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Online Object Tracking, Learning and Parsing
with And-Or Graphs

Tianfu Wu, Yang Lu and Song-Chun Zhu

Abstract—This paper presents a method, called AOGTracker, for simultaneously tracking, learning and parsing (TLP) unknown
objects in video sequences with a hierarchical and compositional And-Or graph (AOG) representation. The TLP method is formulated
in the Bayesian framework with a spatial and a temporal dynamic programming (DP) algorithms inferring object bounding boxes
on-the-fly. During online learning, the AOG is discriminatively learned using latent SVM [1] to account for appearance (e.g., lighting and
partial occlusion) and structural (e.g., different poses and viewpoints) variations of a tracked object, as well as distractors (e.g., similar
objects) in background. Three key issues in online inference and learning are addressed: (i) maintaining purity of positive and negative
examples collected online, (ii) controling model complexity in latent structure learning, and (iii) identifying critical moments to re-learn
the structure of AOG based on its intrackability. The intrackability measures uncertainty of an AOG based on its score maps in a frame.
In experiments, our AOGTracker is tested on two popular tracking benchmarks with the same parameter setting: the
TB-100/50/CVPR2013 benchmarks [2], [3], and the VOT benchmarks [4] — VOT 2013, 2014, 2015 and TIR2015 (thermal imagery
tracking). In the former, our AOGTracker outperforms state-of-the-art tracking algorithms including two trackers based on deep
convolutional network [5], [6]. In the latter, our AOGTracker outperforms all other trackers in VOT2013 and is comparable to the
state-of-the-art methods in VOT2014, 2015 and TIR2015.

Index Terms—Visual Tracking, And-Or Graphs, Latent SVM, Dynamic Programming, Intrackability
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1 INTRODUCTION

1.1 Motivation and Objective

O NLINE object tracking is an innate capability in human and
animal vision for learning visual concepts [7], and is an

important task in computer vision. Given the state of an unknown
object (e.g., its bounding box) in the first frame of a video, the
task is to infer hidden states of the object in subsequent frames.
Online object tracking, especially long-term tracking, is a difficult
problem. It needs to handle variations of a tracked object, includ-
ing appearance and structural variations, scale changes, occlusions
(partial or complete), etc. It also needs to tackle complexity of the
scene, including camera motion, background clutter, distractors,
illumination changes, frame cropping, etc. Fig. 1 illustrates some
typical issues in online object tracking. In recent literature, object
tracking has received much attention due to practical applica-
tions in video surveillance, activity and event prediction, human-
computer interactions and traffic monitoring.

This paper presents an integrated framework for online track-
ing, learning and parsing (TLP) unknown objects with a unified
representation. We focus on settings in which object state is
represented by bounding box, without using pre-trained models.
We address five issues associated with online object tracking in
the following.

Issue I: Expressive representation accounting for structural
and appearance variations of unknown objects in tracking. We are
interested in hierarchical and compositional object models. Such
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Fig. 1: Illustration of some typical issues in online object tracking
using the “skating1” video in the benchmark [2]. Starting from
the object specified in the first frame, a tracker needs to handle
many variations in subsequent frames which include illuminative
variation, scale variation, occlusion, deformation, fast motion, in-
plane and out-of-plane rotation, background clutter, etc.

models have shown promising performance in object detection [1],
[8], [9], [10], [11] and object recognition [12]. A popular modeling
scheme represents object categories by mixtures of deformable
part-based models (DPMs) [1]. The number of mixture compo-
nents is usually predefined and the part configuration of each
component is fixed after initialization or directly based on strong
supervision. In online tracking, since a tracker can only access the
ground-truth object state in the first frame, it is not suitable for it
to “make decisions” on the number of mixture components and
part configurations, and it does not have enough data to learn. It’s
desirable to have an object representation which has expressive
power to represent a large number of part configurations, and
can facilitate computationally effective inference and learning.
We quantize the space of part configurations recursively in a
principled way with a hierarchical and compositional And-Or
graph (AOG) representation [8], [11]. We learn and update the
most discriminative part configurations online by pruning the
quantized space based on discriminative power.

Issue II: Computing joint optimal solutions. Online object
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Fig. 2: Overview of our AOGTracker. (a) Illustra-
tion of the tracking, learning and parsing (TLP)
framework. It consists of four components. (b)
Examples of capturing structural and appearance
variations of a tracked object by a series of object
configurations inferred on-the-fly over key frames
#1, #173, #282, etc. (c) Illustration of an object
AOG, a parse tree and an object configuration in
frame #282. A parse tree is an instantiation of an
AOG. A configuration is a layout of latent parts
represented by terminal-nodes in a parse tree. An
object AOG preserves ambiguities by capturing
multiple parse trees.

tracking is usually posed as a maximum a posterior (MAP)
problem using first order hidden Markov models (HMMs) [2],
[13], [14]. The likelihood or observation density is temporally in-
homogeneous due to online updating of object models. Typically,
the objective is to infer the most likely hidden state of a tracked
object in a frame by maximizing a Bayesian marginal posterior
probability given all the data observed so far. The maximization
is based on either particle filtering [15] or dense sampling such
as the tracking-by-detection methods [16], [17], [18]. In most
prior approaches (e.g., the 29 trackers evaluated in the TB-
100 benchmark [2]), no feedback inspection is applied to the
history of inferred trajectory. We utilize tracking-by-parsing with
hierarchical models in inference. We allow feedback inspection
by maximizing a Bayesian joint posterior probability of trajectory
given all the observation. Thus, a tracker can trace back the
trajectory to potentially improve accuracy at each step as more
evidence has been observed. By doing so, we simultaneously
address another key issue in online learning (Issue III).

Issue III: Maintaining the purity of a training dataset. The
dataset consists of a set of positive examples computed based
on the current trajectory, and a set of negative examples mined
from outside the current trajectory. In the dataset, we can only
guarantee that the positives and the negatives in the first frame are
true positives and true negatives respectively. A tracker needs to
carefully choose frames from which it can learn to avoid model
drifting (i.e., self-paced learning). Most prior approaches do not
address this issue since they focus on marginally optimal solutions
with which object models are updated, except for the P-N learning
in TLD [17] and the self-paced learning for tracking [18]. Since
we allow feedback inspection in tracking, we can correct previous
errors in the training dataset.

Issue IV: Failure-aware online learning of object models. In
online learning, we mostly update model parameters incrementally
after inference in a frame. Theoretically speaking, after an initial
object model is learned in the first frame, model drifting is
inevitable in general setting. Thus, in addition to maintaining the
purity of a training dataset, it is also important that we can identify
critical moments (caused by different structural and appearance
variations) automatically. At those moments, a tracker needs to
re-learn both the structure and the parameters of object model
using the current whole training dataset. We address this issue by
computing uncertainty of an object model in a frame based on its
response maps.

