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Attribute And-Or Grammar for Joint Parsing of
Human Pose, Parts and Attributes

Seyoung Park, Bruce Xiaohan Nie and Song-Chun Zhu

Abstract—This paper presents an attribute and-or grammar (A-AOG) model for jointly inferring human body pose and human
attributes in a parse graph with attributes augmented to nodes in the hierarchical representation. In contrast to other popular methods
in the current literature that train separate classifiers for poses and individual attributes, our method explicitly represents the
decomposition and articulation of body parts, and account for the correlations between poses and attributes. The A-AOG model is an
amalgamation of three traditional grammar formulations: (i) Phrase structure grammar representing the hierarchical decomposition of
the human body from whole to parts; (ii) Dependency grammar modeling the geometric articulation by a kinematic graph of the body
pose; and (iii) Attribute grammar accounting for the compatibility relations between different parts in the hierarchy so that their
appearances follow a consistent style. The parse graph outputs human detection, pose estimation, and attribute prediction
simultaneously, which are intuitive and interpretable. We conduct experiments on two tasks on two datasets, and experimental results
demonstrate the advantage of joint modeling in comparison with computing poses and attributes independently. Furthermore, our
model obtains better performance over existing methods for both pose estimation and attribute prediction tasks.

Index Terms—Attribute grammar, And-Or grammar, Attribute prediction, Pose estimation, Part localization, Joint parsing.
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1 INTRODUCTION

1.1 Objectives and Motivations

IN this paper, we present a probabilistic, compositional
and graphical model for explicitly representing human

poses, parts, and attributes in an attribute And-Or grammar
(A-AOG), which combines three conventional grammar for-
mulations:

• A phrase structure grammar representing the hierarchical
decomposition from whole to parts;

• A dependency grammar modeling the geometric articula-
tion by a kinematic graph of the body pose; and

• An Attribute grammar accounting for the compatibility
relations between different parts in the hierarchy so that
their appearances follow a consistent style.

As Figure 1.1 illustrates, our algorithm parses an input
image using the A-AoG and outputs an attribute parse
graph with three components. (i) The phrase structure parse
graph is illustrated by the vertical blue edges, and defines
a valid hierarchical composition of body parts following
the phrase structure grammar. (ii) The kinematic graph is
illustrated by the horizontal green edges, and describes the
articulations of body parts following a dependency gram-
mar. (iii) A number of attributes (triangles) are associated
with each node in the parse graph as illustrated with the
red edges. Each attribute takes values from a finite set,
namely its semantic domain, for example, ‘gender’ ∈ {‘male’,
‘female’}, and ‘hair style’ ∈ {‘long’, ‘short’, ‘bald’ } with
posterior probabilities shown in the colored bars.
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Fig. 1. An attributed parse graph for a human image includes three
components in colored edges: (i) The hierarchical whole-part decom-
position (blue); (ii) the articulation of body parts (green); and (iii) the
attributes associated with each node in the hierarchy (red). The parse
graph also includes the probabilities and thus uncertainty at each node
for attributes.

In this representation, some attributes are said to be
global, such as gender and age, as they are associated with
all nodes in the parse graph. A global attribute can be
inferred from individual body parts, for example, one may
tell a person’s age or gender from the head, face, or upper
body alone with different probabilities, which are illustrated
by the colored bars at those nodes. In contrast, the local
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Fig. 2. Examples of our pedestrian attribute dataset. Each image includes one target person and keypoint annotations. This dataset consists of
many kinds of variations in pose and attributes. The attribute categories are shown on Table 1.

attributes are confined to nodes in the low levels of the
hierarchy, for example, hair style is an attribute of the head,
and can be inferred from the head region alone when the
body is occluded. During the inference process, both the
global and local attributes pass information top-down and
bottom-up in the phrase structure parse graph, and impose
constraints to ensure consistency between the parts in a
probabilistic way through extra energy terms modeling the
correlations between parts. The final output for attribute
prediction aggregates information from all the parsed parts.

The following two aspects motivate the proposed A-
AOG for jointly modeling and inferring human poses and
attributes in an explicit representation.

Firstly, it is desirable to have an explicit and interpretable
model for integrating all the attributes in the hierarchical
representation. Despite extensive research on attributes for
objects [1], humans [2], and scenes [3] in the past decade,
most methods train attribute classifier without considering
poses by using features extracted from the whole image.
As human pose has large variations, it is unreasonable
to predict the attributes without knowing where the body
parts are, especially for those local attributes. The problem
will be more prominent when testing data are significantly
different from the training data. Such blackbox classifiers
are separated from the well-known graphical models for
human pose estimation [4], [5], [6] and thus lack explicit un-
derstanding of the interactions between attributes and parts.
Therefore, an explicit and simple model linking attributes to
poses and parts is long desired but missing in the literature.

Secondly, it is desirable to infer pose and attributes
jointly in a common representation. Some recent works use
a pre-trained pose detection module [4] as a pre-processing
stage and then predict attributes sequentially. Such method
inevitably propagates the errors in pose estimation to at-
tribute prediction. We also notice that one significant source
of errors in pose estimation comes from nearby person in
the image, but the attributes consistency help keep the parts
to the same person as seen in Fig. 3. The joint inference
approach solves pose and attributes in an iterative closed-
loop and thus utilize the mutual information between pose
and attribute, such as the co-occurrence of attributes, and
the correlation between attributes and parts.

The proposed A-AOG aims at addressing the two as-
pects above. The A-AOG is a context-sensitive grammar
embedded in an And-Or graph [7]. The and-nodes represent
decomposition or dependency; and the or-nodes represent
alternative choices of decomposition or types of parts. The
attributes at different levels modulate the choices at the Or-
nodes and thus impose the context in a probabilistic way.
For example, a female will have higher probability to wear
a skirt than a male, and the skirt is represented by some

TABLE 1
Attribute list in our pedestrian attribute dataset.

attributes semantic domains

gender male, female

age youth, adult, elderly

hair-style long-hair, short-hair, bald

upper cloth type t-shirt, jumper, suit, no-cloth, swimwear

upper cloth length long-sleeve, short-sleeve, no-sleeve

lower cloth type long-pants, short-pants, skirt, jeans

glasses yes, no

hat yes, no

backpack yes, no

 with attribute constraint. 

 without attribute constraint. 

Fig. 3. Attribute constraints. We infer the pose pg∗ either using Equa-
tion 18 or 20. When we do not have attribute constraints (i.e. using Equa-
tion 18) the model selects the part that maximize the scores in local,
and the part could come from different person, when there are multiple
people close. However, by having the attribute as global constraints (i.e.
using Equation 20), we can enforce model to have consistent attributes
which subsequently results in better pose-estimation.

templates in some or-node branch. Near the leaf node, the
attribute is directly related to the choices of an Or-node. For
example, glasses ∈ {‘yes’, ‘no’} is a local attribute for head,
and a head with or without glasses corresponds to different
part templates (or detectors) under an or-node.

1.2 Dataset Overview and Scope of Experiments

We evaluate the performance on multiple benchmarks in
various experiment settings.

