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Abstract—This paper presents a hierarchical-compositional model of human faces, as a three-layer AND-OR graph to account for the

structural variabilities over multiple resolutions. In the AND-OR graph, an AND-node represents a decomposition of certain graphical

structure, which expands to a set of OR-nodes with associated relations; an OR-node serves as a switch variable pointing to alternative

AND-nodes. Faces are then represented hierarchically: The first layer treats each face as a whole, the second layer refines the local facial

parts jointly as a set of individual templates, and the third layer further divides the face into 15 zones and models detail facial features

such as eye corners, marks, or wrinkles. Transitions between the layers are realized by measuring the minimum description length (MDL)

given the complexity of an input face image. Diverse face representations are formed by drawing from dictionaries of global faces, parts,

and skin detail features. A sketch captures the most informative part of a face in a much more concise and potentially robust

representation. However, generating good facial sketches is extremely challenging because of the rich facial details and large structural

variations, especially in the high-resolution images. The representing power of our generative model is demonstrated by reconstructing

high-resolution face images and generating the cartoon facial sketches. Our model is useful for a wide variety of applications, including

recognition, nonphotorealisitc rendering, superresolution, and low-bit rate face coding.

Index Terms—Face sketch, hierarchical, grammar model.

Ç

1 INTRODUCTION

1.1 Motivation

HUMAN faces have been extensively studied in vision and
graphics for a wide range of tasks from detection [33],

[38], recognition [14], [17], [26], [41], [31], tracking [35],
expression [30], [37], animation [16], [2], superresolution [3],
[22] to nonphotorealistic rendering [5], [18], [29], [36], with
both the discriminative [5], [16], [32] and generative models
[8], [13], [16], [26], [31]. Most existing models were designed
only for certain image scale and mainly aimed at faces of small
or medium resolutions. These models, though successful in
specific problem domains, do not account for rich facial
details that appear on the high-resolution or aged faces. These
details are very useful for identification and extremely
important for generating vivid facial sketches. Furthermore,
in addition to the geometric and photometric variabilities, the
structural variations are also widely observed for human faces
across different expressions, genders, ages races (see Fig. 1a),
and over multiscales (see Fig. 1b) but rarely addressed
comprehensively by the existing methods. Such variations
include the structure transforms of facial parts in extreme

expressions (e.g., scream or wink) and the appearance of new
facial features (e.g., wrinkles and marks) due to aging and
scale transition. To overcome the limitations of existing
models, we find it necessary to introduce a flexible multi-
resolution representation of human faces, which can capture
fine facial details and account for large structural variations.

1.2 Overview of a Layered, Composite, Deformable
Model

Faces may experience abrupt structural transforms during
continuous changes of image scales or resolutions. Imagine
a person walking toward the camera from a distance: At
first, the face image is so small and blurry that the whole
face can be merely recognized; as the person approaches,
the image becomes bigger and clearer so that the individual
facial parts can be recognized; when the person is very
close, the image is clear enough that all fine facial details
such as the marks or wrinkles are visible. We thus built a
three-layer representation for faces of low, medium, and high
resolutions, respectively, as shown in Fig. 2:

1. Face layer, where faces are represented as a whole by
PCA models [26], [31].

2. Part layer, where the elements are templates of local
facial parts plus the rest skin region. Each part is
represented individually and constrained by other
parts.

3. Sketch layer, where the elements are image primitives.
A face is divided into 16 zones. Six zones further
decompose the local parts into subgraphs of patches
—transformed image primitives. Another 10 zones,
shaped by the local parts, also represent the discov-
ered skin features (e.g., marks or wrinkles) as
subgraphs of patches.

According to the scale/resolution transition of input face
images, elements of coarser layers expand to a subgraph of
elements in the finer layers and thus leads to structural
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changes. For example, a face expands to facial parts during
transition from low to medium resolution, while a facial part
expands to image patches during transition from medium to
high resolution. On the other hand, the state transitions of
facial parts can also cause structural changes like opening or
closing eyes, which are widely observed in facial motions. To
account for these structural variations, we formulate our
representation as a three-layer AND-OR graph shown in
Fig. 2. An AND-node represents a decomposition with the
constituents as a set of OR-nodes, on which the constraints of
node attributes and spatial relations are defined, as in a
Markov random field model. An OR-node functions as a switch
variable in the decision trees, pointing to alternative composite
deformable templates that are AND-nodes. The selection/
transition is then realized by applying a set of stochastic

grammars and assigning values to the switch variables. A leaf
node is an instantiation of the corresponding AND-node,
which is associated with an active appearance model (AAM) to
allow geometric and photometric variations.

