in this
case) motion templates for different movements of the parts and the motion of parts is represented by HOF features. We use small arrows
representing the dominant flow directions. The three shape (static) templates multiplied by two motion templates represent six action snippets in the
And-Or tree, where And-node represents conjunction and Or-nodes switches between alternative choices.

Each pose is represented by a shape template (denoted by
ST) and one of the two motion templates (denoted by MT)
depending on whether the arms are swinging upwards (or
forwards) or downwards (or backwards). Thus, it generates
a total of six moving pose templates organized in a
hierarchical And-Or tree structure.

We denote these moving pose templates by a set

ok (1)

Each shape template ST; consists of a root template ST}
for the coarse level human figure and m templates ST};, j =
1,...,m for body parts:

Qmpt == {].\/I:Pr]:‘Z == (ST“MTZ) L= 1, cee

ST@ = (ﬂ07ﬂ17...7ﬂ7n)- (2)

This is similar to the DPM model in human detection [10].
Each template Tj; is a vector describing the geometry and
appearance with the following components:

1. a;j is the body label a;; € Qpart. Qpare = { figure”,
“head”, “torso”, “lefthand”, “righthand”, ...}. These
parts are different in different actions. In training
video clips, the bounding boxes for the root and parts
are annotated in keyframes for each action. Fig. 6
shows these oriented boxes are then automatically

transformed into rectangular boxes for easy compu-
tation of the HOG and HOF features.

2. Z;j represents the window or image domain for the
root or part templates. This includes the upper-left
corner as anchor point, the window width, and height.
To better align articulated body parts, we allow each
part to rotate in —20 degrees, 0, +-20 degrees. This is
different from the DPM model.

3. Xj; represents the HOG vector extracted at window
Zij. A dense grid of rectangular patches are defined
on the feature pyramid a finite number of scales, and
pixel-level features are aggregated by using a “soft
binning” approach to obtain a cell-based feature map.

4. h;; represents the vector of latent variables of the
template, including its displacement d;; = (dz,dz?,
dy,dy*) with respect to an anchor point and its
rotation df. Similar to DPM, we use a 2D quadratic
function to penalize the displacements d;;. The
deformation is governed by 2D Gaussian functions
whose mean and variance are illustrated by the red
ellipses in Fig. 5. d;; is written in a 4-vector to express
the quadratic function in an inner product form.
Rotation is not penalized.

The motion template MT; is a concatenation vector for
the m-parts:
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i) annotation i) part location

half-body
(frontal view)

full-body
(side view)

Fig. 6. From annotation of articulated limbs to rectangular parts. Column 1
shows the annotation results, which are orientated bounding boxes;
Column 2 shows rectangular part windows derived from the annotation.

s Vim)- 3)

Vij represents the motion of each part. We use a variation of
the HOF features [7]. We first compute an optical-flow map
F using the Lucas-Kanade algorithm [20]. As this optical
flow is not reliable due to intrackability [22], we pool the
statistics over a small cell to form a histogram representa-
tion, similar to the HOF [7]. Each cell is of 8 x 8 pixels, and
we choose eight directions evenly and project the velocity at
each pixel to these directions to extract an eight-dimen-
sional vector, which is then accumulated over all pixels at
each cell. The result value is rescaled into [0,1) using a
sigmoid transform. Vj;; is a concatenated vector for all the
cells in the part j. Our design is slightly different from the
HOF feature, which has four bins for four different
directions and one bin for static (absolute speed below a
threshold) [7]. We find empirically that our construction
with finer orientations and continuous scale works better.
For computational efficiency, when constructing a HOF
feature pyramid, we only compute optical flow maps at
three octaves of the image pyramid, the feature maps of the
rest of the scales are obtained via interpolation.

Certain parts, such as the head and torso, do not have
motion vector in the clapping action. Their features will be
all zeros following the above HOF construction.

MT; :( Vit, Via, - ...

In summary, a hypothesized moving pose template mpt (")
at a certain time frame is a long vector with the following
variables: its label ¢®) € {1,2,...,n}, geometry {Z
0,. m} in the feature pyramld deformatlon {d
Jj= 1 .,m}, appearance {X :j=0,...,m}, and motion
{Vig.t) :j=1,...,m}. The model of each template MPT;
includes an equal length parameter w; for its appearance,
deformation, and motion features:

()

wj (wA w? WM ). (4)

It will be trained through the structural SVM in the next
section.

The hypothesis mpt®) is evaluated by a score function
for £ =i:

Fig. 7. We use two types of HMM for state transitions. (a) A 4-state
ergodic HMM. The circles denote states (e.g., pose label in our paper).
The arrows denote probabilistic transitions between states. (b) A 4-state
left-right Hidden Markov Model.

S(mpt")) = 2 <wL], X<t >+ Z <wZ], d:

(5)
+ Z <wM V<t

/R

The score function can be interpreted as a log-posterior
probability up to a constant. The inference algorithm
searches through all the possible mpt®) in a feature
pyramid at time ¢ for the highest score moving pose
templates, and output a top candidate list.