Public dataset on attribute prediction. The attribute of
people dataset [2] is a widely contested benchmark. In this
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dataset, each image is centered and ground truth bounding
box of each person is provided with 9 binary attributes. We
tested the A-AOG model on attribute classification task in
comparison with existing approaches [8], [9], [10], [11], [12],
and on pose estimation task in comparison with the state-
of-the-art method [13]. We also compared with an approach
in conference version [14]. The A-AOG model achieves the
state of art performance on both attribute classification and
pose estimation tasks.

Self-collected dataset for joint parsing. We collected
a pedestrian attribute dataset which was introduced in
ICCV 2015 [14] for both attribute prediction and pose-
estimation tasks. Fig. 2 shows a few example images and
this dataset has large variation in margin, size, attribute,
pose, appearance, geometry and environment. We list the
attribute categories of this dataset in Table 1. We tested the
A-AOG model on attribute classification task in comparison
with [12] and a method in our conference version [14].
The results demonstrate that human pose and attributes are
highly related and that a joint approach is required for better
representation and performance.

1.3 Contributions

This paper makes the following contributions:

• We propose a novel A-AOG model which combines
phrase structure grammar, dependency grammar, and
attributed grammar, and is a simple, explicit and in-
terpretable representation in comparison to the neural
network models used in [9], [11], [12].

• We represent pose-estimation, part-localization and at-
tribute prediction problems in a common A-AOG and
solve them through joint parsing. This has the following
desired properties: (i) We represent object appearance,
geometry and attributes in a unified model and solve the
three tasks simultaneously; (ii) We use a single trained
model for multiple attribute predictions, unlike previous
approaches that require n models or classifiers for n
attributes; (iii) We do not need any pre-processing such
as human detection or part localization.

• The experiments on widely used Attributes of people
dataset [2] and Pedestrian attribute dataset [14] show that
our method outperforms other state of the art methods
on both attribute classification and pose estimation tasks,
and demonstrate the benefits and strength of our joint
modeling of the two tasks.

In comparison to the conference version [14], this pa-
per provides more details in comparing the three types
of grammars and their connections to our A-AOG. We
also introduce an efficient way to incorporate deep learned
features, and provide extended and improved experimental
results with deeper analysis.

The rest of the paper is organized as follows: Section 2
summarizes previous works related to our model. Section 3
overviews the three types of grammar models. Section 4
explains the proposed attribute and-or grammar modeling.
Section 5 and 6 present the inference and learning algo-
rithms, respectively. Finally, we present various experiments
and analysis of experiment results in Section 7.

2 RELATED WORKS

Our approach is related to three streams of research in the
literature which we will briefly discuss in the following.

2.1 Research on attribute grammar

Attribute grammars were first developed in computer sci-
ence by D. Knuth for formalizing the semantics of context-
free languages [15], e.g. in compiler writing, and were
adopted by natural language processing (NLP) [16]. It aug-
ments the productions rules in context-free grammars by
providing context sensitive conditions on the attributes of
the symbols. In computer vision, attribute grammar was
adopted and extended by Han and Zhu [17] for pars-
ing man-made scenes. The buildings and furniture, etc. in
such scenes are decomposed into rectangles with geometric
attributes, such as center and orientations, which follow
some constraints, such as alignment in 1D (windows), 2D
(floor tiling), and 3D (cubic objects). In contrast to the hard
deterministic constraints in compiler writing, the attribute
grammar in scene parsing uses soft constraints in the form
of energy terms. Later, the attribute grammar is adopted for
action representations [18], [19], scene attribute tagging [20],
and 3D scene construction from a single view [21]. The
grammar rules are manually designed in the scene parsing
work [17], [22] and 3D reconstruction work [21]. The scene
attribute tagging work [20] learns the attribute grammar in
a weakly supervised way from well-aligned images for each
scene category. In contrast, human images have huge pose
variations, and thus the pose estimation is integrated into
our approach for joint parsing.

2.2 Research on human attribute classification

Recently the study of attribute classification has became a
popular topic in computer vision for its practical impor-
tance. Early work focused on facial images since face is the
most informative and distinct part of the body, and is the
most suitable for estimating attributes such as gender [23],
[24], [25], age [26], and some local attributes (e.g., hair
style) [27]. Later, as more diverse attributes (e.g., cloth types)
were explored, full body parts were used to collect richer
and more diverse information. However, input images can-
not be used directly without dealing with the variations of
geometry and appearance as the full body has large pose
variations. The method of Bourdev et al. in [2] classifies
attributes by detecting body parts using Poselets [28], while
Chen et al. proposed a method to explore human clothing
styles with a conditional random field in [29] using pre-
trained pose estimation [30] output. As these methods used
the pre-trained part localization method as a preprocessing
step, the attribute recognition performance undoubtedly
relies on the localization accuracy. Joo et al. designed a rich
appearance part dictionary to capture large variations of
geometry and pose [8]. Zhang et al. made a considerable
performance improvement in [9] by using the CNN-based
approach. They used the pre-trained HOG based poselet for
part detection and trained classifier with the shallow con-
volutional network for attributes. They also relied on part-
based approaches and required the ground-truth bounding
box in test. More recently, Gkioxari et al. made significant
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performance improvement in [11], [12]. In [11], three body
parts are defined and jointly fine-tuned with CNN features
in the whole body bounding box. In [12], the CNN networks
are designed to learn context information for attributes and
actions. However, this kind of CNN-based approaches still
lack the explicit representation. In contrast to those CNN
models, we build explicit graphical models to represent
attributes and poses together, thus our model has more
interpretability and explainability for how the information
is integrated.

2.3 Research on part localization
Localization and detection of human and its parts has been
a topic of interest for many years. The pictorial structure
model is introduced in the early stage for detection [31] and
extended in [32], [33], [34], [35] which used a geometry-
based tree model to represent the body. Since then, the
deformable part model [36] has became one of the most
dominant methods in recent years for detecting humans and
other objects [37]. In the last few years, hierarchical mixture
models [6], [30], [38], [39] made significant progress which
is similar to a dependency grammar. Poselets method [28]
used a part-based template to interpolate a pose. [13], [40],
[41], [42] showed significant improvement compared to
previous methods by training keypoint specific part de-
tectors based on a deep convolutional neural network for
human body pose estimation. However, these models did
not incorporate any notion of visual attributes explicitly. In
comparison, we provide a method for finding informative
parts for attributes and their geometrical relations in our
model.

3 BACKGROUND ON GRAMMAR MODELS

In this section, we overview the three types of grammars
to provide the necessary background information and then
derive the A-AOG as a unification in the following section.

3.1 Phrase structure grammar
The phrase structure grammar, also known as constituency
grammar, is based on the constituency relation. The con-
stituency relation defines the rule to break down a node
(e.g. parent node) into its constituent parts (e.g. child nodes).
In other words, each node must geometrically contain all of
its constituents. Phrase structure grammars were introduced
in syntactic pattern recognition by K.S. Fu in the early
1980s [43], and rejuvenated into compositional models by
Geman et al. [44] and stochastic image grammars by Zhu
and Mumford [7]. Such grammars have been successfully
used in parsing objects and scenes in various form [6],
[7], [45]. For example the deformable parts models [5] is
a simple context free phrase structure grammar.