In our model, parsing a face image is equivalent to
finding a valid traversal from the root node of the AND-OR

graph. Following the thick arrows to select appropriate
templates in Fig. 2, we parse the input face image and arrive
in a configuration, as in Fig. 3. In essence, an AND-OR graph
is essentially a set of multiscale faces of all structural,
geometric, and photometric variations. We construct the
AND-OR graph by maximizing the likelihood of parameters
given a set of annotated face parse graphs. The parsing of a
new face image is then conducted in a coarse to fine fashion
using maximum a posteriori (MAP) formulation. To balance
the representation power and model complexity, we adopt
minimum description length (MDL) as the criterion of
transitions between layers. These transitions are based on
both the scales/resolutions of input face images and the
accuracy required by specific tasks, e.g., low resolution for
detection, medium resolution for recognition, and high
resolution for nonphotorealistic rendering.

1.3 Related Work

In computer vision, numerous methods had been proposed to
model human faces. Zhao et al. suggested [41] that following
the psychology study of how human use holistic and local
features, existing methods can be categorized as 1) global [7],
[8], [13], [16], [31], [2], 2) feature-based (structural) [10], [17],
[32], [33], [34], [40], and 3) hybrid [14], [26] methods. Early
holistic approaches [13], [31] used intensity pattern of the
whole face as input and modeled the photometric variation
by linear combination of the eigenfaces. These PCA models
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Fig. 1. Face over different (a) expressions, genders, ages, and (b) scales.

Fig. 2. An illustration of the three-layer face AND-OR graph representation. The dark arrows and shadow nodes represent a composition of seven leaf

nodes hBrowType2ðL=RÞ; EyeType3ðL=RÞ; SkinType1; NoseType2;MouthType1i, each being a subtemplate at the medium-resolution layer. This

generates a composite graphical template (at the bottom) representing the specific face configuration with the spatial relations (context) inherited

from the AND-OR graph.



cannot efficiently account for the geometric deformation and
require images to be well aligned. Some later work separately
modeled the shape and texture components of faces, e.g., the
AAM [8], [35] and Morphable Models [16], [2]. Although these
well-known methods captured some geometric and photo-
metric variations, they are limited from handling large-scale
structural variations due to the linear assumption and fixed
topology. To relax the global constraint, some component-
based/structural models were presented, including the
Pictorial Model [10], Deformable Templates [40], Constellation
Model [34], and Fragment-based Model [32]. These models first
decompose faces into parts in supervised or unsupervised
manners, then the intensity patterns of parts are modeled
individually, and the spatial relations among parts were
modeled jointly. In addition, there are some hybrid methods
[14], [26], which corporate the global and local information to
achieve better results. However, in spite of the greater
structural flexibility over the global methods, these models
have their own limitations: 1) in contrast to the hierarchical
transforms that we observed during the scale/resolution
changes of face images, the structures of these models are flat
and without scale transitions to account for the emergence of
new features (e.g., marks or wrinkles), 2) the topologies of
these models are fixed and cannot account for structural
changes caused by state transitions of the parts (e.g., opening
or closing eyes), and 3) the relations among parts are usually
modeled by global Gaussian or pairwise Gaussians and,
therefore, the flexibilities are limited.

To model the scale variabilities, some researchers con-
struct a Gaussian/Laplacian pyramid from the input image
[20] and encode images at multiple resolutions. Others model
each object as one point in the high-dimensional feature space
and increase the dimension to match the augmented complex-
ity [21]. Both methods are inefficient and inadequate for
human faces, where dramatic variabilities are exhibited due
to the absence of feature semantics and lack of structural
flexibility. We thus call for meaningful features that are
specially designed for different scales/resolutions. In any
case, constraints and relations on these features shall be
enforced to form valid configurations while still maintaining
considerable (structural/geometric/photometric) flexibil-
ities. Ullman et al. proposed Intermediate Complexity [32] as a
criterion for selecting the most informative features. Their

learned image fragments of various sizes and resolutions
incidentally support our use of the three-layer dictionary:
faces, parts, and primitives. Similar to the AAM models, each
element in our dictionary is governed by a number of
landmark points to allow more geometric and photometric
variabilities, where the landmark number is determined by
complexity of the element. For each part (e.g., mouth), we
allow selecting from a mixture of elements (e.g., open or
closed mouth) and enforce the structural flexibility during
state transitions. In addition, a coarse element expands to a
subgraph of finer elements and accounts for the structural
change during scale transitions. The selections and expan-
sions are then implemented using the AND-OR graph model.
While the original AND-OR graph was introduced by Pearl as
an AI search algorithm [24] (1984), our model is more similar
to some recent works by Chen et al. [6] and Zhu and Mumford
[43]. The AND-OR graph that we use is shown to be equivalent
to a Context Sensitive Grammar (CSG) [28], which integrates the
Stochastic Context Free Grammar (SCFG) [11] and Markov
Random Field (MRF) [42] models.

With the ability to represent large structural variations and
capture rich facial details, our model facilitates the generation
of facial sketches for face recognition [37] and nonphotor-
ealistic rendering [18], [36]. Supported by psychology studies
[4], it is known that sketch captures the most informative part
of an object, in a much more concise and potentially robust
representation (e.g., for face caricaturing, recognition, or
editing). Related work includes [29] and [5]. The former
renders facial sketches similar to high-pass filtered images by
combining linear eigensketches and does not provide any high-
level description of the face. Constrained on an Active Shape
Model (ASM) [7], the latter generates facial sketches by
collecting local evidences from artistic drawings in the
training set and lack of structural variations and facial details.