2.2 Animated Pose Templates

An APT is a sequence of moving pose templates following a
transition probability p, and we can write the possible APTs
in a time interval [¢*,t°] by a stochastic set:

Qapt = {apt [t°,t°] = (mpt(m, cey mptwi))}. (6)

The sequence is governed by the Markov chain probability:
"
p(mpt@'g)) Hp(mpt<t+1) | mpt(t>). (7)
=t

The initial probability p(mpt*")) is considered uniform over
all the MPT’s in an action. The transition probability

p(mpt™ | mpt") includes two components:

1. Transition probability p(¢*V) | ¢")) for the MPT
labels ¢® ¢ ¢ {1,...,n}. This is the classic
HMM model. As Fig. 7 shows, we use two types of
HMM model. The first is an ergodic HMM allowing
for flexible transitions between any MPTs, and in
practice this matrix is sparse. The second is a left-
right HMM. Fig. 8 shows two examples for the two
HMMs, respectively. For repeated actions, like
waving hands, there are some discrepancies between
different people and, thus, end up with occasional
irregular transitions. For punctual actions, like
picking up, pushing button, which have a strict
order, the probability of staying at the current state
determines the speed of the action. This can be
affected by the sampling rate.

2. Tracking probability p(Z**V) | Z®) for the move-
ment of parts between frames. We assume that given
the root template position and scale, the parts are
conditionally independent, as Fig. 9 illustrates.
Therefore, the probability is factorized:
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(a) Egrodic transition matrix (b) Left-right transition weight

Fig. 8. Left: Transition matrix of the “waving hand” category which has
six moving poses displayed alongside each row (state). For clarity, we
only show nonzero transition probabilities. Right: The transition matrix
for another action category: “picking up” in a left-right HMM.

p(Z(t+1) ‘ Z(t)) — Hp(Zéf:}))j | Zé(tﬁ))j)' (8)
0

The tracking process does not account for matching the
(1) (1) e :
appearance features X;; and X;;" ' within the window,
and this window patching from Z*) to Z!*) may not be
consistent with the motion flow in MT®. Because parts
may either move too fast or have no reliable feature to track
as we explained about the intrackability issue.

As p(Zg,ﬁ))]|Zé(t,)) ) is a Gaussian probability for the
position (z,y) and scale s changes, we can express the
quadratic function by a linear size over a six-dimensional

¢
vector ¢\ = (dzy, d?;, dyij, dy?;, dsqj, ds%).

Then, the logarithm of the transition probability

p(mpt*) | mpt®) can be written as a score function:

n
S(mpt | mpt®) = A (¢ | o0 4 Z <wg<t)j, (bg,,))j>.
=0

(9)

In the above definition, A is the logarithm of p(¢(+1) | ¢1),
and w%j is the six-dimensional parameter for the quadratic
function, which will be learned through SVM training.

In summary, in the video an animated pose template
hypothesis apt[t®, ‘] has the following score, following (5)
and (9):

t¢ -1
S(apt[t’,]) = > S(mpt™) + )~ S(mptV | mpt?).
t=ts t=ts

(10)

The inference algorithm will search for the apt that
maximizes this score, which is equivalent to maximizing the
posterior probability except that the parameters are dis-
criminatively trained in SVM.

2.3 Animated Pose Templates with Contextual
Object

We augment the MPTs by adding contextual objects as
extra parts. Let Qup = {“ground”, “button”,“cigarette”,
“cup”,...} be the set of possible objects involved in the
human actions. These objects can be divided in two subsets
depending on the information flow between the object
and pose:

(Zy, ')

(Zé+l Zt+1)

—r
L

Z;

t+1
Zt

t+1 t+1
Zy Zn

t t+1

Fig. 9. The animated pose templates model assumes that parts are
independent of each other given root template location and pose label.
This assumption enables faster computation in our dynamic program-
ming algorithm.

1. Weak objects. They are either too small or too diverse
in appearance to be detected. Such as the cigarette,
the ground. Therefore, action recognition provides
contextual information for object recognition.

2. Strong objects. They are more distinguishable on their
own, such as cup, torch when itis turned on, and trash
can. Detecting such objects helps action recognition.

For example, Fig. 10a illustrates an instance of an action

that consists of three MPTs sequentially: walking on the
“ground” to approach the vending machine, pushing
“button,” and picking up the merchandise at the “outlet.”
We treat these objects in the same way as the body parts in
the MPT models, except that they do not have motion
vectors. Suppose m’ contextual objects are involved in a
moving pose template MPT; € Qypr. Then, these objects are
added to the shape templates ST; with new part templates:

s Tt )- (11)

Each object template Tj;,j=m+1,...,m+m' has the
following variables:

CO = Ty, ..

a;j € Qi for its name;
Z;; for the bounding box;
X;; for the HOG feature inside Z;;; and
d;; for its deformation with respect to the interacting
body part. For example, the button with respect to
hand,

The labels and bounding boxes are annotated in key-
frames of the training video. Thus, we add to the score
function S(mpt®) by the following terms:

m+m’ m+m/

S0y = 3 <wd x>+ 3 <wl dl >
j=m+1 J=m+1

This score is added to (10) for inference and learning.