Formally, a phrase structure grammar is often formu-
lated as a stochastic context free grammar:

G =< S, VN , VT , R,P >

with five components: a root/initial state S, a set of non-
terminal nodes VN , a set of terminal node VT , a set of
productions rules R, and a probability system P associated
with these rules. Each terminal node in VT is represented
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Fig. 4. Phrase structure grammar defines coarse-to-fine representation.
Each grammar rule decomposes a part into smaller constituent parts.

by an image template or discriminatively trained detector.
A typical nonterminal node A ∈ VN is derived by some
production rules in the following form,

A→ α1 |α2 |α3, with θ1|θ2|θ3.

where αi is a string of nodes in VN∪VT and θi is the branch-
ing probability for the three distinct ways for deriving node
A. Fig. 4 illustrates a parse graph example. The root node is
the upper body and decomposed into arms, head, and torso.
The arms are further decomposed into upper arm, lower
arm, and hand. It can be described by production rules:

torso → l. arm, head, torso, r. arm
l. arm → l. upper arm, l. lower arm, l. hand
r. arm → r. upper arm, r. lower arm, r. hand

l. and r. indicate left and right respectively. In a general
form, the grammar can derive a large number of parse
graphs for human images depending on the clothing styles,
body poses and camera views. Such grammar models have
at least two shortcomings in vision tasks.

i) It lacks contextual information, such as the correlations
between sibling parts or the conditions for expanding an
non-terminal node.

ii) It is often disadvantageous to choose only one of
the branches exclusively due to ambiguities in image ap-
pearance or because the image templates under different
branches are not well-separable. Thus it loses performances
to implicit models like the convolutional neural net.

3.2 Dependency grammar
Dependency grammars have been widely used in natural
language processing for syntactic parsing, especially for
languages with free word order. It has a root node S and
a set of n other nodes {A1, ..., An} with production rules
like

S → A1 |A2 · · · |An; (1)
Ai → ai | aiAj |Ajai; ∀i = 1, 2..., n, j 6= i. (2)

The root node can transit to any other node once, and
then each node Ai can terminate as ai or transit to another
node Aj to the left or right side. Unlike phrase structure
grammars, a child node derived from a parent node is not a
constituent of the parent but depends on the parent in some
semantic relations.

For example, Fig. 5 is a parse graph for the upper
body derived from a dependency grammar and is called
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Fig. 5. Dependency grammar defines adjacency relations that connects
the geometry of a part to its dependent parts. It is well suited for
representing objects that exhibit large articulated deformations.

a kinematic parse graph. The root node is the torso part as
it is the center of the body and connected to other parts. The
upper arms and head are the child nodes of the torso. It can
be described with production rules as:

torso → l. upper arm, head, r. upper arm
l. upper arm → l. lower arm
l. lower arm → l. hand
r. upper arm → r. lower arm
r. lower arm → r. hand

The dependency grammar is well suited for representing
objects with large articulated deformations. Body parts at
different locations and orientations are treated as different
nodes in this grammar. In computer vision, the pictorial
model [34] and the flexible mixture of parts model [38] can
be viewed as dependency grammars. The advantage of the
dependency grammar lies in its simplicity which facilitates
learning. The disadvantage is that it loses the coarse-to-fine
summarization of the phrase structure grammar.
3.3 Attribute grammar
Attribute grammar assigns some attributes {x1, x2, ..., xk}
to the non-terminal or terminal nodes of a grammar, e.g.
A non-terminal node A (or terminal node a) has attributes
denoted by A.x1 (or a.x1). These attributes have seman-
tic domains as we shown in Table 1. Such assignments
match our intuition which is the joint modeling of human
attributes and poses because we also assign different human
attributes to non-terminal/terminal nodes (human parts).

Then for each production rule in a context-free grammar,
we can augment a number of conditions or constraints
between the attributes of parents and children nodes in the
following form,

A → aBc (3)
s.t. A.x1 = f1(a.x1, B.x2, c.x1)

A.x2 = f2(a.x2, B.x1, c.x2).

In the above rule, the functions f1 and f2 impose constraints
and conditions for deriving the nodeA, so that the grammar
becomes mildly context-sensitive. Furthermore, they pro-
vide means for passing information top-down (for the so-
called inherited attributes) and bottom-up (for the so-called
synthesized attributes) in the parse graph.

Our A-AOG relaxes the hard constraints [17], [21] to
soft energy terms and encodes three types of contextual
information.

i) Consistency between the same attribute in parent and
children nodes, for example, if the root node has gender
attribute as female, then its parts are likely also female.

ii) Co-occurrence between attributes, e.g. a female is
more likely to have long hair and wear a skirt.

iii) Correlations between the assignment of an attribute
to the image feature of a node and its alternative choices,
e.g. long hair and short hair will have preferences on the
choices of image templates.

4 ATTRIBUTE AND-OR GRAMMAR MODEL

In this section, we present the A-AOG to integrate the three
types of grammars into an And-Or graph representation [7].

4.1 Attribute And-Or Graph Representation
We construct the And-Or graph in three steps:

1) We use a phrase structure grammar as the backbone
of the And-Or graph, which is compositional and reconfig-
urable, i.e. its parse graph can change structures in contrast
to some hierarchical models with fixed structure.

2) We augment the hierarchy with dependency relations
to encode the articulations between adjacent body parts.

3) We further associate the nodes in the And-Or graph
with attributes, which expand the dimensions of represen-
tation and introduce additional contextual constraints.

For clarity, we denote the A-AOG by a 5-tuple:

A−AOG =< S, V,E,X,P > .

1) The vertex set V = Vand ∪ Vor ∪ VT consists of three
subsets: (i) a set of and-nodes Vand for decomposition in
the phrase structure grammar; (ii) a set of or-nodes Vor for
branching to alternative decompositions and thus enabling
reconfiguration; and (iii) a set of terminal nodes VT for
grounding on image features. Each node v ∈ V represents
a body part of different granularities and has state variables
designating the location (x, y). In fact, the state variables
are the geometric attributes which are propagated between
parent-children nodes in the hierarchy. However, in this
paper, we treat them separately from the human attributes.

We define 14 atomic, i.e. terminal, parts, head, torso,
l.shoulder, r.shoulder. l.upper arm, l.lower arm, r.upper arm,
r.lower arm, l.hip, r.hip, l.upper leg, l.lower leg, r.upper leg,
and r.lower leg. These parts are defined as terminal nodes
(VT ) in the grammar. We then define non-terminal nodes
(VT ), upper body and lower body by combining terminal
parts. Upper body part includes head, torso, shoulders, and
arms. Lower body part includes hips and legs. The root part,
full body, is defined by upper body and lower body. We
illustrate the defined grammar in Fig. 7.

2) The edge set E = Epsg ∪ Edg consists of two subsets:
(i) a set of edges with phrase structure grammar Epsg; and
(ii) a set of edges with dependency grammar Edg.