Issue V: Computational efficiency by dynamic search strategy.
Most tracking-by-detection methods run detection in the whole

frame since they usually use relatively simple models such as
a single object template. With hierarchical models in tracking
and sophisticated online inference and updating strategies, the
computational complexity is high. To speed up tracking, we
need to utilize a dynamic search strategy. This strategy must
take into account the trade-off between generating a conservative
proposal state space for efficiency and allowing an exhaustive
search for accuracy (e.g., to handle the situation where the object
is completely occluded for a while or moves out the camera view
and then reappears). We address this issue by adopting a simple
search cascade with which we run detection in the whole frame
only when local search has failed.

Our TLP method obtains state-of-the-art performance on one
popular tracking benchmark [2]. We give a brief overview of our
method in the next subsection.

1.2 Method Overview
As illustrated in Fig.2 (a), the TLP method consists of four
components. We introduce them briefly as follows.

(1) An AOG quantizing the space of part configurations. Given
the bounding box of an object in the first frame, we assume object
parts are also of rectangular shapes. We first divide it evenly
into a small cell-based grid (e.g., 3 × 3) and a cell defines the
smallest part. We then enumerate all possible parts with different
aspect ratios and different sizes which can be placed inside the
grid. All the enumerated parts are organized into a hierarchical
and compositional AOG. Each part is represented by a terminal-
node. Two types of nonterminal nodes as compositional rules:
an And-node represents the decomposition of a large part into
two smaller ones, and an Or-node represents alternative ways
of decompositions through different horizontal or vertical binary
splits. We call it the full structure AOG1. It is capable of
exploring a large number of latent part configurations (see some
examples in Fig. 2 (b)), meanwhile it makes the problem of online
model learning feasible.

(2) Learning object AOGs. An object AOG is a subgraph
learned from the full structure AOG (see Fig. 2 (c) 2). Learning an
object AOG consists of two steps: (i) The initial object AOG are
learned by pruning branches of Or-nodes in the full structure AOG
based on discriminative power, following breadth-first search

1. By full structure, it means all the possible compositions on top of the grid
with binary composition being used for And-nodes

2. We note that there are some Or-nodes in the object AOGs which have
only one child node since they are subgraphs of the full structure AOG and we
keep their original structures.
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(BFS) order. The discriminative power of a node is measured
based on its training error rate. We keep multiple branches for
each encountered Or-node to preserve ambiguities, whose training
error rates are not bigger than the minimum one by a small positive
value. (ii) We retrain the initial object AOG using latent SVM
(LSVM) as it was done in learning the DPMs [1]. LSVM utilizes
positive re-labeling (i.e., inferring the best configuration for each
positive example) and hard negative mining. To further control
the model complexity, we prune the initial object AOG through
majority voting of latent assignments in positive re-labeling.

(3) A spatial dynamic programming (DP) algorithm for com-
puting all the proposals in a frame with the current object AOG.
Thanks to the DAG structure of the object AOG, a DP parsing
algorithm is utilized to compute the matching scores and the
optimal parse trees of all sliding windows inside the search region
in a frame. A parse tree is an instantiation of the object AOG which
selects the best child for each encountered Or-node according to
matching score. A configuration is obtained by collapsing a parse
tree onto the image domain, capturing layout of latent parts of a
tracked object in a frame.

(4) A temporal DP algorithm for inferring the most likely
trajectory. We maintain a DP table memorizing the candidate
object states computed by the spatial DP in the past frames.
Then, based on the first-order HMM assumption, a temporal
DP algorithm is used to find the optimal solution for the past
frames jointly with pair-wise motion constraints (i.e., the Viterbi
path [14]). The joint solution can help correct potential tracking
errors (i.e., false negatives and false positives collected online)
by leveraging more spatial and temporal information. This is
similar in spirit to methods of keeping N-best maximal decoder
for part models [19] and maintaining diverse M-best solutions in
MRF [20].

2 RELATED WORK

In the literature of object tracking, either single object tracking or
multiple-object tracking, there are often two settings.

Offline visual tracking [21], [22], [23], [24]. These methods
assume the whole video sequence has been recorded, and consist
of two steps. i) It first computes object proposals in all frames
using some pre-trained detectors (e.g., the DPMs [1]) and then
form “tracklets” in consecutive frames. ii) It seeks the optimal
object trajectory (or trajectories for multiple objects) by solving an
optimization problem (e.g., the K-shortest path or min-cost flow
formulation) for the data association. Most work assumed first-
order HMMs in the formulation. Recently, Hong and Han [25]
proposed an offline single object tracking method by sampling
tree-structured graphical models which exploit the underlying
intrinsic structure of input video in an orderless tracking [26].

Online visual tracking for streaming videos. It starts tracking
after the state of an object is specified in certain frame. In
the literature, particle filtering [15] has been widely adopted,
which approximately represents the posterior probability in a non-
parametric form by maintaining a set of particles (i.e., weighted
candidates). In practice, particle filtering does not perform well
in high-dimensional state spaces. More recently, tracking-by-
detection methods [16], [17] have become popular which learn and
update object models online and encode the posterior probability
using dense sampling through sliding-window based detection on-
the-fly. Thus, object tracking is treated as instance-based object
detection. To leverage the recent advance in object detection,

object tracking research has made progress by incorporating
discriminatively trained part-based models [1], [8], [27] (or more
generally grammar models [9], [10], [11]). Most popular methods
also assume first-order HMMs except for the recently proposed
online graph-based tracker [28]. There are four streams in the
literature of online visual tracking:

i) Appearance modeling of the whole object, such as incremental
learning [29], kernel-based [30], particle filtering [15], sparse
coding [31] and 3D-DCT representation [32]; More recently,
Convolutional neural networks are utilized in improving track-
ing performance [5], [6], [33], which are usually pre-trained on
some large scale image datasets such as the ImageNet [34] or on
video sequences in a benchmark with the testing one excluded.

ii) Appearance modeling of objects with parts, such as patch-
based [35], coupled 2-layer models [36] and adaptive sparse
appearance [37]. The major limitation of appearance modeling
of a tracked object is the lack of background models, especially
in preventing model drift from distracotrs (e.g., players in sport
games). To address this issue, it leads to discriminant tracking;

iii) Tracking by discrimination using a single classifier, such as
support vector tracking [38], multiple instance learning [39],
STRUCK [40], circulant structure-based kernel method [41],
and discriminant saliency based tracking [42];

iv) Tracking by part-based discriminative models, such as online
extensions of DPMs [43], and structure preserving tracking
method [27], [44].

Our method belongs to the fourth stream of online visual
tracking. Unlike predefined or fixed part configurations with star-
model structure used in previous work, our method learns both
structure and appearance of object AOGs online, which is, to our
knowledge, the first method to address the problem of online ex-
plicit structure learning in tracking. The advantage of introducing
AOG representation are three-fold.

i) More representational power: Unlike TLD [17] and many other
methods (e.g., [18]) which model an object as a single template
or a mixture of templates and thus do not perform well in
tracking objects with large structural and appearance variations,
an AOG represents an object in a hierarchical and compositional
graph expressing a large number of latent part configurations.

ii) More robust tracking and online learning strategies: While the
whole object has large variations or might be partially occluded
from time to time during tracking, some other parts remain
stable and are less likely to be occluded. Some of the parts can
be learned to robustly track the object, which can also improve
accuracy of appearance adaptation of terminal-nodes. This idea
is similar in spirit to finding good features to track objects [45],
and we find good part configurations online for both tracking
and learning.

iii) Fine-grained tracking results: In addition to predicting bound-
ing boxes of a tracked object, outputs of our AOGTracker (i.e.,
the parse trees) have more information which are potentially
useful for other modules beyond tracking such as activity or
event prediction.