1.4 Our Contributions and Organization

We present a hierarchical compositional graph model for
representing faces at multiple resolutions (low, medium,
and high) and large variations (structural, geometric, and
photometric). Our model parses the input face images of
given resolutions by traversing the constructed AND-OR

graph and drawing from the multiresolution template
dictionaries. The traversals are guided by the SG and
MDL criterion. Our hierarchical-compositional model,
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Fig. 3. A face is parsed into the configuration of the local parts and skin zones, of which both the images and symbolic representations are shown.

Parts and skin zones can be further parsed into subgraphs of image primitives.



powered by the SG, has been shown to help reconstruct
diverse high-resolution face images with rich details and
facilitate the generation of meaningful sketches for cartoon
rendering. This model is useful for other applications,
including recognition, nonphotorealisitc rendering, super-
resolution, and low-bit face coding.

In the remainder of the paper, we first formulate the face
modeling problem as constructing a three-layer AND-OR

graph model in Section 2. In Section 3, we define the
probabilities on the AND-OR graph model and learn the
model parameters. Section 4 introduces the Bayesian infer-
ence algorithm and the scale transition process. Finally, the
experimental results on reconstructing and sketching are
reported in Section 5.

2 COMPOSITE TEMPLATE MODEL FOR

REPRESENTING FACE VARIABILITY

In the following section, we first introduce the AND-OR

graph with a three-layer face representation as example.
Then, we follow with the details of each layer.

2.1 Introduction to Face AND-OR Graph

AND-OR graph was originally introduced in [24] and
revisited in some recent work [6], [43]. In this paper, we
adapted it to represent the composite deformable templates
of human faces over multiple scales, as showed in Fig. 2.
The AND-OR graph is formalized as a 5-tuple:

Gand�or ¼< S; VN; VT ;R;P > : ð1Þ

1. Root node S denotes the human face category, the
Face node at the top in Fig. 2, from which the face
instances of all variations are derived.

2. Nonterminal nodes VN ¼ V and [ V or include a set of
AND-nodes and a set of OR-nodes.

Each AND-node in fu : u 2 V andg is a composite
template, which expands to a set of OR-nodes
according to the image complexity of input faces.
Each OR-node in fv : v 2 V org is a switch variable
pointing to a number of alternative composite
templates known as AND-nodes. The dark arrows
pointing from OR-nodes indicate the templates se-
lected in parsing. Both the expansions of AND-nodes
and selections on OR-nodes are guided by a set of
defined Stochastic Context Sensitive Grammars (SCSG).

3. Terminal nodes, known as Leaf nodes, are a set of
multiresolution deformable templates governed by
various numbers of landmark points to allow geo-
metric and photometric variations. Leaf nodes are
essentially the instantiations of AND-nodes with no
further expansions available. Examples are shown in
Fig. 2 as templates of faces, parts, and image
primitives (e.g., edgelets, junctions, or blobs) in low,
medium, and high resolutions, respectively. Each
template has its intensity and symbolic representa-
tions kept in the dictionaries, with the latter essentially
strokes linked by landmark.

4. R ¼ fr1; r2; . . . ; rNðRÞg represents a set of pairwise
relations defined on the edge between two graph
nodes fðvi; vjÞ : vi; vj 2 VT [ VNg. Each relation is
a function of the attributes on two nodes fra ¼  a
ðvi; vjÞ : a ¼ 1; . . . ; NðRÞg, serving as a statistical

constraint. Our defined relations include center dis-
tance, size ratio, relative angle, closeness of bonding points,
and appearance similarity. One type of relations are
those vertically defined on the AND-nodes and the OR-
nodes to which they expand, maintaining the geo-
metric and photometric consistency between parent
and children. For example, the appearance of a
medium-resolution template shall resemble the
composition of its high-resolution subtemplates.
Another type is defined horizontally on children of
AND-nodes, keeping the spatial configurations valid,
e.g., the two eyes are located symmetrically. The
horizontal relations of nodes are inheritable from their
parents. That is, the expanded OR-nodes from one
AND-node are implicitly correlated to the expanded
OR-nodes from another AND-node, through the
common ancestor of the AND-nodes. We avoided
assigning relations between every two graph nodes in
the same layer, which leads to overcomplicated model
and computational inefficiency. In fact, we tend to
assume that most of the parallel nodes are condition-
ally independent given their parents.

5. P is the probability model defined on the graph
structure. As the AND-OR graph embeds the MRF in
an SCFG, the probabilities from both formulations
are adopted.

Traversing from the root node, a set of valid face
configurations � ¼ fg1; g2; . . . ; gMg of Leaf nodes are gener-
ated. Each of these traversals are called parse graphs.
Essentially, an AND-OR graph is equivalent to a set of
multiresolution faces with possible structural, geometric,
and photometric variations. A parsed configuration is
shown in Fig. 3.