3) The attribute set X = {x1, ..., x9} are associated with
nodes in V .

4) P is the probability model on the graphical represen-
tation.

Define the parse graph

pg = (V (pg), E(pg), X(pg))

where V (pg), E(pg) and X(pg) are the set of nodes,
edges and attributes respectively in parse graph pg. Fig. 6
shows a parse graph example derived from the A-AOG,
which includes a parse graph for human body detection and
pose and a parse graph for human attributes.
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Fig. 6. An example of the parse graph following the A-AOG, which includes a parse graph for human body detection and pose and a parse graph
for human attributes.

4.2 Formulation of Joint Pose and Attribute Parsing
The goal is to find the most probable parse graph pg
from the designed grammar model given an image I . The
probability model over the parse graph is formulated in a
Bayesian framework, which computes the joint posterior as
the product of a likelihood and prior probability, and equiv-
alently represented as the following the Gibbs distribution

P (pg|I;λ) ∝ P (I|pg;λ)P (pg;λ)

=
1

Z
exp{−E(I|pg;λ)− E(pg;λ)} (4)

The model parameters are denoted as λ. The energy
functions E are further decomposed into a set of potential
functions. These potentials constrain all aspects of the gram-
mar. The likelihood term describes appearance response and
is decomposed into part and attribute appearance.

−E(I|pg;λ) = −EVapp(I|pg;λ)− EXapp(I|pg;λ) (5)

EVapp(I|pg;λ) and EXapp(I|pg;λ) are appearance terms for part
and attribute respectively. The prior term is used to describe
relations in grammar. It is also decomposed into part and
attribute relations.

−E(pg;λ) = −EVrel(pg;λ)− EXrel(pg;λ)} (6)

EVrel(pg;λ) and EXrel(pg;λ) are relation terms for part and
attribute respectively. We rewrite Equation 4 as

P (pg|I;λ) = 1

Z
exp{ − EVapp(I|pg;λ)− EXapp(I|pg;λ)

− EVrel(pg;λ)− EXrel(pg;λ)} (7)

We, then, can express energy terms as scoring functions.

S(pg, I) = −EVapp(I|pg)− EXapp(I|pg)− EVrel(pg)− EXrel(pg)

= SV
app(I, pg) + SX

app(I, pg) + SV
rel(pg) + SX

rel(pg)

(8)

We now have four scoring functions.

SV
app(I, pg) part appearance score function

SX
app(I, pg) attribute appearance score function

SV
rel(pg) part relation score function
SX

rel(pg) attribute relation score function

The choice and particular forms for these scoring func-
tions vary on the design and intention of the grammar,
which we explore in the following sections.

4.3 Part Model

4.3.1 Part Relation Model

The term SV
rel(pg) is for the part relation score. We define

two relation types: syntactic relation (green edges in Fig. 6)
and kinematic relation (red edges in Fig. 6). Syntactic re-
lation follows phrase structure grammar, and controls the
part composition. Kinematic relation follows dependency
grammar rule, and describes the articulation constraints.
The overall relation score sums each of these relations.

Each part vi is associated with (xi, yi) as its position
and ti as its part type. The syntactic relation is defined
between parts to represent the co-occurrence frequency of
two neighboring part types, and captures correlations and
compatibilities between the parts. It is described by score
function SS

rel(vi, vj), and the SS
rel over parse graph is com-

puted as:

SS
rel(pg) =

∑
(i,j)∈Epsg(pg)

SS
rel(vi, vj) (9)

where Epsg(pg) is the set of edges with phrase structure
grammar in parse graph pg. Here SS

rel(vi, vj) = logP (ti, tj)
where P (ti, tj) is the probability that part type ti occurs
with tj .

The kinematic relation is defined between parts by and-
rule from and-or grammar. And-rule can be viewed as the
rule for assembly of constituent parts and enforce geometric
constraints between two parts (vi, vj) with relative geometry
of articulation. It is described by score function SK

rel(vi, vj).
SK

rel over the parse graph is computed as

SK
rel(pg) =

∑
(i,j)∈Edg(pg)

SK
rel(vi, vj) (10)

where Edg(pg) is the set of edges with dependency
grammar in parse graph pg. SK

rel(vi, vj) = logP (vi, vj)
where P (vi, vj) is modeled as a Gaussian mixture on
(xi − xj , yi − yj). The part relation score SV

rel(pg) is defined:

SV
rel(pg) = SS

rel(pg) + SK
rel(pg)

=
∑

(i,j)∈Epsg(pg)

SS
rel(vi, vj) +

∑
(i,j)∈Edg(pg)

SK
rel(vi, vj)

(11)
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and connected with part types through attribute relations. In this figure, we only show attributes of head and full body, and draw phrase structure
grammar relation for better illustration.

4.3.2 Part Appearance Model
In the previous section, we defined parts and its relations.
We now design appearance templates to describe diverse
appearances under different viewpoint and pose for part
and its types. Appearance is described by the image like-
lihood of the grammar and corresponding to the scoring
function SV

app(pg, I), and it can be computed from the part
appearance score function SV

app(vi, I) which indicates the
local appearance evidence for placing i-th part vi on image
patch centered at location (xi, yi). SV

app over pg is computed
as:

SV
app(pg, I) =

∑
vi∈V (pg)

SV
app(vi, I) (12)

V (pg) is a set of parts in parse graph pg.

4.4 Attribute Model

We now combine attribute notation on the grammar model
by defining relations between part and attributes. Previous
attribute approaches [2], [8], [9], [10], [29] use all defined
parts (or poselets) for attribute classifications, and it means
they assumed attributes are related to all body parts. How-
ever, we can simply know some parts may not be related
with such attributes, and it might hurt attribute prediction
if we classify attribute with unrelated parts. For examples,
‘glasses’ is not related to ‘lower body’ parts and ‘t-shirt’
is not related to ‘head; or ‘lower body’ parts. In contrast,
‘long-hair’ attribute will be highly related to ‘head’ part.
Therefore, we need to learn how attributes and parts are
related. We define the set of attributes for each part v and
denote them byX(v). Then,X(v) includes related attributes
for part v. As we illustrated in Fig. 6 and Fig. 7, we attach
X(v) to each part in our grammar. We will discuss how to
obtain X(v) in Section 6.2.