For weak objects, the inference process localizes them
using the inferred body parts and the quadratic functions
<wP,d"> as constraints between the positions of the bod

170 g p y
part and object. Fig. 10b shows an example. After detecting
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(a) Action recognition using contextual objects

Deformation
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(b) Semantic maps for contextual objects

Fig. 10. Contextual objects in action recognition. (a) The APT includes three sequential steps (or MPTs): walking on the “ground” to approach the
vending machine, pushing “button” at the vending machine, and picking up the merchandise at the “outlet.” The open squares are the body parts and
we add three new nodes in solid squares for the contextual objects: ground (in purple), button area (green), and outlet (yellow). These objects have
spatial relations with the low-leg, forearm nodes. In the second row, we show the learned HOG templates parts and their typical deformations by the
ellipses. The bottom row of the figure shows the actual detection results of body parts on a video sequence. (b) The semantic maps for contextual
objects generated by detected actions and person’s body parts. Different colors indicate body parts and the objects that interact with them. The
purple region is where feet are detected, and thus implies a standing point on the ground. The green region is where forearms are detected in a
“pushing button” MPT, and thus implies a button. The yellow region is where forearms are detected while the person is in a picking-up MPT, and thus

implies the outlet.

some purchasing actions in these scenes, we can derive the
various contextual objects using different colors. The purple
region is where feet are detected, and thus implies the
ground. The green region is where forearms are detected in a
pushing button MPT, and thus implies buttons. The yellow
region is where forearms are detected while the person is
in a picking-up MPT, and thus implies the outlets of the
vending machines.

For strong objects, such as the cup in the drinking action
in Fig. 11, the HOG feature is helpful in discriminating
many other human activities.

3 INFERENCE

3.1 The Objectives of Inference
Our inference integrates the following tasks in a single
framework by dynamic programming in space and time:

1. Detecting the action snippets in every frame ¢ by
fitting the best moving pose templates mpt. This
includes localizing the parts Z(*) and classifying its
class label (). As a by-product, the inference also

predicts the locations of contextual objects and
aligns the training examples in time.

2. Recognizing the animated pose templates in certain
interval [t°,¢°] based on the moving pose template
scores and the transition probability.

All these variables are included in apt, and thus,
the objective is to optimize the score functions in (10)
for a given time interval [t°, t°]:

apt*[t’,t°] = argmax S(apt[t’,t°]). (12)

One may interpret the SVM-trained score function S
as a log-posterior probability, but it is different from
a log-posterior probability in the Bayesian frame-
work because it does not explain the whole video in
[0,N] or the images not covered by the bounding
boxes of the root node.

3. Detecting multiple actions in a video. When a long
video includes multiple and co-occurring actions, the
inference is supposed to segment the actions in space
and time. However, in most of the videos, such
complex segmentation issues do not occur. To detect
multiple actions, we use a sliding window in an
image pyramid to calculate the MPTs and a sliding
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D Head

Torso

[ cup

drink from cup

Fig. 11. A drinking action snippet (MPT) with a part for the head and five
parts of the shoulder and chest. The cup is an additional part interacting
with the head.

window in all time interval lengths, say between 3
and 60 frames, to calculate the APTs. Then, after
selecting the APT with highest scores, we remove all
the MPTs associated with it, and calculate the next
best APT until no more APTs have scores above a
certain threshold. Therefore, the approach is a greedy
pursuit on top of the dynamic programming.

3.2 DP for Detecting MPTs in Space
We detect the action snippets for every three frames by

maximizing the score functions in (5):

mpt® = arg max S(mpt). (13)

Given an image frame 1), we build an image feature
pyramid and extract the HOG features at 18 orientations
and three octaves (10 scales per octave). This is similar to
the deformable part-based model in the literature, and the
difference is that we allow the part to rotate. We also need

4 P gy
T

2 - 2

T
1 _’ o y "7‘1

to calculate the HOF feature from three frames I, J(¢+1)
I0+2) by the Lucas-Kanade [20]. We first compute two
optical flow maps between frames [I"), I")] and frames
[1t+D)] [(+2)], respectively, then we derive HOF features by
pooling over an 8 x 8 pixels window in space and two
optical-flow frames in time. Each HOF feature has eight
bins representing eight directions, and the value of each bin
equals to the projected sum of optical-flow vectors,
modulated by a sigmoid function.

As the moving pose template is decomposed in an And-
Or tree representation, it can be solved through standard
Dynamic programming algorithm. We apply a cascade
algorithm similar to the star-cascade detection method [29].
As this is standard in recent practices of detection with
deformable parts model, we refer readers to the related
literature [10] for additional details. The speed for detecting
a single action class is about 2 frames per second (assuming
that the optical flow maps are precomputed) for video
resolution of (240 x 320) pixels using an i-7 PC.

3.3 DP for Detecting APTs in Time
At each frame, we output candidate MPTs through the
dynamic programming algorithm sequentially. Each time
the dynamic programming method finds a MPT with the
highest score S(mpt), it outputs the MPT as a candidate if
its score is larger than 7. Then, we will block the window of
the current candidate and find the next best MPT in the
image until the best score is lower than 7. Threshold 7, is
determined using the probably approximately admissible
threshold strategy [29]. It is essentially the lowest score for
detecting the presence of a person in the training set.