Our preliminary work has been published in [46] and the
method for constructing full structure AOG was published in
[8]. This paper extends them by: (i) adding more experimental
results with state-of-the-art performance obtained and full source
code released; (ii) elaborating details substantially in deriving the
formulation of inference and learning algorithms; and (iii) adding
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more analyses on different aspects of our method. This paper
makes three contributions to the online object tracking problem:

i) It presents a tracking-learning-parsing (TLP) framework
which can learn and track objects AOGs.

ii) It presents a spatial and a temporal DP algorithms for
tracking-by-parsing with AOGs and outputs fine-grained
tracking results using parse trees.

iii) It outperforms the state-of-the-art tracking methods in a re-
cent public benchmark, TB-100 [2], and obtains comparable
performance on a series of VOT benchmarks [4].

Paper Organization. The remainder of this paper is organized as
follows. Section 3 presents the formulation of our TLP framework
under the Bayesian framework. Section 4 gives the details of
spatial-temporal DP algorithm. Section 5 presents the online
learning algorithm using the latent SVM method. Section 6 shows
the experimental results and analyses. Section 7 concludes this
paper and discusses issues and future work.

3 PROBLEM FORMULATION

3.1 Formulation of Online Object Tracking

In this section, we first derive a generic formulation from gener-
ative perspective in the Bayesian framework, and then derive the
discriminative counterpart.

3.1.1 Tracking with HMM
Let Λ denote the image lattice on which video frames are defined.
Denote a sequence of video frames within time range [1, T ] by,

I1:T = {I1, · · · , IT }. (1)

Denote by Bt the bounding box of a target object in It. In online
object tracking, B1 is given and Bt’s are inferred by a tracker
(t ∈ [2, T ]). With first-order HMM, we have,

The prior model: B1 ∼ p(B1) , (2)

The motion model: Bt|Bt−1 ∼ p(Bt|Bt−1) , (3)

The likelihood: It|Bt ∼ p(It|Bt). (4)

Then, the prediction model is defined by,

p(Bt|I1:t−1) =

∫
ΩBt−1

p(Bt|Bt−1)p(Bt−1|I1:t−1)dBt−1,

(5)
where ΩBt−1 is the candidate space of Bt−1, and the updating
model is defined by,

p(Bt|I1:t) = p(It|Bt)p(Bt|I1:t−1)/p(It|I1:t−1), (6)

which is a marginal posterior probability. The tracking result, the
best bounding box B∗t , is computed by,

B∗t = arg max
Bt∈ΩBt

p(Bt|I1:t), (7)

which is usually solved using particle filtering [15] in practice.
To allow feedback inspection of the history of a trajectory, we

seek to maximize a joint posterior probability,

p(B1:t|I1:t) = p(B1:t−1|I1:t−1)
p(Bt|Bt−1)p(It|Bt)

p(It|I1:t−1)

= p(B1|I1)
t∏
i=2

p(Bi|Bi−1)p(Ii|Bi)
p(Ii|I1:i−1)

. (8)

By taking the logarithm of both sides of Eqn.(8), we have,

B∗1:t = arg max
B1:t

log p(B1:t|I1:t)

= arg max
B1:t

{log p(B1) + log p(I1|B1)+

t∑
i=2

[log p(Bi|Bi−1) + log p(Ii|Bi)]}. (9)

where the image data term p(I1) and
∑t
i=2 p(Ii|I1:i−1) are not

included in the maximization as they are treated as constant terms.
Since we have ground-truth for B1, p(I1|B1) can also be

treated as known after the object model is learned based on B1.
Then, Eqn.(9) can be reproduced as,

B∗2:t = arg max
B2:t

log p(B2:t|I1:t, B1) (10)

= arg max
B2:t

{
t∑
i=2

[log p(Bi|Bi−1) + log p(Ii|Bi)]}.

3.1.2 Tracking as Energy Minimization over Trajectories
To derive the discriminative formulation of Eqn.(10), we show that
only the log-likelihood ratio matters in computing log p(Ii|Bi) in
Eqn.(10) with very mild assumptions.

Let ΛBi
be the image domain occupied by a tracked object,

and ΛBi
the remaining domain (i.e., ΛBi

∪ ΛBi
= Λ and

ΛBi
∩ΛBi

= ∅) in a frame Ii. With the independence assumption
between IΛBi

and IΛBi
given Bi, we have,

p(Ii|Bi) = p(IΛBi
, IΛBi

|Bi) = p(IΛBi
|Bi)p(IΛBi

|Bi)

= p(IΛBi
|Bi)q(IΛBi

) = q(IΛ)
p(IΛBi

|Bi)
q(IΛBi

)
, (11)

where q(IΛ) is the probability model of background scene and
we have q(IΛBi

) = p(IΛBi
|Bi) w.r.t. context-free assumption.

So, q(IΛ) does not need to be specified explicitly and can be
omitted in the maximization. This derivation gives an alternative
explanation for discriminant tracking v.s. tracking by generative
appearance modeling of an object [47].

Based on Eqn.(10), we define an energy function by,

E(B2:t|I1:t, B0) ∝ − log p(B2:t|I1:t, B1). (12)

And, we do not compute log p(Ii|Bi) in the probabilistic way,
instead we compute matching score defined by,

Score(Ii|Bi) = log
p(IΛBi

|Bi)
q(IΛBi

)
(13)

= log p(Ii|Bi)− log q(IΛ).

which we can apply discriminative learning methods.
Also, denote the motion cost by,

Cost(Bi|Bi−1) = − log p(Bi|Bi−1). (14)

We use a thresholded motion model in experiments: the cost is
0 if the transition is accepted based on the median flow [17]
(which is a forward-backward extension of the Lucas-Kanade
optimal flow [48]) and +∞ otherwise. A similar method was
experimented in [18].

So, we can re-write Eqn.(10) in the minimization form,

B∗2:t = arg min
B2:t

E(B2:t|I1:t, B1) (15)

= arg min
B2:t

{
t∑
i=2

[Cost(Bi|Bi−1)− Score(Ii|Bi)]}.
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Fig. 3: We assume parts are of rectangular shapes. (a) shows a
configuration with 3 parts. Two different, yet equivalent, decom-
position rules in representing a configuration are shown in (b) for
decomposition with branching factor equal to the number of parts
(i.e., a flat structure), and in (c) for a hierarchical decomposition
with branching factor being set to 2 at all levels.