4.4.1 Attribute Node
We can treat the set of attributes X(v) for part v as a
two layered simple graph which follows and-or grammar
rules as illustrated on the right side in the Fig. 7. The root
node of X(v) is described by and-rule in and-or grammar.
It includes corresponding attributes for part v as its child
nodes. Then, each attribute includes attribute types as child

nodes, it follows or-rule. It has two attribute types for binary
attribute class, such as ‘gender’ and ‘wearing t-shirt’, or
have more than two for multi-class attributes, such as ‘cloth
types’ or ‘age’. It can be described in production rule. For
example, when part v has two corresponding attributes,
‘gender’ and ‘wearing t-shirt’, ‘gender’ can have types
‘male’ and ‘female’. ‘wearing t-shirt’ has two child nodes,
‘yes’ and ‘no’. In production rule, it could be written as
follow,

attribute production rule example
X(v)→ {X1, X2}
X1 → X11|X12

X2 → X21|X22

X(v)→ {Gender,T-shirt}
Gender→ Female|Male
T-shirt→ Yes|No

4.4.2 Attribute Relation Model

Each attribute node X(vi) is linked to part vi through a
relation as shown by blue edges in Fig. 6 and a dashed
line in Fig. 7. This relation describes properties of part node
vi and reflects the co-occurrence frequency of the attribute
given the part type. For example, let the specific part type of
node v (= upper body) have an appearance that is blouse-
like. This will occur more frequently with female than male,
and therefore the model should favor selecting this part
when there is strong evidence for the female attribute. It
is described by score function SX

rel(vi, X(vi)), and SX
rel over

pg is computed as

SX
rel(pg) =

∑
vi∈V (pg)

SX
rel(vi, X(vi)) (13)

4.4.3 Attribute Appearance Model

Just as we defined appearance model for part, so too we
define appearance model for attribute. It corresponds to the
scoring function SX

app(pg, I), and it can be computed from
attribute score function SX

app(X(vi), I). It indicates the local
appearance response of attributes of part vi at image path
centered at vi = (xi, yi). The score SX

app over pg is computed
as

SX
app(pg, I) =

∑
vi∈V (pg)

SX
app(X(vi), I) (14)
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4.5 Combine Appearance Models
We defined two appearance models: part appearance
SV

app(vi, I) and attribute appearance SX
app(X(vi), I). They

are now connected through the part-attribute relation, and
we can combine those two appearance score functions
into single function Sapp(vi, aj , I) where aj ∈ X(vi). In
order to capture the diverse appearance of part and at-
tributes under different viewpoints and poses, we borrow
the strength from a deep CNN model. At the last layer of
our CNN model, we can directly get P (vi, aj , tm|I) which
is the likelihood of the image patch that belongs to part
vi with part type tm and attribute aj . The score function
Sapp(vi, aj , I) = log(maxtmP (vi, aj , tm, I)). The total ap-
pearance score over pg is computed as:

Sapp(pg, I) =
∑

vi∈V (pg)

∑
aj∈X(vi)

Sapp(vi, aj , I) (15)

We will explain how we utilize a CNN model to obtain part
and attribute scores together in Section 6.

5 PARSING AND INFERENCE

We defined grammar structure for describing human body
with attributes. The inference task is now equivalent to
finding the most probable parse graph pg∗ from the con-
structed grammar model for given image I . We can find
pg∗ by maximizing the score functions described in previous
sections.

pg∗ = argmax
pg

P (I|pg)P (pg)

= argmax
pg

[SV
app(pg, I) + SX

app(pg, I) + SV
rel(pg) + SX

rel(pg)]

(16)

By utilizing CNN model, we learn the part appear-
ance and part attributes jointly through their shared net-
work, thus accordingly we combine part appearance score
SV

app(pg, I) and attribute score SX
app(pg, I) into Sapp(pg, I).

The CNN outputs the probabilities of combinations of part
and attributes as shown in Eqn 15. The joint learning let the
two tasks help each other during training and inference. The
part-attribute relation SX

rel(pg) will also be captured implic-
itly by Sapp(pg, I) through the learning of CNN model. Eqn
16 can be rewritten as

pg∗ = argmax
pg

[Sapp(pg, I) + Srel(pg)] (17)

We now denote part relation score function SV
rel(·) by

Srel(·) to simplify the equation. In the conference ver-
sion [14], we used Equation 16 to find the optimal parse
graph pg∗, but we maximize the Equation 17 in this paper.
We compare two methods quantitatively in Section 7.

In the first step of inference, in order to reduce the
searching space of the parse graph, we generate the pro-
posals for each part by the deep CNN model instead of
computing response maps on image pyramid. Each part
proposal is associated with attributes. After having the
proposals for each part: Ov1 , Ov2 , ..., Ovn , we can obtain
the final parse graph pg∗ with Equation 17. To maximize

S(pg, I) = Sapp(pg, I)+Srel(pg), we introduce the total score
function Stot(vi, I) which is formulated in a recursive way:

Stot(vi, I) =
A∑

j=1

Sapp(vi, aj , I)

+
∑

vj∈C(vi)

[Srel(vi, vj) + Stot(vj , I)] (18)

where A is the number of attribute categories and C(vi)
is the set of children of part vi, and vi ∈ Ovi . The score
function S(pg, I) is equivalent to Stot(vo, I) where vo is
the root part. We now can infer the parse graph pg∗ by
maximizing Stot(vo, I), and it can be expressed as

pg∗ = argmax
pg

Stot(v0, I) (19)

We can also infer the parse graph pg∗ in a different
way by using the attribute as a global constraint which
means all parts should have the same attribute. We first find
attribute specific parse graph pgaj

. pgaj
denotes the parse

graph under j-th attribute aj . To infer parse graph pg∗aj
,

we maximize S(pgaj
, I) = Sapp(pgaj

, I) + Srel(pg) where
Sapp(pgaj

, I) =
∑

v∈V (pgaj
) Sapp(v, aj , I) . To maximize

S(pgaj
, I), we use score function Stot(vi, aj , I)

Stot(vi, aj , I) = Sapp(vi, aj , I)

+
∑

vj∈C(vi)

[Srel(vi, vj) + Stot(vj , aj , I)] (20)

The score function S(pgaj
, I) is now equivalent to

Stot(v0, aj , I), and the inference of parse graph can be ex-
pressed as pg∗aj

= argmaxpgaj
Stot(v0, aj , I). Commonly

this maximization problem can be computed using dy-
namic programming (DP), however, the DP cannot be used
because of many loopy cliques in our model due to the
combination of phrase structure grammar and dependency
grammar. Here we applied a greedy algorithm based on the
beam search.

We start with total No = |Ov0 | parse graph candidates
pg′1, ..., pg

′
N each of which only includes one part v0 from

proposals Ov0
for root part, then one child part of the root

part vi ∈ Ovi is added into parse graph and generate
N1 = N0×|Ovi | parse graph candidates. The score S(pg′i) =
Stot(v0, ai, I) is updated by adding the part relation score
Srel(vi, vj). Only top-K high scored parse graph candidates
are kept for the next step and K is decided through cross-
validation on training data. We continue adding child part
of current parse graph, updating the scores and pruning
candidates until all parts are added into the parse graph.
Finally we pick the parse graph candidate with highest score
as the inferred parse graph pg∗a.

We have pg∗a as many as the number of attributes. For
example, we have 9× 2 attribute specific parse graphs pg∗aj

where j = {1, 2, . . . , 18} in the experiment for Attribute of
People dataset which define 9 binary attributes. The final
parse graph pg∗ on image I is inferred as:

pg∗ = argmax
pgaj

S(pg∗aj
, I) (21)

We compare two pose inference methods in Fig. 3. As we
can see from the figure, when we do not include attribute
constraints in Equation 18, the model selects parts that
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generate part proposals
from input image

combine with
keypoint annotation

find pos and neg
part proposals

Fig. 8. We generate part proposals from input image and find positive
and negative proposals using keypoint annotation information.

maximize the scores locally and the parts could come from
different people. However, when we have global attribute
constraints in Equation 20, we can control the model to have
consistent attributes and can provide better pose estimation.