2.2 Three-Layer Face Representation

Given an input face image, the parsing process is trigged at
the root node and continue in coarse-to-fine fashion until the
best (sufficient yet compact according to the resolution)
reconstruction is achieved. Fig. 4 showed the input face
images, as well as the reconstructions at various resolution
levels. In the transitions from low resolution to medium
resolution and from medium resolution to high resolution, we
see that more and more facial details being captured and the
residue being diminished. In designing the type of represent-
ing features for certain layers, we resorted to the human
intuition and decided on holistic face templates for low-
resolution layer, facial component templates (eyes, nose,
mouth, etc.) for medium-resolution layer, and image primi-
tives like edgelets, junctions, or blobs for high-resolution
layer. The Intermediate Complexity fragments proposed in [32]
is probably regarded as the circumstantial evidence.

In the Low-resolution layer, we adopted the well-known
AAM [8] on modeling the holistic face templates. A number of
landmark points are defined to describe the shape/geometric
deformation, while the normalized (according to mean shape
computed from training set) image is used to describe the
texture/photometric pattern. The idea is to model the
geometric and photometric information separately to allow
more variations. Since the structures of low-resolution faces
are generally simple, only 17 landmark points are (manually)
labeled at eye corners, nose wings, mouth corners, and on
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face contour, as shown in Fig. 5a. Another convenient

assumption was made that all (frontal) face templates in the

low-resolution layer share the same (fixed) structure. From

the training set (face images of 64� 64 pixels), a set of shape

vectors (landmark point coordinates) fx1; x2; . . . ; xMgand the

corresponding texture vectors (normalized image pixels)

fg1; g2; . . . ; gMg are collected to build PCA models separately.

The principal components of the shape PCA and the texture

PCA then form a dictionary in low-resolution layer, as shown

in Fig. 5b:

�I
L ¼ Bgeo

L ;Bpht
L

n o
: ð2Þ

Let x and g denote the normalized shape and texture
vectors of an input low-resolution face image gim, we have
x ¼ xþQxcx and g ¼ gþQgcg. Here, x, g are the mean shape
and mean texture, Qx, Qg are matrices with columns as the
orthogonal bases from Bgeo

L , Bpht
L , and cx, cg are the PCA

coefficients. The final shape is then generated by a similarity
transformation X ¼ fxðxÞ, where fx has parameters of
rotation �, translation tx, ty, and scale sx, sy. Similarly, the final
texture is generated by gm ¼ ðu1 þ 1Þgþ u21, where u1 and u2

stand for the contrast and brightness. To reconstruct the input
image gim, we transform the final texture gm by a warping
function fwðgmÞ, where fw has parameters of the mean shapex
(source) and the final shape X (target). We thus have the
hidden variables in the low-resolution layer:

WL ¼ ðcx; cg; �; tx; ty; sx; sy; u1; u2Þ: ð3Þ

An input low-resolution face image Iobs
L of 64� 64 pixels is

then reconstructed, as in Fig. 4:

Iobs
L ¼ Irec

L WL; �I
L

� �
þ Ires

L : ð4Þ

In the Medium-resolution layer, a face is composed of six
local facial components (eyes, eyebrows, nose, and mouth)
and the rest skin part, which are expanded from the face node
in low-resolution layer, as in Fig. 2. Fig. 6a shows the partition
of a medium-resolution face and the landmark points defined
on its local parts. Let a medium size lattice �M denote a face of
medium resolution, and �cp

i , i ¼ 1; . . . ; 6 denote the six facial
components, then

[6
i¼1 �cp

i ¼ �cp � �M: ð5Þ
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Fig. 4. Face high-resolution image Iobs of 256� 256 pixels is reconstructed by the AND-OR graph model in a coarse-to-fine fashion. The first row
shows three reconstructed images Irec

L , Irec
M , and Irec

H in low, medium, and high resolution, respectively. Irec
L is reconstructed by the low-resolution

layer, and the facial components like eyes, nose, and mouth are refined in IM with medium-resolution layer. The skin marks and wrinkles appear in
Irec

H after adding the high-resolution layer. The residue images are shown in the second row. The third row shows the sketch representations of the
face with increasing complexity.

Fig. 5. (a) Face template with 17 landmark points. (b) The first eight PCs

(plus mean) in the dictionary �I
L.



Each �i
cp is an OR-node in the AND-OR graph, pointing to

a number of alternative deformable templates that represent
various modes/types, such as closed, open, or wide-open
mouths. By examining our training data (AR [23], FERET
[27], LHI [39], and other collections), we subjectively
categorized the local facial components into three types of
eyebrows, five types of eyes, three types of nose, and four
types of mouth. Each one type of the facial components
itself is an AND-node, which is implemented as a con-
strained AAM model [8]. Therefore, a total number of 3þ
5þ 3þ 4 ¼ 15 AAM models are trained from the manually
labeled medium-resolution face images. The dictionary of
these models is shown in Fig. 6b:

�I
M ¼ Bgeo

cp;j;B
pht
cp;j; j ¼ 1; . . . ; 15

n o
; ð6Þ

where Bgeo
cp;j and Bpht

cp;j are the geometric and photometric
bases of the jth model. The hidden variables in this layer
are the union of variables from the local AAM models:

WM ¼ ‘i; c
‘i
x ; c

‘i
g ; �

‘i ; t‘ix ; t
‘i
y ; s

‘i
x ; s

‘i
y ; u

‘i
1 ; u

‘i
2

� �n o6

i¼1
; ð7Þ

where ‘i ¼ f1; . . . ; 15g is the index of the selected AAM
model—switch variable for the ith OR-node. The �cp is then
reconstructed as the union of reconstruction of �cp

i ,
i ¼ 1; . . . ; 6:

Irec
cp WM; �I

M

� �
¼ [6

i¼1I
rec
cp;j:

An input medium-resolution face image Iobs
M of 128� 128

pixels is then reconstructed, as in Fig. 4. The rest skin pixels

�ncp ¼ �M � �cp are up-sampled from Irec
L with boundary

conditions of �cp:

Irec
M ðx; yÞ ¼

Irec
cp ðx; yÞ if ðx; yÞ 2 �cp;

Irec
L ðx=2; y=2Þ if ðx; yÞ 2 �ncp:

�
ð8Þ

In the high-resolution layer, much more subtle features are
exposed, as we can see in Fig. 4. Thus, the medium-resolution
layer representations is further decomposed into subgraphs
of sketchable [12] image primitives (edgelets, junctions,
blobs, etc.) to capture the high-resolution details such as eye
corners, nose tip, wrinkles, and marks. Intuitively, an input
face was divided into 16 facial zones, shown in Fig. 7,
according to the shapes of facial components and face contour
reconstructed in medium-resolution layer. The first six zones
refine the local facial components inherited from the
medium-resolution layer, and the 10 new zones are intro-
duced to cover the features that appear on rest of the skin
(forehead, canthus, eyehole, laugh line, cheek, and chin). We
called the former structural zones since they are very much
dependent on the existing medium-resolution layer facial
components, while we called the latter free zones since the
occurrence and pattern of features within them are rather
random. Examples of a structural zone (nose) and a free zone
(laugh line) are shown in Fig. 8a. Each of the rectangles
represents an image primitive with (small) geometric and
photometric deformations. In the training stage, both the
structural and free zones of the high-resolution face images are
manually sketched; then, a huge number of image patches of
certain size (e.g., 11� 11 pixels) are collected along the
sketches, from which the image primitives are learned
through clustering. Fig. 8b shows the dictionary of the
learned image primitives and their corresponding sketch
representations. Note that we defined a small number (2 � 4)
of control points for each sketch patch to connect with
neighboring patches properly and generate smooth face
sketches. In order to capture marks or specularities, we also
include gabor bases of various scales in high-resolution
dictionary. Furthermore, the teeth are refined by gabor bases
if the mouth is open/wide open. So are the pupils of open
eyes. The total number of gabor bases used for reconstruction
is limited to less than 100:

�I
H ¼ Bgeo

H;i ;B
pht
H;i ; i ¼ 1; . . . ; N

n o
; ð9Þ

where N is the number of different image primitives, which
was decided empirically. The hidden variables of this layer
are
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Fig. 6. (a) The locations of facial components and the control points
defined on them. (b) Dictionary �I

M of facial components and their
artistic sketches drawn according to the control points. The examples in
the same row are of same type but different modes and selected by the
OR-nodes according to grammar rules.

Fig. 7. (a) Sixteen facial zones for high-resolution face features. Six
zones, indicated by solid shapes, are to refine the eyebrows, eyes, nose,
and mouth. Another 10 zones, indicated by shaded regions, are where
the skin features like marks or wrinkles occur. These zones are localized
by shapes of the facial parts computed in the medium-resolution layer.
(b), (c), and (d) Typical wrinkles (curves) patterns of the 10 skin zones.
To reliably detect these subtle features, we need strong prior models
and global context.



WH ¼ K; ‘k; �
‘k ; t‘kx ; t

‘k
y ; s

‘k
x ; s

‘k
y ; u

‘k
1 ; u

‘k
2

� �n oK
k¼1

� �
; ð10Þ

where K is the total number of image patches, ‘k is the
primitive type, and �‘k , ðt‘kx ; t‘ky Þ, ðs‘kx ; s‘ky Þ, u‘k1 , u‘k2 are,
respectively, the rotation, translation, scale, contrast, and
brightness. Let �H be an input high-resolution face image of
256� 256 pixels, its sketchable part �sk is covered by
transformed image primitives and form Irec

sk ðWH; �I
HÞ. The

rest of the nonsketchable part �nsk ¼ �H � �sk is up-sampled
from Irec

M with boundary conditions of �sk:

Irec
H ðx; yÞ ¼

Irec
sk ðx; yÞ if ðx; yÞ 2 �sk;

Irec
M ðx=2; y=2Þ if ðx; yÞ 2 �nsk:

�
ð11Þ

Our sketch representation capture more prolific facial
details than the state-of-art face sketch method [5] and
expression classification method [30].