In our TLP framework, we compute Score(Ii|Bi) in Eqn.( 15)
with an object AOG. So, we interpret a sliding window by the
optimal parse tree inferred from object AOG. We treat parts as
latent variables which are modeled to leverage more information
for inferring object bounding box. We note that we do not track
parts explicitly in this paper.

3.2 Quantizing the Space of Part Configurations
In this section, we first present the construction of a full structure
AOG which quantizes the space of part configurations. We then
introduce notations in defining an AOG.

Part configurations. For an input bounding box, a part con-
figuration is defined by a partition with different number of parts
of different shapes (see Fig. 3 (a)). Two natural questions arise:
(i) How many part configurations (i.e., the space) can be defined
in a bounding box? (ii) How to organize them into a compact
representation? Without posing some structural constraints, it is a
combinatorial problem.

We assume rectangular shapes are used for parts. Then, a
configuration can be treated as a tiling of input bounding box
using either horizontal or vertical cuts. We utilize binary splitting
rule only in decomposition (see Fig. 3 (b) and (c)). With these
two constraints, we represent all possible part configurations by a
hierarchical and compositional AOG constructed in the following.

Given a bounding box, we first divide it evenly into a cell-
based grid (e.g., 9 × 10 grid in the right of Fig. 4). Then, in
the grid, we define a dictionary of part types and enumerate all
instances for all part types.

A dictionary of part types. A part type is defined by its width
and height. Starting from some minimal size (such as 2× 2 cells),
we enumerate all possible part types with different aspect ratios
and sizes which fit the grid (see A,B,C,D in Fig.4 (a)).

Part instances. An instance of a part type is obtained by
placing the part type at a position. Thus, a part instance is defined
by a “sliding window” in the grid. Fig.4 (b) shows an example of
placing part type D (2×5 cells) in a 9×10 grid with 48 instances
in total.

To represent part configurations compactly, we exploit the
compositional relationships between enumerated part instances.

The full structure AOG. For any sub-grid indexed by the
left-top position, width and height (e.g., (2, 3, 5, 2) in the right-
middle of Fig.4 (c)), we can either terminate it directly to the
corresponding part instance (Fig.4 (c.1)), or decompose it into two
smaller sub-grids using either horizontal or vertical binary splits.
Depending on the side length, we may have multiple valid splits

A B C D …
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. . .
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…

...

...

...

(a) Dictionary of Part Types

D1

(c) Decomposition

D A A

D48

B B
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h
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h

t
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(c.2) w/o overlap (c.3) with overlap

(b) Part Instances

(c.1) terminate

overlap

B

A: 2×2

B: 2×3

...

(2, 3, 5, 2)

Fig. 4: Illustration of (a) the dictionary of part types, and (b) part
instances generated by placing a part type in a grid. Given part
instances, (c) shows how a sub-grid is decomposed in different
ways. We allow overlap between child nodes (see (c.3)).

along both directions (Fig.4 (c.2)). When splitting either side we
allow overlaps between the two sub-grids up to some ratio (Fig.4
(c.3)). Then, we represent the sub-grid as an Or-node, which has a
set of child nodes including a terminal-node (i.e. the part instance
directly terminated from it), and a number of And-nodes (each of
which represents a valid decomposition). This procedure is applied
recursively for all child sub-grids. Starting from the whole grid and
using BFS order, we construct a full structure AOG (see Fig. 5 for
an example). Table. 1 lists the number of part configurations for
three cases from which we can see that full structure AOGs cover
a large number of part configurations using a relatively small set
of part instances.

We denote an AOG by,

G = (VAnd, VOr, VT , E,Θ) (16)

where VAnd, VOr and VT represent a set of And-nodes, Or-nodes
and terminal-nodes respectively, E a set of edges and Θ a set of
parameters (to be defined in Section 4.1). We have,
i) The object/root Or-node (plotted by green circles), which repre-

sents alternative object configurations;
ii) A set of And-nodes (solid blue circles), each of which represents

the rule of decomposing a complex structure (e.g., a walking
person or a running basketball player) into simpler ones;

iii) A set of part Or-nodes, which handle local variations and
configurations in a recursive way;

iv) A set of terminal-nodes (red rectangles), which link an object
and its parts to image data (i.e., grounding symbols) to account
for appearance variations and occlusions (e.g., head-shoulder of
a walking person before and after opening a sun umbrella).

An object AOG is a subgraph of a full structure AOG with the
same root Or-node. For notational simplicity, we also denote by
G an object AOG. So, we will write Score(Ii|Bi;G) in Eqn.( 15)
with G added.

A parse tree is an instantiation of an object AOG with the best
child node (w.r.t. matching scores) selected for each encountered
Or-node. All the terminal-nodes in a parse tree represents a part
configuration when collapsed to image domain.
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Or-node

And-node

Terminal-node

Fig. 5: Illustration of full structure And-Or Graph (AOG) representing the space of part configurations. It is of directed acyclic graph
(DAG) structure. For clarity, we show a toy example constructed for a 3×3 grid. The AOG can generate all possible part configurations
(the number is often huge for typical grid sizes, see Table.1), while allowing efficient exploration with a DP algorithm due to the DAG
structure. See text for details. (Best viewed in color and with magnification)

Grid primitive part #Configuration #T-node #And-node
3× 3 1× 1 319 35 48
5× 5 1× 1 76,879,359 224 600
10× 12 2× 2 3.8936e+009 1409 5209

TABLE 1: The number of part configurations generated from our
AOG without considering overlapped compositions.

We note that an object AOG contains multiple parse trees to
preserve ambiguities in interpreting a tracked object (see examples
in Fig. 2 (c) and Fig. 7).

4 TRACKING-BY-PARSING WITH OBJECT AOGS

In this section, we present details of inference with object AOGs.
We first define scoring functions of nodes in an AOG. Then, we
present a spatial DP algorithm for computing Score(Ii|Bi;G),
and a temporal DP algorithm for inferring the trajectory B∗2:t in
Eqn.(15).

4.1 Scoring Functions of Nodes in an AOG
Let F be the feature pyramid computed for either the local ROI or
the whole image It, and Λ the position space of pyramid F. Let
p = (l, x, y) ∈ Λ specify a position (x, y) in the l-th level of
pyramid F.

Given an AOG G = (VT , VAnd, VOr, E,Θ) (e.g., the left in
Fig.6), we define four types of edges, i.e., E = ET ∪ EDef ∪
EDec ∪ ESwitch as shown in Fig.6. We elaborate the definitions
of parameters Θ = (Θapp,Θdef ,Θbias):
i) Each terminal-node t ∈ VT has appearance parameters θappt ⊂

Θapp, which is used to ground a terminal-node to image data.
i) The parent And-node A of a part terminal-node with defor-

mation edge has deformation parameters θdefA ⊂ Θdef . They
are used for penalizing local displacements when placing a
terminal-node around its anchor position. We note that the
object template is not allowed to perturb locally in inference,
so the parent And-node of the object terminal-node does not
have deformation parameters.

iii) A child And-node of the root Or-node has a bias term Θbias =
{b}. We do not define bias terms for child nodes of other Or-
nodes.