We compute the score of attribute S(aj) from each parse
graph pg∗aj

and it is the summation of part score on the parse
graph pg∗aj

under part-attribute constraints.

S(aj) =
∑

v∈V (pg∗
aj

)

Sapp(vi, aj , I) · 1(aj , X(vi)) (22)

X(vj) is the set of attributes corresponding to part vi and
defined in Section 4.4.2. 1(·) is an indicator function.

6 LEARNING

Our learning procedure contains two stages: 1) learning
deep CNN models for part proposals generation, and com-
putation of the likelihood of part and attribute, and part
positions regression; 2) learning the geometric relations be-
tween parts, and the compatibility relations between parts
and attributes.

6.1 Part proposal and appearance model learning
Although Faster R-CNN [46] is used for generic object de-
tection task, it has not been used in the task of fine-grained
object recognition and detection, e.g., attribute classification
and part localization. [46] trained two networks: region pro-
posal network for object proposal generation and fast-rcnn
network [47] for object recognition. Inspired by the success
in [46], we design two networks: part proposal network
to generate part proposals; the part-attribute network to
generate likelihood for all part-attribute combinations using
classification layer and predict positions of parts using a
regression layer. The two networks share weights of bottom
layers. The two networks are initialized with the same pre-
trained models in [46].

We use strong supervision which includes the 14 joints
of human (see Figure 14), the bounding box of the target
person and the attribute labels. To train the part proposal
network, we first generate 9 bounding boxes (= 3 scales
× 3 aspect ratios) which correspond to 9 part types at
each location, and then compute the overlap between 9
bounding boxes and the ground-truth bounding box for
each location. The locations are predicting the part pro-
posals if the overlap is bigger than 0.5. From the part
proposal network, we can generate proposal set Oi for each

parts in previous approaches parts in our approach

Fig. 9. In previous approaches, (left) parts are defined by drawing
square bounding box around keypoint [13], [38] or by annotating precise
bounding box [6]. (right) We define parts based on our part proposal
process, and it handles geometric and scale variation of parts efficiently
and effectively.

part vi. The part type tp ∈ {1, 2, ..., 9} for each proposal
is the index of the predicted bounding box with highest
probability. To train part-attribute network, we decide the
training labels for each proposal by the following process:
(1) compute the overlap between the proposed and the
ground-truth human bounding box; (2) label the proposals
with overlap lower than 0.5 for negatives. (3) select the
proposals with overlap higher than 0.7 and compute the
minimum distance dk between each proposal and all parts
as minni=1(||[xk, yk]− [xi, yi]||2/min(wk, hk)). [xk, yk] is the
center of a proposal k, [xi, yi] is the keypoint of part i, and
[wk, hk] are the width and height of the proposal, and n
is the total number of parts. The keypoint of atomic part
is defined as its joint and the keypoint of a non-terminal
part (upper-body, lower-body, full-body) is the center of
joints included in this part. We also record the part index
Ip which gives the minimum distance. Ip is the index of
a non-terminal part if the proposal includes all the joints
of this part, or the index of an atomic part otherwise. (4)
keeps the proposals whose dk are smaller than 0.5. Each
proposal is labeled as the part index Ip and part type tp. We
illustrate the part proposal process in Fig. 8 and compare
our part design with previous approaches in Fig. 9. From
our approach for part design, we can handle large variation
of part scale and aspect ratio.

In part-attribute network, we use the categorical cross-
entropy loss on top of a softmax layer, thus it outputs
the likelihood of all part-attribute combinations for each
proposal. The length of the output is 17×9×k+1 in which
17 is the number of parts (14 atomic parts + 2 mid-level
parts + root part) and 9 is the number of part types and k is
the number of attribute categories and +1 is for background.
The output of regression layer are the keypoint positions of
parts.

6.2 Part relation and part-attribute relation learning

The part relation includes the syntactic relation between
parent and children parts, and kinematic relation be-
tween atomic parts. The syntactic relation is defined as
SS
rel(vi, vj) = logP (ti, tj) and P (ti, tj) is from the normal-

ized histogram of co-occurrence of part types. We use the
mixture of Gaussian to measure the part relation P (vi, vj)
and the score SK

rel(vi, vj) = logP (vi, vj), and it penalizes the
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Fig. 10. Part-attribute relation. We compute mutual information be-
tween atomic parts and attribute to find the parts that contribute the
most to each attribute. If the mutual information value is higher than the
mean value (the yellow lines), we consider the part to be associated with
the attribute (the red bars). We only compute for 14 terminal parts. The
mid-level and root parts will synthesize the attribute relations from child
nodes. Please see text for details and part indexes.

displacement of the i-th part and j-th part. The number of
mixtures is set to 10.

The part-attribute relation describes the compatibility
relationship between part and attribute. In the Attributes
of People dataset [2], about one third of the attributes are
annotated as unknown, and many joints are also annotated
invisible due to the occlusion or truncation of human body.
In most cases, the attributes are annotated unknown because
of the invisible specific parts. For example, the attribute
’long pants’ of most images are unknown because only
the upper body is visible. Thus, these annotations actually
provide strong evidence about which parts play a role
in distinguishing the attribute. To find associated part for
each attribute, we compute mutual information between
attributes with label ‘known’ and ‘unknown’ and 14 atomic
parts with label ‘visible’ and ‘invisible’. We show the com-
puted mutual information in Fig. 10 for four attributes. For
each attribute aj , we pick the parts of which the values are
above the mean value as the associated part set. If a part is
picked then its parent part will also be picked. For example,
‘leg’ is the related part for ‘jeans’, and ‘lower body’ and ‘full
body’ are considered as related parts for ‘jeans’ as well. We
denote corresponding attributes for each part by X(v).

7 EXPERIMENTS

We conduct three sets of experiments on joint inference
of human attribute and pose. The first set of experiments
evaluates our method on attribute classification, and
compares against the previous approaches in [8], [9],
[11], [12], [14]. The second set tests pose estimation, and
compares against the state-of-the-art method in [13]. The
last set is diagnostic analysis and compares our joint model
with its different variants and settings. In particular, we
show that pose estimation improves attribute classification

and vice versa.

7.1 Benchmarks
Attributes of People dataset. Introduced by [2], this
datataset consists of 4013 training images and 4022 testing
images. Each image is centered at the target person which
is annotated as a bounding box. This dataset defines 9
binary attributes, and keypoint annotations can be used
for training. This dataset is challenging for attribute
classification and pose estimation because the person is
always occluded and truncated, and the pose variation is
very large.