In a given interval [t*),#)] scheduled by the sliding
window detection process, suppose we have a series of
MPTs detected over these image frames, and store them in
an array of index:

LW}t e [t 1),

{a(t) € {0,1,.. (14)

n) is the number of MPT candidates at frame t. These
candidates are illustrated by the dots in Fig. 12 with color
indicating the type of MPT.

Then, we compute the following two quantities:

1. The MPT score for candidate a(t):

s(a(t)) = S(mpt,). (15)

P 1 y 74"/7

. L

/1

I ey
7 _,’f’ p
3 /

Fig. 12. Action detection with dynamic programming. Each frame has a number of action snippet candidates visualized with a number of colored
balls. Green stands for “clapping,” red stands for “hand waving,” and blue is “boxing.” Red and green lines represent two detected APTs.
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If frame ¢ has no detected MPTs (i.e., nt) = 0), we set
S(a(t)) = —inf. We do not go back to adjust the
moving pose templates based on temporal informa-
tion, which could be very expensive and do not
improve the results significantly.

2. The transition scores between any two candidates in
consecutive frames:

s(a(t),

Thus, we can simplify the function in (12) by a standard
DP program on finite state space:

a(t+1)) = S(mpt,,q) | mpt,,).  (16)

t—1

apt*[t’,t°] = arg max TZ s(a(t)) + Z

t=t* t=t*

We outline the algorithm below.

Algorithm 1. Action detection algorithm.
Input: Video I[t; : ¢;], thresholds 71 and 7;
Output: Detected actions in a list List;
Perform MPT detection on each frame and add
a candidate mpt, to a candidate list List¢ if
S(mpt;) > 7 by (5)
Connect all candidates at consecutive frames

mpt( ) & mpt(tJrl of the same action t%lpe and
compute their transition cost S(mpt | mpt ) by (9).
repeat

Find an optimal path apt using DP, and compute
its S(apt) = s by (10).
if s < T2 then
return Listy;
else
Remove all the MPTs in apt from Listc and add
them into Listy
end if
until Listc = 0.
return Listy;

To determine the optimal threshold for 7, we examine
all positive training examples. For each action pose
template apt;, we pick the highest value for threshold 7
so that it does not prune optimal configuration on the
positive examples.

4 LEARNING

We adopt a semi-supervised Structured SVM method for
learning the MPT and APT models. To be consistent with
the SVM literature, we simplify the notation for clarity.

Suppose we have N training frames with n structured
labels y;,i =1,2,...,n, where the first n frames are
annotated with structured labels y; € ). y; includes the
MPT and APT labels and the bounding boxes for the roots
and parts in these actions. The remaining frames have
hidden labels h; € Y,i=n+1,...,N:

D = ({zi, yitiy, {zi, hi}f\inﬂ).

z; is the feature extracted from the ith example including
the HOG and HOF features given the underlying window
boxes Z;.

(18)

The learning method proceeds in three steps in the
following;:

1. Initializing the MPT and APT models. We cluster the
annotated frames into a dictionary of MPTs A
(i.e., key poses) using EM. These MPTs correspond
to different views and motion velocities of the
moving pose templates. The algorithm is based on
locations of annotated parts, and finds clusters in the
joint space of HoG and HoF features.

We also initialize the transition probabilities
A(£%+D) | ¢®) based on the cluster labels by counting
the frequency of transitions.

2. Training the MPT parameters by structured SVM. Using
the annotated frames and the MPT labels, we train
the MPT parameters w = (w?,w” wM) for appear-
ance, deformation, and motion by Structured SVM.
This is posed as a multiclass classification problem.
Let function ¢(z;,y;) denote a feature vector ex-
tracted from a frame ¢ with MPT label y;, and
A(yi, §;) a loss function, then the optimal parameters
w can be learned by minimizing the following
function of Structured-SVM [30], [31]:

C n
+E;§m
= ¢(xi,9i)) > Ay, 9i) — &
(19)

1
min [l

s.t. max wT(¢(=’17z'7 i)
gey

This optimization can be solved efficiently with a
cutting-plane algorithm [30].

3. Training the APT model by semi-supervised structural
SVM (S*V M). In this step, we add unlabeled frames
into the training process and incorporate the training
of transition porbabilities between the MPTs. We
define an upper bound function for the risk of the
latent Structured SVM:

g(@, y;w) = maz{0, Ay, §) + o' ($(=,9)

— max oz, h"))}.

The latent SVM learning process optimizes the
following objective function over w:

w= arg IIllIl < lwlly + Zg Tiy Yis W

]\7
+ Z maxg x“h,,w))

i=n+1 he

(20)

This function is a sum of convex and concave
functions and can be optimized by the CCCP
procedure iteratively.

In experiments, we find that if we add all unlabeled
frames into the learning process at once, the results can go
very bad. The difficult frames may have incorrect labels h;
that leads to wrong parameters w and the algorithm can go
into a downward spiral from here.