Appearance Features. We use three types of features: his-
togram of oriented gradient (HOG) [49], local binary pattern
features (LBP) [50], and RGB color histograms (for color videos).

Deformation Features. Denote by δ = [dx, dy] the displace-
ment of placing a terminal-node around its anchor location. The
deformation feature is defined by Φdef (δ) = [dx2, dx, dy2, dy]′

as done in DPMs [1].
We use linear functions to evaluate both appearance scores and

deformation scores. The score functions of nodes in an AOG are
defined as follows:
i) For a terminal-node t, its score at a position p is computed by,

Score(t, p|F) =< θappt ,F(t, p) > (17)

where < ·, · > represents inner product and F(t, p) extracts
features in feature pyramid.

ii) For an Or-node O, its score at position p takes the maximum
score over its child nodes,

Score(O, p|F) = max
c∈ch(O)

Score(c, p|F) (18)

where ch(v) denotes the set of child nodes of a node v.
iii) For an And-node A, we have three different functions w.r.t.

the type of its out-edge (i.e., Terminal-, Deformation-, or
Decomposition-edge),

Score(A, p|F) = (19)
Score(t, p|F), eA,t ∈ ET
maxδ[Score(t, p⊕ δ|F)− < θdefA ,Φdef (δ) >], eA,t ∈ EDef∑
c∈ch(A) Score(c, p|F), eA,c ∈ EDec

where the first case is for sharing score maps between the
object terminal-node and its parent And-node since we do
not allow local deformation for the whole object, the second
case for computing transformed score maps of parent And-
node of a part terminal-node which is allowed to find the best
placement through distance transformation [1],⊕ represents the
displacement operator in the position space in Λ, and the third
case for computing the score maps of an And-node which has
two child nodes through composition.

4.2 Tracking-by-Parsing
With scoring functions defined above, we present a spatial DP and
a temporal DP algorithms in solving Eqn.(15).

Spatial DP: The DP algorithm consists of two stages: (i) The
bottom-up pass computes score map pyramids (as illustrated in
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And-node

Or-node

Terminal-node

Swtiching-edge

Decomposition-edge

Deformation-edge

Terminal-edge

Fig. 6: Illustration of the spatial DP algorithm for parsing with
AOGs (e.g., AOG172 in the left). Right-middle: The input image
(ROI in the 173-th frame in the “Skating1” sequence) and the
inferred object configuration. Right-top: The score map pyramid
for root Or-node. Middle: For each node in AOG, we show one
level of score map pyramid at which the optimal parse tree is
retrieved.

Fig. 6) for all nodes following the depth-first-search (DFS) order
of nodes. It computes matching scores of all possible parse trees
at all possible positions in feature pyramid. (ii) In the top-down
pass, we first find all candidate positions for the root Or-node O
based on its score maps and current threshold τG of the object
AOG, denoted by

Ωcand = {p; Score(O, p|F) ≥ τG and p ∈ Λ}. (20)

Then, following BFS order of nodes, we retrieve the optimal parse
tree at each p ∈ P: starting from the root Or-node, we select the
optimal branch (with the largest score) of each encountered Or-
node, keep the two child nodes of each encountered And-node, and
retrieve the optimal position of each encountered part terminal-
node (by taking arg max for the second case in Eqn.(19)).

After spatial parsing, we apply non-maximum suppression
(NMS) in computing the optimal parse trees with a predefined
intersection-over-union (IoU) overlap threshold, denoted by τNMS.
We keep top Nbest parse trees to infer the best B∗t together with a
temporal DP algorithm, similar to the strategies used in [19], [20].

Temporal DP: Assuming that all the N-best candidates for
B2, · · · , Bt are memoized after running spatial DP algorithm
in I2 to It, Eqn.(15) corresponds to the classic DP formula-
tion of forward and backward inference for decoding HMMs
with −Score(Ii|Bi;G) being the singleton “data” term and
Cost(Bi|Bi−1) the pairwise cost term.

Let Bi[Bi] be energy of the best object states in the first i

frames with the constraint that the i-th one is Bi. We have,

B1[B1] = −Score(I1|B1;G),

Bi[Bi] = −Score(Ii|Bi;G)

+ min
Bi−1

(Bi−1[Bi−1] + Cost(Bi|Bi−1)). (21)

When B1 is the input bounding box. Then, the temporal DP
algorithm consists of two steps:

i) The forward step for computing all Bi[Bi]’s, and caching
the optimal solution for Bi−1 as a function of Bi for later
back-tracing starting at i = 2,

Ti[Bi] = arg min
Bi−1

{Bi−1[Bi−1] + Cost(Bi|Bi−1)}.

ii) The backward step for finding the optimal trajectory
(B1, B

∗
2 , · · · , B∗t ), where we first take,

B∗t = arg min
Bt

Bt[Bt], (22)

and then in the order of i = t− 1, · · · , 2 trace back,

B∗i = Ti+1[B∗i+1]. (23)

In practice, we often do not need to run temporal DP in the
whole time range [1, t], especially for long-term tracking, since
the target object might have changed significantly or we might
have camera motion, instead we only focus on some short time
range, [t−∆t, t] (see settings in experiments).

Remarks: In our TLP method, we apply the spatial and the
temporal DP algorithms in a stage-wise manner and without
tracking parts explicitly. Thus, we do not introduce loops in
inference. If we instead attempt to learn a joint spatial-temporal
AOG, it will be a much more difficult problem due to loops in joint
spatial-temporal inference, and approximate inference is used.

Search Strategy: During tracking, at time t, Bt is initialized
by Bt−1, and then a rectangular region of interest (ROI) centered
at the center of Bt is used to compute feature pyramid and run
parsing with AOG. The ROI is first computed as a square area
with the side length being sROI times longer than the maximum of
width and height of Bt and then is clipped with the image domain.
If no candidates are found (i.e., Ωcand is empty), we will run the
parsing in whole image domain. So, our AOGTracker is capable of
re-detecting a tracked object. If there are still no candidates (e.g.,
the target object was completely occluded or went out of camera
view), the tracking result of this frame is set to be invalid and we
do not need to run the temporal DP.

4.3 The Trackability of an Object AOG
To detect critical moments online, we need to measure the quality
of an object AOG, G at time t. We compute its trackability based
on the score maps in which the optimal parse tree is placed. For
each node v in the parse tree, we have its position in score map
pyramid (i.e., the level of pyramid and the location in that level),
(lv, xv, yv). We define the trackability of node v by,

Trackability(v|It,G) = S(lv, xv, yv)− µS (24)

where S(lv, xv, yv) is the score of node v, µS the mean score
computed from the whole score map. Intuitively, we expect
the score map of a discriminative node v has peak and steep
landscape, as investigated in [51]. The trackabilities of part nodes
are used to infer partial occlusion and local structure variations,
and trackability of the inferred parse tree indicate the “goodness”
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of current object AOG. We note that we treat trackability and
intrackability (i.e., the inverse of th trackability) exchangeably.
More sophisticated definitions of intrackability in tracking are
referred to [52].