Pedestrian Attribute dataset. We collected and annotated a
Pedestrian attribute dataset. It provides part and attribute
annotations as illustrated in Figure 2. It is designed to have
one person in an image, and does not provide a bounding
box of the target human at test time. It includes 2257 high
resolution images of which 1257 images are for training
and 1000 images for testing. It consists of many types
of variations in attribute, pose, appearance, geometry and
environment. The 16 joint positions and labels of 9 attributes
are provided.

7.2 Evaluation on Attribute Classification
Table 2 compares the average precision of attribute clas-
sification between our method variations and other meth-
ods [8], [9], [11], [12], [14] on Attributes of People dataset.
The method ’Ours w/o or-nodes’ does not contain the com-
patibility score Ss

rel(vi, vj) between parts and the method
’Ours w/o pose’ estimates attribute without inferring pose.
The method ’Ours’ indicates our final system. All the meth-
ods from the 1st row to the 10th row use the ground-truth
bounding box of the target person at test time. To compute
the log likelihood of part and attribute in our structure,
we train our 8-layer networks and 16-layer networks based
on the same pre-trained networks used in [46]. For at-
tribute classification evaluation, we compute the score using
Equation 22. Note that [8] did not use joint annotations
during training, and [9] trained model on a different training
dataset (25K images) which is much larger than the original
set. Our final system outperforms the state-of-the-art meth-
ods [11] using 8-layer and 16-layer network architectures
respectively.

We also compare our approach when ground truth
bounding boxes of the target persons are not given at test
time. The results are shown from the 11th row in Table
2. In [11], they use R-CNN [48] person detection as the
preprocessing step to detect the target person. However,
our approach detects people, classifies attributes, and esti-
mates human pose simultaneously in a unified framework.
Overall, our method with 8-layer network improves mAP of
same network architecture by 6.4% point, and even achieves
2.0% point better mAP than 16-layer network in [11]. In
addition, we achieve 5.8% point better performance than
16-layer network architecture in [11] using the same net-
work. We also show a tremendous improvement from our
conference version [14]. It is important to note that we
perform better with the same network architecture, and it
demonstrates the advantage of the joint modeling in which
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TABLE 2
Attribute prediction performance on attributes of people dataset. 8 layers indicates using 8 layer structure CNN model, and 16 layers indicates 16

layer model.

Method Male Long
hair Glasses Hat T-shirt Long

sleeve Shorts Jeans Long
pants mAP

1. with ground truth bounding box
Joo et al. [8] 88.0 80.1 56.0 75.4 53.5 75.2 47.6 69.3 91.1 70.7
PANDA [9] 91.7 82.7 70.0 74.2 68.8 86.0 79.1 81.0 96.4 78.98
Park et al. [14] 92.1 85.2 69.4 76.2 69.1 84.4 68.2 82.4 94.9 80.20
Gkioxari et al. (8 layers) [11] 91.7 86.3 72.5 89.9 69.0 90.1 88.5 88.3 98.1 86.0
Ours w/o or-nodes (8 layers) 91.9 85.0 79.7 90.4 65.5 92.1 89.9 87.3 97.9 86.7
Ours (8 layers) 93.0 86.2 80.2 91.8 67.1 93.6 91.4 88.2 98.1 87.7
Gkioxari et al. (16 layers) [11] 92.9 90.1 77.7 93.6 72.6 93.2 93.9 92.1 98.8 89.5
R* CNN (16 layers) [12] 92.8 88.9 82.4 92.2 74.8 91.2 92.9 89.4 97.9 89.2
Ours w/o or-nodes (16 layers) 94.9 90.6 85.2 93.7 71.3 95.1 94.2 93.1 98.8 90.7
Ours (16 layers) 95.2 92.0 86.3 94.8 72.9 95.9 94.8 93.5 98.8 91.6
2. without ground truth bounding box
Gkioxari et al. (8 layers) [11] 84.1 77.9 62.7 84.5 66.8 84.7 80.7 79.2 91.9 79.2
Ours w/o pose (8 layers) 88.3 84.1 73.2 86.4 57.1 90.1 78.8 85.1 95.8 81.6
Ours w/o or-nodes (8 layers) 87.9 83.6 75.4 87.3 62.2 92.1 84.1 87.6 97.6 84.2
Ours (8 layers) 89.2 85.2 76.3 88.7 63.9 93.5 85.5 89.8 98.1 85.6
Gkioxari et al. (16 layers) [11] 90.1 85.2 70.2 89.8 63.2 89.7 83.4 84.8 96.3 83.6
Ours w/o pose (16 layers) 92.1 88.4 76.4 90.1 62.7 92.8 82.5 89.2 98.1 85.8
Ours w/o or-nodes (16 layers) 93.7 91.1 78.5 92.6 68.2 94.0 88.4 92.1 98.6 88.5
Ours (16 layers) 94.8 91.9 79.4 93.8 69.1 95.1 89.1 93.2 98.8 89.4

TABLE 3
Results for attribute classification on the proposed Pedestrian attribute dataset. We use average accuracy for evaluation. The ground truth
bounding boxes are not provided at test time. We use the R-CNN [48] person detection method for input for R* CNN because it requires the

person bounding box at test time. We only evaluate binary attributes for R-CNN. Please see text for details.

Method Gender Age Hair-style Upper cloth
type

Upper cloth
length

Lower cloth
type Backpack Glasses Hat mAC

Park et al. [14] 79.8 88.2 71.7 74.9 77.2 69.9 70.8 61.1 78.1 74.6
R* CNN [12] 79.5 - - - - - 90.4 84.1 84.3 -
Ours w/o pose 84.1 87.1 80.8 74.1 78.8 72.8 88.2 80.1 81.1 80.8
Ours w pose 85.2 89.6 84.9 79.9 81.2 77.5 89.6 85.3 85.5 84.3
Ours w pose + w or-nodes 86.8 90.5 86.0 81.2 82.5 78.7 90.2 86.9 87.0 85.5

pose-estimation and attribute prediction help each other
during training and inference.

We compare the attribute classification on Pedestrian
attribute dataset on Table 3. We outperform our confer-
ence version [14] substantially on all attributes without
the ground truth boxes during testing. To have a better
comparison, we train the model of R* CNN [12] on this
dataset which is designed without ground truth bounding
box at test time, but R* CNN requires the ground truth
bounding box of target human. In order to have a fair
comparison, we use the person detection method in [46] to
generate bounding boxes for R* CNN. We only train and
evaluate binary attributes, because R* CNN is designed for
binary attribute classification. We show better performance
on 3 binary attributes out of 4. We show some examples of
our results in Figure 13.

7.3 Evaluation on Pose Estimation

We show the pose estimation result on the Attributes of
People dataset in Table 4. A widely used evaluation method,
strict Percentage of Correct Part (PCP) is used as the eval-
uation metric to compare with the state-of-the-art method
in [13]. Unlike traditional pose estimation methods which
are designed to test on the image with one person and
small margin, our approach does not require a bounding
box because we detect human and estimate pose. For a
better and fair comparison we conduct experiments under

two different settings. In the first setting, ground truth
bounding boxes are provided at test time, while the second
setting does not have such. Overall, our method shows a
substantial improvement on both settings. We show part
indexes in Fig. 14 (b). We believe it is because previous
approaches conduct experiments on images with similar
scales for human detection, but images in this dataset has
large scale and appearance variations, and heavy occlusion
and truncation. For instance, the traditional pose estimation
dataset in [4] is scaled to contain people of roughly 150
pixels in height; however, the smallest height of humans
present in this dataset is 72 pixels and the largest is 1118
pixels in this attribute dataset.