3 LEARNING PROBABILISTIC MODELS ON THE

AND-OR GRAPH

3.1 Defining the Probabilities

Let P be the probability model defined over the AND-OR

graph (see Section 2.1), we argue that P corresponds to a
probabilistic context-sensitive grammar (PCSG), which embeds
an Markov random fields model (MRF) in a stochastic context-free
grammar tree (SCFG). To show this, we define a parse graph g as
a valid traversal of Gand-or, which consists of a set of graph
nodes V ¼ fv1; v2; . . . ; vNðvÞg 2 VN [ VT and a set of relations
R 2 R. The probability of a graph is then denoted as pðg; �Þ.

We first define pðgÞ as its parsing tree component gT , as
the product of probabilities of visited OR-nodes gT ¼
fv1; v2; . . . ; vNðvÞg and the values of their switch variables:

pðgT Þ /
Y
vi2gT

pið!ðviÞÞ ¼ exp

�X
vi2gT

log p !ðviÞð Þ
	

¼ exp

�X
vi2gT

log
YNð!iÞ
j¼1

�
� !ðviÞ�jð Þ
ij

	
;

ð12Þ

where �ij is the probability that !ðviÞ takes value j, and �ð:Þ
is a delta function. Another component, the MRF is a
probability on the relations in the parse graph. It is written
in terms of energies by relation function  on two nodes
and by constraint function � on each single node.

Let f be the true probability distribution that produces
the faces in the training set. Our goal is now to derive pðgÞ
by minimizing the Kullback-Leibler divergence KLðf jpÞ
subject to relation constraints observed from training set:

EpðgÞ H !ðviÞð Þ½ � ¼Ef H !ðviÞð Þ½ �;

EpðgÞ H �ðaÞðviÞ
� �h i

¼Ef H �ðaÞðviÞ
� �h i

;

EpðgÞ H  ðbÞðvi; vjÞ
� �h i

¼Ef H  ðbÞðvi; vjÞ
� �h i

;

where vi 2 V or, a ¼ 1; 2; . . . ; Nð�Þ, vi 2 V , b ¼ 1; 2; . . . ; Nð Þ,
< vi; vj >2 E, Nð�Þ and Nð Þ are respectively the number
of singleton constraints and pairwise constraints. H are the
histograms of output values. Solving this constrained
optimization by Lagrange multipliers yields pðg; �Þ as

pðg; �Þ ¼ 1

Zð�Þ exp

(
�
X
vi2T
h�i;H !ðviÞð Þi

�
X
vi2V

XNð�Þ
a¼1

�
ðaÞ
i ; H �ðaÞðviÞ

� �D E

�
X

<vi;vj>2E

XNð Þ
b¼1

�
ðbÞ
ij ; H  ðbÞðvi; vjÞ

� �D E)
;

ð13Þ

whereE is the set of node pairs on which relations are defined.
� ¼ ð�; �; �Þ are the parameters, and �ij ¼ � log �ij in (12).

3.2 Estimating the Model Parameters

Given a set of observed parse graphs Ĝ ¼ fg1; g2; . . . ; gNg
from the training set, we can estimate parameters � by
maximizing the log-likelihood Lð�; ĜÞ ¼

P
gi

log pðgi; �Þ:

�� ¼ arg max
XN
i¼1

log pðgi; �Þ: ð14Þ

The probability over the switch variable at OR-node i
depends on the grammar rules we defined on the OR-node.
Examples of such grammar rules in medium-layer OR-
nodes are shown in Fig. 9, which set a specific mode for the
facial parts such as to open an eye or to shut a mouth.

Use MLE to derive � from pðg; �Þ with @Lð�;ĜÞ
@� ¼ 0 yields:

�N @ logZð�Þ
@�

�
XN
k¼1

X
v
ðkÞ
i 2g

ðkÞ
T

XNð!iÞ
j

� ! v
ðkÞ
i

� �
� j

� �
�ij

¼ 0 ð15Þ

subject to
PNð!iÞ

j¼1 �ij ¼ 1 for all vi 2 gT . Solve this with
Lagrange multiplier yields

�̂ij ¼
PN

k¼1 � ! v
ðkÞ
i

� �
� j

� �
N!i �N

@ logZð�Þ
@� þN @ logZð�Þ

@�

¼ Nij

N!i

; ð16Þ
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Fig. 8. (a) Refinement of the nose and a “smile fold” by sketch primitives,

which are represented by small rectangles. (b) Dictionary �I
H of sketch

primitives and their corresponding sketch strokes.



where N!i is the total number of times that vi is visited in all
parse graphs. Thus, �̂ij is just the frequency of rule j being
applied at OR-node i observed in the training set. Sampling
from the pðgT Þ generates novel parsing trees, e.g., winking
and excited, that were not even seen in the training data, as
shown in Fig. 10.