We model trackability by a Gaussian model whose mean and
standard derivation are computed incrementally in [2, t]. At time t,
a tracked object is said to be “intrackable” if its trackability is less
than meantrackability(t) − 3 · stdtrackability(t). We note that
the tracking result could be still valid even if it is “intrackable”
(e.g., in the first few frames in which the target object is occluded
partially, especially by similar distractors).

5 ONLINE LEARNING OF OBJECT AOGS

In this section, we present online learning of object AOGs, which
consists of three components: (i) Maintaining a training dataset
based on tracking results; (ii) Estimating parameters of a given
object AOG; and (iii) Learning structure of the object AOG by
pruning full structure AOG, which requires (ii) in the process.

5.1 Maintaining the Training Dataset Online
Denote by Dt = D+

t ∪ D−t the training dataset at time t,
consisting of D+

t , a positive dataset, and D−t , a negative dataset.
In the first frame, we have D+

1 = {(I1, B1)} and let
B1 = (x1, y1, w1, h1). We augment it with eight locally shifted
positives, i.e., {I1, B1,i; i = 1, · · · , 8} where x1,i ∈ {x1 ± d}
and y1,i ∈ {y±d} with width and height not changed. d is set
to the cell size in computing HOG features. The initial D−1 uses
the whole remaining image IΛB1

for mining hard negatives in
training.

At time t, if Bt is valid according to tracking-by-parsing,
we have D+

t = D+
t−1 ∪ {(It, Bt)}, and add to D−t all other

candidates in Ωcand (Eqn. 20) which are not suppressed by Bt
according to NMS (i.e., hard negatives). Otherwise, we have
Dt = Dt−1.

5.2 Estimating Parameters of a Given Object AOG
We use latent SVM method (LSVM) [1]. Based on the scoring
functions defined in Section 4.1, we can re-write the scoring
function of applying a given object AOG, G on a training example
(denoted by IB for simplicity),

Score(IB ;G) = max
pt∈ΩG

< Θ,Φ(F, pt) > (25)

where pt represents a parse tree, ΩG the space of parse trees, Θ the
concatenated vector of all parameters, Φ(F, pg) the concatenated
vector of appearance and deformation features in feature pyramid
F w.r.t. parse tree pt, and the bias term.

The objective function in estimating parameters is defined by
the l2-regularized empirical hinge loss function,

LDt
(Θ) =

1

2
||Θ||22+

C

|Dt|
[
∑

IB∈D+
t

max(0, 1− Score(IB ;G))

∑
IB∈D−t

max(0, 1 + Score(IB ;G))] (26)

where C is the trade-off parameter in learning. Eqn.( 26) is a semi-
convexity function of the parameters Θ due to the empirical loss
term on positives.

In optimization, we utilize an iterative procedure in a “co-
ordinate descent” way. We first convert the object function to a
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Fig. 7: Illustration of learning an object AOG in the first frame
(top) and re-learning an object AOG in the 281-th frame when
a critical moment has triggered. It consists of two steps: (a)
learning initial object AOG by pruning branches of Or-nodes
in full structure AOG, and (b) learning refined object AOG by
pruning part configurations w.r.t. majority voting in positive re-
labeling in LSVM.

convex function by assigning latent values for all positives using
the spatial DP algorithm. Then, we estimate parameters. While
we can use stochastic gradient descent as done in DPMs [1], we
adopt LBFGS method in practice 3 [53] since it is more robust and
efficient with parallel implementation as investigated in [9], [54].
The detection threshold, τG is estimated as the minimum score of
positives.

5.3 Learning Object AOGs
With the training dataset Dt and the full structure AOG con-
structed based on B1, an object AOG is learned in three steps:

i) Evaluating the figure of merits of nodes in the full structure
AOG. We first train the root classifier (i.e., object appearance
parameters and bias term) by linear SVM using D+

t and data-
mining hard negatives in D−t . Then, the appearance parameters
for each part terminal-node t is initialized by cropping out the
corresponding portion in the object template 4. Following DFS
order, we evaluate the figure of merit of each node in the full
structure AOG by its training error rate. The error rate is calculated
on Dt where the score of a node is computed w.r.t. scoring
functions defined in Section 4.1. The smaller the error rate is,
the more discriminative a node is.

ii) Retrieving an initial object AOG and re-estimating param-
eters. We retrieve the most discriminative subgraph in the full
structure AOG as initial object AOG. Following BFS order, we

3. We reimplemented the matlab code available at
http://www.cs.ubc.ca/ schmidtm/Software/minConf.html in c++.

4. We also tried to train the linear SVM classifiers for all the terminal-nodes
individually using cropped examples, which increases the runtime, but does not
improve the tracking performance in experiments. So, we use the simplified
method above.
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OPE

SRE

Spatially Scaled Spatially Shifted

TRE

Fig. 8: Illustration of the three types of evaluation methods in
TB-100/50/CVPR2013. In one-pass evaluation (OPE), a tracker
is initialized in the first frame and let it track the target until the
end of the sequence. In temporal robustness evaluation (TRE),
a tracker starts at different starting frames initialized with the
corresponding ground-truth bounding boxes and then tracks the
object until the end. 20 starting frames (including the first frame)
are used in TB-100. In spatial robustness evaluation (SRE), a
tracker runs multiple times with spatially scaled (4 types) and
shifted (8 types of perturbation) initializations in the first frame.

start from the root Or-node, select for each encountered Or-node
the best child node (with the smallest training error rate among
all children) and the child nodes whose training error rates are not
bigger than that of the best child by some predefined small positive
value (i.e., preserving ambiguities), keep the two child nodes
for each encountered And-node, and stop at each encountered
terminal-node. We show two examples in the left of Fig. 7.
We train the parameters of initial object AOG using LSVM [1]
with two rounds of positive re-labeling and hard negative mining
respectively.

iii) Controlling model complexity. To do that, a refined object
AOG for tracking is obtained by further selecting the most dis-
criminative part configuration(s) in the initial object AOG learned
in the step ii). The selection process is based on latent assignment
in relabeling positives in LSVM training. A part configuration in
the initial object AOG is pruned if it relabeled less than 10%
positives (see the right of Fig. 7). We further train the refined
object AOG with one round latent positive re-labeling and hard
negative mining. By reducing model complexity, we can speed up
the tracking-by-parsing procedure.

Verification of a refined object AOG. We run parsing with a
refined object AOG in the first frame. The refined object AOG is
accepted if the score of the optimal parse tree is greater than the
threshold estimated in training and the IoU overlap between the
predicted bounding box and the input bounding box is greater than
or equals the IoU NMS threshold, τNMS in detection.

Identifying critical moments in tracking. A critical moment
means a tracker has become “uncertain” and at the same time
accumulated “enough” new samples, which is triggered in tracking
when two conditions were satisfied. The first is that the number of
frames in which a tracked object is “intrackable” was larger than
some value, NIntrackable. The second is that the number of new valid
tracking results are greater than some value, NNewSample. Both are
accumulated from the last time an object AOG was re-learned.