Inspired by the curriculum learning strategy introduced
in [32], we add the unlabeled frames gradually. We add the
frames with good scores using the current parameters w, so
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that the structured labels h; is close to the truth. This helps
the algorithm converges smoothly to a good local minimum.

We now modify the above optimization problem by
introducing binary variables v; with v; = 1 meaning that this
sample will participate in the training. v; = 0 will ban the
frame in this iteration. Thus, the parameters w is updated
iteratively by the following mixed-integer program problem:

n

|1
Wil =arg min [5 lewelly + D gl is wi)
i=1

weR?
N 1 N
+ Z v; (t) I}rLlea;(g(xi, hiswt) — N Z UL(t):|
i=n+1 i=n+1

Here, ¢t indexes the iteration.

5 EXPERIMENT RESULTS

5.1 Data Sets

We test our animated pose templates on five data sets, four
of which are public data sets:

1. The KTH data set [1];

2. The Microsoft Research Action II (MSR) data set [33];
3. The Coffee & Cigarette data set [26]; and

4.  The CMU human-object interaction data set [17].

The fifth data set is a contextual action detection data set we
collected at UCLA campus.

Some of the public data sets have annotations, for
example, the MSR and C&C data set have bounding boxes
and labels for each action. But none of them include
detailed annotations (i.e., location of body limbs at several
keyframes) that are required by our algorithm. Therefore,
we manually added annotations to all of the training data.
The extra annotations and the UCLA data set used in this
paper are available for download from our website: http://
vcla.stat.ucla.edu/data set/animated_pose.html.

5.2 Action Classification on KTH Data Set

The KTH data set contains six types of human actions:
walking, jogging, running, boxing, hand waving, and hand
clapping. Each action is performed several times by
25 persons. We follow the standard experimental setting
of KTH data set as in [1]. Among the 25 persons, 16 of them
are used for training and the rest nine are used for testing.
The training set contains 2,391 sequences. Since the data set
has clean background and each video has one individual
action from begin to end, it is easy to locate the actions of
interest. Therefore, we only test the classification aspect of
our model. To operationalize this, we learn APT for all
action classes using the training set. On each testing video,
we use Algorithm 1 to detect actions from the entire clip.
There might be multiple detections in one clip because for
certain action classes (e.g., jogging, running, etc.), the
person goes outside of the image boundary between
repetitions. The final classification of a video is the class
that logs the longest time in all detections.

We use up to 40 annotated keyframes (evenly distributed
in time) from each training video. Each keyframe has
10 annotated parts: head, torso, upper/lower arms, and
upper/lower legs. For each action class, we cluster these
keyframes into three poses, and the number of parts for the

TABLE 1

Comparison on the KTH Data Set
Supervision | Work Average
Schuldt et al. [1] 71.71%
Dollar et al. [8] 80.66%
Weakly- Niebles and Fei-Fei [34] 83.92%
supervised | Laptev et al. [7] 91.81%
Liu and Shah [35] 94.16%
Kovashka and Grauman. [9] 94.53%
Cao et al. [33] 95.02%
Sadanand and Corso. [36] 98.20%
APT with latent parts 84.70%
APT, 10 annotated keyframes 92.70%
Semi- APT, 20 annotated key-frames 94.24%
supervised | APT, 40 annotated key-frames | 94.53%

MPT model is 10, same as the numb of body parts. For
comparison, we also test an APT model with latent parts
(same as DPM [10]). The initialization procedure for this
type of model is also down automatically in two steps:
1) clustering frames into poses with a k-means algorithm
using motion cues; 2) initializing the parts using a method
similar to DPM.

Table 1 compares the accuracy of our method with the
previous works on KTH data set using same experimental
setting. The performance of APT with latent parts (and no
additional annotation) is not very good, which we believe is
mainly due to a bad local-minimum model caused by poor
initializations. But with as few as 20 annotated keyframes,
the full APT model yields performance that is among the
best ones. It is also interesting to see that the effort of
doubling the amount of annotated keyframes generates
diminishing returns.

5.3 Action Detection on the MSR Data Set

The MSR data set includes 54 video sequences, each of
which contains three types of actions, for example, hand
waving, clapping, and boxing. These videos are taken with
cluttered backgrounds, such as parties, outdoor traffic, and
walking people. Actors are asked to walk into the scene,
perform one of the three kinds of actions, and then walk out
of the scene with these backgrounds. Each video clip is
around 1 minute, while most action instances finish in
10 seconds. Throughout all the videos, people in the
background are unconstrained, talking and walking. Unlike
the KTH data set, there are multiple actions performed in
each frame. Therefore, it is necessary to locate the action of
interest from the scene. The original data set has annota-
tions for bounding boxes and action classes.