After pðgT Þ is learned, we derive � and � by maximizing
the entropy of pðg; �Þ subject to constraints previously
defined—to match the expected histograms with the ob-
served histograms [42]:

@Lð�; ĜÞ
@�ðaÞ

¼ �N @ logZð�Þ
�ðaÞ

�
XN
k¼1

H
ðaÞ
� ðgkÞ ¼ 0 ð17Þ

subject to EpðgÞ½HðaÞ� ðgÞ� ¼ 1
N

PN
k¼1 H

ðaÞ
� ðgkÞ for all a, and

@Lð�; ĜÞ
@�ðbÞ

¼ �N @ logZð�Þ
�ðbÞ

�
XN
k¼1

H
ðbÞ
 ðgkÞ ¼ 0 ð18Þ

subject to EpðgÞ½HðbÞ ðgÞ� ¼ 1
N

PN
k¼1 H

ðbÞ
 ðgkÞ for all b.

Similar to [42], we solve for � and � by iteratively
updating them with

d�ðaÞ

dt
¼EpðgÞ H

ðaÞ
� ðgÞ

h i
� 1

N

XN
k¼1

H
ðaÞ;obs
� ðgkÞ

¼HðaÞ;syn
� �HðaÞ;obs

� ;

ð19Þ

d�ðbÞ

dt
¼EpðgÞ H

ðbÞ
 ðgÞ

h i
� 1

N

XN
k¼1

H
ðbÞ;obs
 ðgkÞ

¼HðbÞ;syn
 �HðbÞ;obs

 :

ð20Þ

The algorithm of learning specific �ðaÞ and �ðbÞ proceeds
in Fig. 12. The sampling results of the learning procedure
are shown in Fig. 11.

3.3 Experiment 1: Sampling Faces from AND-OR

Graph

Once the AND-OR graph of face is constructed, we can sample
the generative model to provide believable human faces of
different configurations and large structural variations.

We learned the pðT Þ from an AR [23] data set, in which
four typical expressions (neutral, smiling, angry, and scream-
ing) are observed (Fig. 10a). In a personal video of facial
motions, we observed eight facial expressions different
from the training data. These novel expressions/configura-
tions unseen in training set such as winking and excited were
successfully sampled from learned AND-OR graph model to
match the new observations, as shown in Fig. 10b.

Fig. 11 visualizes the learning of the MRF model in the
medium layer. During this procedure, facial structures
which satisfy the learned constraints are synthesized. In the
early stage, the synthesized faces appeared rather random
and the Hsyn differed from the Hobs significantly. After the
algorithm ran for a certain number (e.g., 50) of sweeps, the
synthesized faces started to resemble the observed faces as
the Hsyn approximated the Hobs. We define � as the
constraints on single nodes such as the shape prior and
appearance prior of AAM models, while  are the pairwise
relations such as center distance, size ratio, relative angle,
closeness of bonding points, and appearance similarity. By using
these pairwise constraints, the sampled faces accommodate
larger structural variations than the global AAM models.

4 BAYESIAN INFERENCE AND SCALE TRANSITION

Given an input face image Iobs, our goal is to determine the
W ¼ ðWL;WM;WHÞ defined in Section 2.2 by maximizing
the Bayesian posterior:
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Fig. 10. Different face configurations are composed by various types of
local facial components. (a) The four typical face configurations in the
AR data set as neutral, laughing, angry, and screaming. (b) The eight
novel face configurations inferred from the frames in a personal video
clip. These configurations correspond to new dramatic expressions,
e.g., winking or excited.

Fig. 9. Grammars defined on OR-nodes of medium-resolution layer for
switching among various composite templates.



ðWL;WM;WHÞ� ¼ arg max pðWL;WM;WHjIobsÞ
¼ arg max pðIobsjWÞ � pðW Þ
¼ arg max pðWHjWM;WL; I

obsÞ
� pðWMjWL; I

obsÞ � pðWLjIobsÞ:

ð21Þ

We notice that the parse graph g� for Iobs can be derived

from W . For example, in the medium-resolution layer, the

f‘ig in WM represent the switch variables f!ig on the

OR-nodes in g�, while the fðcix; cig; �i; tix; tiy; six; siy; ui1; ui2Þg in
WM expand the attributes of the AND-nodes fvig in g�. The
same analogy applies to the other layers, and we have
pðW Þ ¼ pðg; �Þ, as defined in Section 3. Given an input
image of certain resolution, all Leaf nodes of the resulting
parse graph sit in the same layer—of same scale. We first
build a three-layer Gaussian pyramid ðIobs

L ; Iobs
M ; Iobs

H Þ from
the input image. Then, ðWL;WM;WHÞ� shall be gradually
optimized according to the layers in a coarse-to-fine fashion,
as shown in Fig. 13.