The spatial resolution of placing parts. In learning object
AOGs, we first place parts at the same spatial resolution as the
object. If the learned object AOG was not accepted in verification,
we then place parts at twice the spatial resolution w.r.t. the
object and re-learn the object AOG. In our experiments, the two
specifications handled all testing sequences successfully.

Overall flow of online learning. In the first frame or when a
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ASLA [55] X X X X X X X
BSBT [56] H X X X
CPF [57] X X X X X
CSK [58] X X X X
CT [59] H X X X

CXT [60] B X X X
DFT [61] X X X X X
FOT [62] X X X X X

FRAG [63] X X X X
IVT [29] X X X X X

KMS [30] X X X X X
L1APG [64] X X X X X X

LOT [65] X X X X X
LSHT [66] X X X H X X X
LSK [67] X X X X X X
LSS [68] X X X X X X X
MIL [39] H X X X
MTT [69] X X X X X X
OAB [70] H X X X
ORIA [71] X X H X X X
PCOM [72] X X X X X X
SCM [73] X X X X X X X X X
SMS [74] X X X X
SBT [75] H X X X

STRUCK [40] H X X X
TLD [17] X B X X X
VR [76] X X X X

VTD [77] X X X X X X
VTS [78] X X X X X X X

AOG X X X X HOG [+Color] X X X X

TABLE 2: Tracking algorithms evaluated in the TB-100 bench-
mark (reproduced from [2]).

critical moment is identified in tracking, we learn both structure
and parameters of an object AOG, otherwise we update parameters
only if the tracking result is valid in a frame based on tracking-by-
parsing.

6 EXPERIMENTS

In this section, we present comparison results on the TB-
50/100/CVPR2013 benchmarks [2], [3] and the VOT benchmarks
[4]. We also analyze different aspects of our method. The source
code 5 is released with this paper for reproducing all results. We
denote the proposed method by AOG in tables and plots.

Parameter Setting. We use the same parameters for all experi-
ments since we emphasize online learning in this paper. In learning
object AOGs, the side length of the grid used for constructing the
full structure AOG is either 3 or 4 depending the slide length
of input bounding box (to reduce the time complexity of online
learning). The number of intervals in computing feature pyramid
is set to 6 with cell size being 4. The factor s in computing
search ROI is set to sROI = 3. The NMS IoU threshold is set
to τNMS = 0.7. The number of top parse trees kept after spatial
DP parsing is set NBest = 10. The time range in temporal DP
algorithm is set to ∆t = 5. In identifying critical moments, we set
NIntrackable = 5 and NNewSample = 10. The LSVM trade-off parameter
in Eqn.(26) is set to C = 0.001. When re-learning structure and
parameters, we could use all the frames with valid tracking results.
To reduce the time complexity, the number of frames used in re-
learning is at most 100 in our experiments. At time t, we first
take the first 10 frames with valid tracking results in [1, t] with
the underlying intuition that they have high probabilities of being
tracked correctly (note that we alway use the first frame since the
ground-truth bounding box is given), and then take the remaining
frames in reversed time order.

Speed. In our current c++ implementation, we adopt FFT in
computing score pyramids as done in [54] which also utilizes

5. Available at https://github.com/tfwu/RGM-AOGTracker
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Metric Success Rate / Precision Rate
Evaluation OPE SRE TRE

Subset 100 50 CVPR2013 100 50 CVPR2013 100 50 CVPR2013

AOG Gain 13.93 / 18.06 16.84 / 22.23 2.74 / 19.37 11.47 / 16.79 12.52 / 17.82 11.89 / 17.55 9.25 / 11.06 11.37 / 14.61 11.59 / 14.38
Runner-up STRUCK [40] SO-DLT [6] / STRUCK [40] STRUCK [40]

Subsets in TB-50 DEF(23) FM(25) MB(19) IPR(29) BC(20) OPR(32) OCC(29) IV(22) LR(8) SV(38) OV(11)

AOG Gain (success rate) 15.89 15.56 17.29 12.29 17.81 14.04 14.7 15.73 6.65 18.38 15.99
Runner-up STRUCK [40] TLD [17] SCM [73] MIL [39]

TABLE 3: Performance gain (in %) of our AOGTracker in term of success rate and precision rate in the benchmark [2]. Success plots
of TB-100/50/CVPR2013 are shown in Fig. 9. Precision plots of TB-100/50/CVPR2013, and success and precision plots in the 11
subsets of TB-100/50/CVPR2013 are provided in the supplementary material due to space limit here.
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Fig. 9: Performance comparison in TB-100 (1st row), TB-50 (2nd row) and TB-CVPR2013 (3rd row) in term of success plots of
OPE (1st column), SRE (2nd column) and TRE (3rd colum). For clarity, only top 10 trackers are shown in color curves and listed
in the legend. Two deep learning based trackers, CNT [5] and SO-DLT [6], are evaluated in TB-CVPR2013 using OPE (with their
performance plots manually added in the left-bottom figure). We note that the plots are reproduced with the raw results provided at
http://cvlab.hanyang.ac.kr/tracker benchmark/. (Best viewed in color and with magnification)

multi-threads with OpenMP. We also provide a distributed version
based on MPI 6 in evaluation. The FPS is about 2 to 3. We are
experimenting GPU implementations to speed up our TLP.

6.1 Results on TB-50/100/CVPR2013
The TB-100 benchmark has 100 target objects (58, 897 frames in
total) with 29 publicly available trackers evaluated. It is extended
from a previous benchmark with 51 target objects released at

6. https://www.mpich.org/

CVPR2013 (denoted by TB-CVPR2013). Further, since some tar-
get objects are similar or less challenging, a subset of 50 difficult
and representative ones (denoted by TB-50) is selected for an in-
depth analysis. Two types of performance metric are used, the
precision plot (i.e., the percentage of frames in which estimated
locations are within a given threshold distance of ground-truth
positions) and the success plot (i.e., based on IoU overlap scores
which are commonly used in object detection benchmarks, e.g.,
PASCAL VOC [79]). The higher a success rate or a precision rate
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Fig. 10: Qualitative results. For clarity, we show tracking results (bounding boxes) in 6 randomly sampled frames for the top 10 trackers
according to their OPE performance in TB-100. (Best viewed in color and with magnification.)

is, the better a tracker is. Usually, success plots are preferred to
rank trackers [2], [4] (thus we focus on success plots in compari-
son). Three types of evaluation methods are used as illustrated in
Fig.8.

To account for different factors of a test sequence affecting
performance, the testing sequences are further categorized w.r.t.
11 attributes for more ind-depth comparisons: (1) Illumination
Variation (IV, 38/22/21 sequences in TB-100/50/CVPR2013), (2)
Scale Variation (SV, 64/38/28 sequences), (3) Occlusion (OCC,
49/29/29 sequences), (4) Deformation (DEF, 44/23/19 sequences),
(5) Motion Blur (MB, 29/19/12 sequences), (6) Fast Motion
(FM, 39/25/17 sequences), (7) In-Plane Rotation (IPR, 51/29/31
sequences), (8) Out-of-Plane Rotation (OPR, 63/32/39 sequences),
(9) Out-of-View (OV, 14/11/6 sequences), (10) Background Clut-
ters (BC, 31/20/21 sequences), and (11) Low Resolution (LR,
9/8/4 sequences). More details on the attributes and their distri-
butions in the benchmark are referred to [2], [3].