We show examples of pose-estimation in Fig. 14 (a).
The top row shows successful examples, and the bottom
row shows failures. For better visualization, we only keep
the parts with scores greater than a certain threshold. As
we can see from the examples, our method handles large
variation of human pose, occlusion and truncation very
well. Although we improve the pose-estimation in multiple
people in the scene using the attribute constraints as shown
in Fig. 3, most of our failures come from the situation
with multiple people because it is hard to distinguish part
identities when people have the same attributes.
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TABLE 4
Pose estimation result on the Attributes of People dataset. All the methods above the double horizontal line use the ground-truth bounding boxes

of target persons at test time.
Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 avg

1. with ground truth bounding box
Chen et al. [13] 29.7 33.2 25.0 30.1 34.5 25.5 37.1 36.1 38.1 38.4 38.2 36.5 46.0 34.5
Ours w attribute 71.0 49.6 26.2 71.2 50.1 25.1 57.3 48.4 44.2 57.7 49.8 45.7 80.5 52.0
Ours w attribute + w or-nodes 71.9 50.7 28.1 72.8 51.8 26.2 58.4 49.9 45.5 59.0 51.1 47.1 81.4 52.4
2. without ground truth bounding box
Chen et al. [13] 28.5 34.0 25.5 29.7 34.7 26.3 33.9 34.8 35.0 33.9 34.5 34.7 43.7 33.0
Ours w/o consistency 69.5 45.7 23.8 69.3 45.6 25.4 48.1 39.2 35.3 49.9 40.4 38.5 76.3 46.7
Ours w/o attribute 67.0 44.4 25.5 64.8 43.5 27.1 45.2 37.2 33.9 49.8 42.9 36.2 75.1 45.5
Ours w attributes 73.6 52.6 29.2 74.3 53.2 28.5 54.2 42.7 41.5 52.5 43.9 41.5 79.4 51.3
Ours w attributes + w or-nodes 74.7 54.1 30.4 75.5 54.1 29.7 55.4 44.1 42.4 54.1 45.1 42.9 80.1 52.5

7.4 Diagnostic experiments

To better justify the contribution of joint modeling, we do
two diagnostic comparisons: 1) attribute prediction without
pose; 2) pose estimation without attributes.

Attribute prediction without pose. Instead of inferring
the best pose for each attribute and computing the
corresponding attribute score, we pick the highest score
among all part proposals for each attribute and use it as the
attribute classification score. The mean average precision
shown in Table 2 is 2.6% (8-layer) and 2.7% (16-layer) lower
than the result from our joint model without or-nodes
when a ground truth bounding box is not provided. It
demonstrates that the attributes can be improved when
the pose is inferred together. Impressively, it is still better
than [11] with the same 8-layers network architecture
because we detect parts with a large number of different
scales and aspect ratios instead of 200 poselets used by [11].
We also see similar result when a ground truth bounding
box is provided.

Pose estimation without attribute Firstly we evaluate our
model without the explicit attribute consistency and we
refer to this method by ’Ours w/o consistency’. In infer-
ence the pose is estimated from Equation 18 instead of
Equation 20. In other words we infer pose using the part
proposals from all attributes instead of one pose for each
attribute. In this way, pt∗ provides the pose by allowing
parts to have inconsistent attributes because we maximize
the attribute score for each part, thus it could choose parts
from different people. This kind of mistake happens fre-
quently in existing pose estimation approaches, and that’s
why they require the bounding box of target person at test.
In Table 4, the performance of pose estimation is decreased
by 4.6% point from our joint modeling with attribute but
without or-nodes. From Fig. 3, we see that the parts of
the estimated pose are from different person if no attribute
constraint is considered. However, this problem is solved to
some extent when we infer the best pose for each attribute
because different people from the same image may have
different attributes. Secondly, in order to remove the effect of
attribute completely, we do not use attribute labels for train-
ing our part-attribute network, thus the network will only
output the part classification probability Sapp(vi, I). The
pose is inferred by replacing Sapp(vi, aj , I) with Sapp(vi, I)
in Equation 18. We refer to this method by ’Ours w/o at-
tributes’ and the results are reported in Table 4. Our method

clearly outperforms [13] even without attribute labels which
we believe is due to our flexible parts which allow large
scale and aspect ratio variations.

TABLE 5
Comparison of strict PCP results on the FLIC dataset.

Method U.arms L.arms Mean
Sapp et al. [49] 84.4 52.1 68.3
Chen et al. [13] 97.0 86.8 91.9

Ours w/o attribute 98.1 90.6 94.35

In order to further evaluate the ability of our model for
pose estimation, we run our method variation ’Ours w/o
attributes’ on the FLIC dataset which is a benchmark dataset
for pose estimation. There is no attribute annotation in this
dataset and only upper body is annotated for all images.
We train our model on all 3987 training images and test it
on 1016 testing image. The results are reported in Table 7.4.
Our better performance over [13] demonstrates the benefit
of our part design which have large scale and aspect ratio
variations.

8 CONCLUSION

This paper presents an attributed and-or grammar to de-
scribe compositionality, reconfigurability, articulation, and
attributes of human in a hierarchical joint representation.
Our approach parses an image by inferring the human
pose, parts, and attributes. The advantage of our approach
is the ability to perform simultaneous attribute reasoning
and part detection, unlike previous attribute models that use
large numbers of region-based attribute classifiers without
explicitly localizing parts.

Our method currently requires large keypoint annota-
tions, unlike recent approaches did not. The keypoint is
required to parse pose and attribute jointly. If we use the
small number of parts, e.g. head, upper body, lower body,
we can avoid large keypoint annotations but we still can
learn relations between part and attribute.

We demonstrate our model on benchmarks, and achieve
the state-of-the-art attribute classification and pose estima-
tion performance against recent methods. Our future plan
is to extend our A-AOG model in temporal domain for
recognizing attributes and estimating poses from videos.
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Fig. 11. Most positive attribute prediction on attributes of people dataset [2]. We cropped the image around the ground truth bounding box for display
purpose.
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Fig. 12. Most negative attribute prediction on attributes of people dataset [2]. We cropped the image around the ground truth bounding box for
display purpose.

female long hair glasses malehat backpack short sleeve female backpack no glasses glasses

Fig. 13. Output examples on Pedestrian attribute dataset. First six examples show successful examples with high scores. Rest of examples
show failure examples with high scores. Actual testing images have large margin, but we crop the image around the ground truth bounding box for
visualization.
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Fig. 14. (a) Examples of pose-estimation result on Attributes of People dataset. First row shows success examples and second row shows failure
examples. Most of failures are caused by multiple people in the image. (b) We define 14 keypoints and 13 sticks.
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