A number of papers have reported action detection
results on this data set such as [37], [33], [38]. Except [38], all
the papers used cross-data set recognition setting where
KTH data set was used for training while MSR data set was
used for testing. Cao et al. [38] used a conventional setting
where half of the videos were used as training and the other
half were used for testing. They reported better results than
the other papers since they do not use cross-data set setting.
We follow the same experiment setting as Cao et al. [38],
that is, we use half of the videos for training and the
remaining half for testing. Since this data set is more
interesting than the KTH data set, we present more detailed
results here.
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Fig. 13. Detection results using the moving pose templates on the
“waving” category in the MSR action data set. Most of the poses are
correctly identified with properly localized parts. Please see Fig. 2 for the
illustration of optical flow directions.

For model initialization, we manually annotated all the
frames of the training set (i.e., all the video clips with odd
numbers) with body parts. Since all the actions in this data
set are only upper-body related, we chose to annotate only
six upper-body parts: head, torso, upper/lower left/right
arm. The number of parts for the APT model is also set as 6.

Fig. 13 shows the detection results of moving pose
templates on the “waving” category. Our method can
correctly identify the pose, localize the parts, and estimate
the velocity flows of each part. The motion is illustrated in
colors in the same way as in Fig. 2. We take two criteria for
quantitative performance comparison.

First, we treat the testing videos as action snippets and
evaluate the testing performance using “False positive per
image/Recall” criterion. The results are shown in Fig. 14a.
The “boxing” class achieves the best performance because
some poses of the “waving” and “clapping” classes are
quite similar and, therefore, get confused with each other.

Second, we test action detection by searching over all
possible combinations of starting and ending frames with
15 frames time step. For example, if the testing video has
60 frames, we test [1: (2 —60)],[2: (3 —60)]...,[58 : (59 —
60)] frames, thus a total of 1,711 testing instances. The boxes
bounding the action over many frames form a cuboid.
Following the same criterion used by Cao et al. [38], we
denote the cuboids of ground truth as @Y = {QY, QJ,...,

91, and the detected cuboids as Q= {Q¢, Q4,...,Q%}.
We use HG(QY) to denote whether a ground-truth cuboid
QY is detected, and TD(Q?) to denote whether a detected
cuboid is correct:

i N Q|
1, if 3Q7, s.t.@kil>67
HG(Q) = b ot g 20
0, otherwise, (1)
Qi N QY|
1, if 3QY, st.———L > b,
TD(Q)) = Q]

0, otherwise,

where | - | denotes for the area of the cuboid, and 6, 6, are
parameters to judge the overlapping ratio. Similar to [38],
we set the §; and 62 as 1/4 in this paper.

Based on HG and TD, precision and recall can be
defined as

1M
Precision = i ; HG(QY), (22)
1
— d
Recall = N; TD(QY), (23)

where M is the number of ground-truth cuboids and N is
the number of detected cuboids.

Given a collection of detected cuboids, we can compute
the Precision-Recall curves based on (22)-(23). We then
compute the area under curve (AUC) value for the three
actions and compare our results with the best performing
algorithm previously reported on this data set' [38]. The
comparison results are shown in Fig. 14b. It is clear that
APT model outperforms the previous work when full
supervision is used. We further analyze the results by
looking at the following aspects.

Amount of keyframes used. We test several different
settings for the amount of annotated keyframes used for
model learning. From the results, we find that more
annotations lead to better detection performance, but the
improvements are diminishing. The difference between 25
and 50 percent of annotations is much more significant than
the differences between 50 and 100 percent.

Number of poses. We investigate the sensitivity of APT
method against the number of poses. As illustrated in
Fig. 14c, reducing the number of poses to “2” hurts
performances in both “waving” and “clapping’ classes.
But increasing the number to 4 or 5 (not illustrated in this
figure) does not improve performances in all categories. It
seems that “3” is a sweet point for the number of poses,
therefore we use it as a default setting.

Contribution of “shape” and “motion” parts. We compares
the performance of “full” APT model against models with
only “shape” or “motion” parts in Fig. 14c. From the results,
we notice that “shape” parts achieve better performance
than “motion” parts, which is understandable because the
resolution of HoF feature is rather low comparing with HoG
features. It is also worth noting that for the “boxing” class
“shape” parts are much more important than the “motion”
ones. In fact with “shape” parts alone, our model achieves
better performance on this class than previous methods.

Part localization accuracy. Since localization of body-
parts is a by-product of the MPT model, we test its
accuracy to shed some light into the performance of our
model. For comparison, we choose a state-of-the-art
method in [12], which has code online, as baseline. A
few details for reproducibility:

1. For the baseline model, we use 17 parts (upper body)
and five mixtures per part;

2. Because only half of the MSR data set has part
annotations, we use a leave-one-out strategy for
training and testing on the annotated videos;

1. Courtesy of L. Cao, author of the previous work.
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Fig. 14. Performance evaluations on the MSR data set. (a) Detection performance of three action snippets using MPT model. The “boxing” class is
the best because some poses of the “waving” and “clapping” classes are easily confused with each other. (b) Performance comparison in terms of
the area under Precision-Recall curve against the amount of annotated keyframes used to initialize training. Here, 100 percent means that all the
training frames are keyframes. ICME2010 is the best previous method reported on this data set. (c) Performance against the number of poses used
for each class. Comparisons between using full model and using only “shape” or “motion” parts are also included.