Table. 2 lists the 29 evaluated tracking algorithms which are
categorized based on representation and search scheme. See more
details about categorizing these trackers in [2]. In TB-CVPR2013,
two recent trackers trained by deep convolutional network (CNT

[5], SO-DLT [6]) were evaluated using OPE.
We summarize the performance gain of our AOGTracker in

Table.3. Our AOGTracker obtains significant improvement (more
than 12%) in the 10 subsets in TB-50. Our AOGTracker handles
out-of-view situations much better than other trackers since it is
capable of re-detecting target objects in the whole image, and it
performs very well in the scale variation subset (see examples
in the second and fourth rows in Fig. 10) since it searches over
feature pyramid explicitly (with the expense of more computa-
tion). Our AOGTracker obtains the least improvement in the low-
resolution subset since it uses HOG features and the discrepancy
between HOG cell-based coordinate and pixel-based one can
cause some loss in overlap measurement, especially in the low
resolution subset. We will add automatic selection of feature types
(e.g., HOG v.s. pixel-based features such as intensity and gradient)
according to the resolution, as well as other factors in future work.

Fig.9 shows success plots of OPE, SRE and TRE in TB-
100/50/CVPR2013. Our AOGTracker consistently outperforms all
other trackers. We note that for OPE in TB-CVPR2013, although
the improvement of our AOGTracker over the SO-DLT [6] is not
very big, the SO-DLT utilized two deep convolutional networks
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Fig. 11: Performance comparison of four variants of our AOGTracker in TB-100 using success plots of OPE, SRE and TRE.

Fig. 12: Performance comparison in VOT2013. Left: Ranking plot
for the baseline experiment. The smaller the rank number is, the
better a tracker is w.r.t. accuracy and/or robust (i.e., the right-top
region indicates better performance) Right: Accuracy-Robustness
plot. The larger the rate is, the better a tracker is.

with different model update strategies in tracking, both of which
are pretrained on the ImageNet [34]. Fig. 10 shows some qualita-
tive results.

6.2 Analyses of AOG models and the TLP Algorithm

To show advantage of the proposed method, we compare perfor-
mance of four different variants of our AOGTracker.

AOG-s vs AOG-st. As stated above, in our AOGTracker, we
use a very simple setting for temporal DP which takes into account
∆t = 5 frames, [t−5, t] in our experiments. We denote it by AOG-
st in comparison. We show the advantage of this simple spatial and
temporal DP algorithms by comparing it with the baseline tracker,
denoted by AOG-s, which uses spatial DP only. Everything else in
online inference and learning is the same as AOG-st.

Single object template vs AOG. We test our tracker without
learning object part configurations, that is to learn and update
object templates only in tracking. Similarly, we also have two set-
tings, with temporal DP (denoted by ObjectOnly-st) and without
temporal DP (denoted by ObjectOnly-s).

Fig. 11 shows performance comparison of the four variants.
The full method (AOG-st) obtains the best performance consis-
tently and the two trackers with AOGs significantly outperforms
the other two variants. For the two trackers with object templates
only, the one without temporal DP (ObjectOnly-s) slightly outper-
form the one with temporal DP (ObjectOnly-st), which shows that
we might need strong enough object models in integrating spatial
and temporal information for better performance.

Fig. 13: Performance comparison in VOT2014.

6.3 Results on VOT

In VOT, the evaluation focuses on short-term tracking (i.e., a
tracker is not expected to perform re-detection after losing a
target object), so the evaluation toolkit will re-initialize a tracker
after it loses the target (w.r.t. the condition the overlap between
the predicted bounding box and the ground-truth one drops to
zero) with the number of failures counted. In VOT protocol, a
tracker is tested on each sequence multiple times. The performance
is measured in terms of accuracy and robustness. Accuracy is
computed as the average of per-frame accuracies which them-
selves are computed by taking the average over the repetitions.
Robustness is computed as the average number of failure times
over repetitions.

We integrate our AOGTracker in the latest VOT toolkit7 to run
experiments with the baseline protocol and to generate plots 8.

The VOT2013 dataset [80] has 16 sequences which was
selected from a large pool such that various visual phenomena
like occlusion and illumination changes, were still represented
well within the selection. 7 sequences are also used in TB-100.
There are 27 trackers evaluated. The readers are referred to the
VOT technical report [80] for details.

Fig.12 shows the ranking plot and AR plot in VOT2013. Our
AOGTracker obtains the best accuracy while its robustness is
slightly worse than three other trackers (i.e., PLT [80], LGT [82]
and LGTpp [83], and PLT was the winner in VOT2013 challenge).
Our AOGTracker obtains the best overall rank.

The VOT2014 dataset [81] has 25 sequences extended from
VOT2013. The annotation is based on rotated bounding box

7. Available at https://github.com/votchallenge/vot-toolkit, version 3.2
8. The plots for VOT2013 and 2014 might be different compared to those in

the original VOT reports [80], [81] due to the new version of vot-toolkit.
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instead of up-right rectangle. There are 33 trackers evaluated.
Details on the trackers are referred to [81]. Fig.13 shows the
ranking plot and AR plot. Our AOGTracker is comparable to other
trackers. One main limitation of AOGTracker is that it does not
handle rotated bounding boxes well.

The VOT2015 dataset [84] consists of 60 short sequences
(with rotated bounding box annotations) and VOT-TIR2015 com-
prises 20 sequences (with bounding box annotations). There are
62 and 28 trackers evaluated in VOT2015 and VOT-TIR2015 re-
spectively. Our AOGTracker obtains 51% and 65% (tied for third
place) in accuracy in VOT2015 and VOT-TIR2015 respectively.
The details are referred to the reports [84] due to space limit here.

7 DISCUSSION AND FUTURE WORK

We have presented a tracking, learning and parsing (TLP) frame-
work and derived a spatial dynamic programming (DP) and a
temporal DP algorithm for online object tracking with AOGs.
We also have presented a method of online learning object AOGs
including its structure and parameters. In experiments, we test our
method on two main public benchmark datasets and experimental
results show better or comparable performance.

In our ongoing and future work, we are extending the TLP
framework by incorporating generic category-level AOGs [8] to
scale up the TLP framework. The generic AOGs are pre-trained
offline (e.g., using the PASCAL VOC [79] or the imagenet [34]),
and will help the online learning of specific AOGs for a target
object (e.g., help to maintain the purity of the positive and negative
datasets collected online). The generic AOGs will also be updated
online together with the specific AOGs. By integrating generic
and specific AOGs, we aim at the life-long learning of objects in
videos without annotations. Furthermore, we are also interested
in integrating scene grammar [85] and event grammar [86] to
leverage more top-down information.
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