TABLE 2
Parts Detection Accuracy in Percent Using the Standard Criteria of PCP

Method Head Torso U. arms L. arms Overall
baseline [12] | 99.4, 99.6, 96.2 100, 100, 96.5 87.6,90.3, 73.5 | 39.3, 48.7, 45.3 75.6
MPT-shape | 984, 98.6,95.3 | 100, 96.5, 95.4 | 80.4, 85.2, 69.5 | 32.4, 38.5, 35.6 70.3

MPT-full 99.6, 99.4, 96.8 100, 100, 96.1 89.5, 91.2, 70.4 | 45.6, 52.6, 40.1 76.2

”

waving,” and “boxing,” respectively.

There are three numbers in each cell, which represent, from left to right, “clapping,

o |

4 (POS)

8 (NEG)

2 (POS)

6 (POS) 9 (POS)

Fig. 15. Detection performance of action snippets on the coffee and cigarette data set. We only show the bounding boxes for the human head and
the boxes on the contextual objects: the hand holding a cup or cigarette.

3. When evaluating part localization accuracy, it is a  outperformsthebaseline onaverage, and particularly in body
convention to assume that person detection results limbs. The motion parts give the MPT model a noticeable
(i-e., bounding boxes of persons) are given. In our boost. Itis reasonable because that the limb parts have a lot of
case, since we are not interested in background blurring, self-occlusion, and foreshortening. Therefore, they
persons, we use the cuboids from the ground truth  re very hard to detect with only shape information.
as the bounding boxes;

4. The results are evaluated using a standard PCP 5.4 Coffee and Cigarette Data Set

The Coffee and Cigarette data set is collected mostly from
the movie “Coffee and Cigarettes” and some training data
are from a different movie named Sea of Love and a controlled
lab video. It has 11 short stories each with different scenes

criteria [39], which considers a part correct if its
segment endpoints lie within 50 percent of the
length of the ground-truth segment from their
annotated locations.

The evaluation results are illustrated in Table 2. Each cell of
the table shows three numbers, which are, from left to right,
the performance of “clapping,” “waving,” and “boxing,”
respectively. We test both MPT with “shape” parts and MPT-
full. From the Table 2, we can see that the MPT-full model

and actors (See Fig. 15 for sample shots). This data set
focuses on two action classes: “drinking” and “smoking.”
For the drinking actions, there are 106 samples for training
and 38 for testing. For the smoking action, there are
78 samples for training and 42 for testing. In each example,
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Flashlight

Answering

Fig. 16. Examples of detection results on the CMU data set.

we manually choose and annotate 40 keyframes (evenly
spaced in time) with six upper-body parts and one
contextual object (i.e., the hand holding a mug or a cigarette).

For this data set, we show some detection examples in
Fig. 15. We adopt the evaluation protocol used in [26]: an
action is correctly detected if the predicted spatiotemporal
volume detection overlaps at least 20 percent with the
ground-truth volume (or cuboid). Let A be the annotation
cuboid for an event as ground truth. Our method outputs
two cuboids H and O, respectively. The overlap between H
and A is given by (ANH)/(AUH). We do not calculate
the overlaps for the objects as the object cuboids often lay
within the human cuboids. Table 3 reports the average
precision (AP) of our methods and previous work [26],
[40], [41].

We show three results: one uses the MPT without
temporal information; one uses the APT with annotated
contextual parts, and the other use the APT without
manually selected parts (similar to DPM, locations of parts
are treated as latent variables and are initialized with a
heuristic procedure). The table shows that our method
achieves better performance on this challenging task. Also,
we observe that APT with latent parts performs worse than
APT with contextual parts. The reason we believe is that
with strong supervision on the contextual parts, the SVM
algorithm is forced to learn a better template for the objects
from roughly aligned examples. Without supervision, the
information of contextual objects is likely to get lost during
the learning process because these objects have bigger
variations in terms of location and appearances than other
body parts.

5.5 CMU Human-Object Interaction Data Set

The CMU human-object interaction is comprised of
60 videos with 10 actors performing six different actions,
i.e., drinking from a cup, spraying from a spray bottle,
answering a phone call, making a phone call, pouring from
a cup, and lighting a flash light. Some examples are shown
in Fig. 16. For each action, the videos are split into five

TABLE 3
Results on Coffee and Cigarettes
Supervision | Work Drinking  Smoking
Semi- MPT w/ contextual parts 29% 14%
supervised | APT w/ contextual parts 58% 31%
APT w/ latent parts 43% 26%
Weakly Laptev et al. [26] 43% -
supervised Willems et al. [40] 45% -
Klaeser et al. [41] 54% 25%

AP performance for spatiotemporal localizations in percent. The first two
rows report the performance of our algorithm. The remaining results are
from recent literature.

Drinking

Calling Flashlght

training and five test videos. Unlike the C&C data set, these
videos are shot in controlled conditions inside a laboratory
with a static camera and a static background of uniform
color. Like KTH, each video sequence has one individual
action from beginning to end. We train an action classifier
for each of the six actions using the training videos from the
other classes as negative examples. Similarly to the C&C
data set, we manually annotated 40 keyframes of each
training example with six upper-body parts and one
contextual object.

Given a test video, we evaluate the scores for the six
actions and return as class label the one with the highest
score. Note that the sliding window mechanism is not
required, as the videos are already temporally segmented to
the action extent. To minimize the effect of overfitting, we
apply a fivefold cross validation and measure the average
class accuracy as in [17].

Fig. 17 shows the confusion matrix for the 6-class
classification results. The average classification accuracy is
listed in Table 4. Interestingly, the moving pose template
model with contextual objects already achieves 80 percent
accuracy. The performance obtained with the APT with
contextual part model is comparable to the result from [17].
The difference between 90 and 93 percent is actually just one
misclassified test sample. This is an excellent result,
considering that the method in [17] requires a static camera
and background, rendering it unsuitable for realistic videos
such as C&C. Moreover, our method needs substantially less
manual annotation for training than [17]. For example, they
need the location of the person’s hand and a pixelwise
segmentation of the object in each frame of the training
videos. The confusion matrix in Fig. 15 reveals that most
misclassifications are due to the similarity between the
actions “lighting torch,”, “spraying,” and “pouring” water
which were distinguished in [17] with a cue based on the

answer
call
drink

light

pour

spray 20

& G %y pe) S
0‘%@, 7 ,,/7* Qs oy, /o/@j/

Fig. 17. Confusion matrix on the CMU data set.
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TABLE 4
Average Classification Accuracy on the CMU Data Set
CMU Videos
MPT w/ contextual parts 80%
APT w/ contextual parts 90%
APT w/ latent parts 68%
Gupta ef al. [17] 93%

color of the action-object, which requires manual pixelwise
segmentation of the object at training time.

It is also interesting to see that APT with latent parts
method performs very poorly on this data set (even worse
than MPT). This is in fact understandable because, while
C&C data set is mainly about localization, CMU data set is a
classification test. Therefore, it is much more important to
distinguish the subtle difference between classes. This
confirms our intuition that modeling contextual objects is
the key for solving such a problem.

5.6 UCLA Contextual Action Detection Data Set

Our data set consists of videos of 10 scenes taken from
everyday living places such as campus plaza, food court,
office, corridors, and so on. Each of these videos contains
about a dozen instances from the following event list:

purchase from a vending machine,

use an elevator,

throw trash into a can,

use a water dispenser,

pick up newspapers from a paper-stand, and
6. sit down on a chair then get up and leave.

A S

Most of these categories involve multiple action phases and
involve contextual objects. Fig. 18 illustrate a snapshot of
the data set. All the events are annotated with six body
parts: “head,” “torso,” “upper arm,” “lower arm,” “upper
leg,” and “lower leg.”

What made this data set different special is that its
contextual objects are static in the background. Even though
it is very hard to directly detect some contextual objects
such as “vending machine button,” we can exploit the fact
that these objects can be represented as hot zones within the
scene. Therefore, we do not directly annotate the contextual
objects for this data. Instead, we divide actions in each
video into two halves and use the first half to learn a
semantic map of hot-zones, that is, to build a 2D histogram
for each part of interest (in this paper, we consider two
parts lower arm and lower leg). Some examples are shown in
Fig. 10b. Since these semantic maps are learned from the
“ground truth,” they are very accurate. Even if without
ground truth, we can imagine ways to automatically learn

”ou

Fig. 18. Snapshots from the UCLA action data set.

TABLE 5
Detection Performance on the UCLA Data Set

Event

[ APT-full | APT w/ latent parts |

vending machine 82% 43%
elevator 92% 67%
throw trash 86% 58%
water dispenser 87% 62%
news-stand 89% 4%
sit down then get up 90% 66%

these hot-zones by accumulated over many instances of
actions. This is, however, only feasible in a much larger data
set and, hence, beyond the consideration of this paper.

Applying these semantic maps, we then use the second
half of our data for testing. To minimize the effect
of overfitting, we apply a fivefold cross validation by
randomly choosing different combinations of training and
testing actions. The average detection precision is measured
for six event classes as shown in Table 5. Since the APT with
latent parts method does not use the contextual information,
it is much worse than the full APT model.

6 DiscussioN AND FUTURE WORK

Human actions are complex patterns and most of the
current data sets are quite constrained and there is still a
long way to go before robust and general vision system can
work on generic scenes.

Our model is limited and, thus, can be extended in the
following aspects. First, it is two-dimensional and thus
view-dependent. For different views, more pose templates
are needed. Second, it does not have rich appearance model
to account for human clothes at high resolution. The HOG
feature for each body part needs more than one templates to
account for the intraclass variations. We plan to address the
above two problems by using the And-Or graph represen-
tation developed by Rothrock and Zhu [42], where different
views are modeled by Or-nodes, and each node in the And-
Or graph terminates in low resolution. Third, we should
also learn the action and contextual objects in 3D model, for
example, using Kinect as training data. This will help the
action recognition to new scenes for robust performance.
Fourth, we are connecting the action recognition with long-
term event recognition with goal and intent reasoning as it
was shown in [19].
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