4.1 Layer 1: The Low-Resolution AAM Model

Only one Leaf node denoting frontal faces will be derived in
the low-resolution layer. We adopted the well-known AAM
model [8] in learning and computing WL:

W �
L ¼ arg max pðWLjIobsÞ
¼ arg max p Iobs

L jWL; �I
L

� �
pðWLÞ

¼ arg max exp � Iobs
L � Irec

L



 

2= 2�2
L

� �
� 1

2
W 0

L S�1
WL

� �
WL

� 	
:

ð22Þ

The first term of the second row denotes the likelihood,
where Irec

L is the reconstructed low-resolution layer governed
by WL, and �2

L is the variance of reconstruction error learned
from training data. The second term denotes the prior, where
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Fig. 11. Examples of observed and synthesized faces images and

shapes. Selected feature histograms of observation and synthesis are

shown in the right column. As the learning proceeds, synthesis

histograms similar to the observations are produced.

Fig. 12. Algorithm for learning parameter of the MRF model.

Fig. 13. The diagram of our model and algorithm. The arrows indicate the inference order. Left panel is the three layers. Right panel is the synthesis
steps for both image reconstruction and sketching using the generative model.



SWL
is the covariance matrix ofWL. The optimizedW �

L can be
computed efficiently by a stochastic gradient descent [8].

4.2 Layer 2: The Medium-Resolution Compositional
AAM Model

The medium-resolution layer is inferred by maximizing
posterior of WM given Iobs

M and W �
L :

W �
M ¼ arg max pðWMjWL; I

obsÞ
¼ arg max p Iobs

M jWM;WL; �I
M;�

I
L

� �
pðWMjWLÞ:

ð23Þ

The first term indicates the likelihood probability:

p Iobs
M jWL;WM; �I

M;�
I
L

� �
/ exp � 1

2
Iobs

M � Irec
M

� �0
��1
r Iobs

M � Irec
M

� �� 	

¼ exp �
X6

i¼1

jrcp;ij2

2�2
cp;i

� jrLj2

2�2
L

( )
;

ð24Þ

where frcp;ig6
i¼1 denote the reconstructed residue of the

pixels covered by the six facial components �cp, rL is the
reconstructed residue of the rest pixels �ncp, and f�2

cp;ig
6
i¼1

and �2
L are the variances of errors learned from training

data. The second term of the conditional prior can be
factorized to three components:

pðWMjWLÞ /
Y6

i¼1

pð‘iÞ �
Y6

i¼1

p Wi
cpjWL

� �
�

Y
<vk;vl>2Ecp

p Wk
cp;W

l
cp

� �
: ð25Þ

The first component denotes the prior probability of the
parsing tree, as defined in Section 3:

Y6

i¼1

pð‘iÞ /
Y6

i¼1

YNð!iÞ
j¼1

�
�ð‘i�jÞ
ij ¼

Y6

i¼1

�i‘i ; ð26Þ

where �ð:Þ is a Delta function, and �i‘i is simply the
frequency of that the ith switch variable was assigned
value ‘i in the training data. The second component is the
singleton prior of WM conditioned on WL in a manner
similar to the constrained AAM model [8]:

Y6

i¼1

p Wi
cpjWL

� �
/
Y6

i¼1

exp �Wi
cp

0
S�1
Wi

cp
Wi

cp � dicp;L

0
S�1
di

dicp;L

n o
;

ð27Þ

where dicp;L denotes the photometric and geometric dis-
placements between current Ŵ i

cp and W �
L . In this paper, we

only computed the geometric displacement and ignored the
photometric displacement, although the photometric dis-
placement could be critical for other applications like
superresolution [3], [22]. Here, dicp;L ¼ ðditx ; d

i
ty
; di�; d

i
sx
; disyÞ

0 are
respectively the center displacement, relative angle, and scale
ratios between the global face template and each of the local
part templates. SWi

cp
and Sdi are the covariance matrix of

Wi
cp¼ ðc‘ix ; c‘ig ; �‘i ; t‘ix ; t‘iy ; s‘ix ; s‘iy ; u

‘i
1 ; u

‘i
2 Þ and dicp;L. The third

component addressed the pairwise constraints defined on
each graph node and their neighbors, including center
distance ð tx ;  tyÞ, size ratio ð sx ;  syÞ, relative angle ð �Þ,
closeness of bonding points ð clÞ, and similarity ð smÞ:

Y
<vk;vl>2Ecp

p Wk
cp;W

l
cp

� �

/ exp �
X

<vk;vl>2Ecp

X
 ðbÞ2�kl

�
ðbÞ
kl ; H  ðbÞðvk; vlÞ

� �D E8<
:

9=
;;

ð28Þ

where Ecp is a set of edges that linked the nodes, �kl 	
f tx ;  ty ;  sx ;  sy ;  �;  smg is a set of pairwise constraints
defined on hvk; vli, and f�ðaÞkl g are the potential functions.
These constraints help maintain the consistency of our
graph configuration. For example, the left eye and right eye
tend to be symmetric (both shape and appearance) when
they are of the same mode (open/closed). However, to
model all possible constraints on every two graph nodes is
expensive in computation and usually unnecessary. For
example, the appearance of the nose and mouth of the same
person is probably remotely relevant.

For computational simplicity and efficiency, we approx-
imate the optimizedW �

M in three steps. First, from pðWMjWLÞ,
we proposed a set of templates (only the geometric part) with
all possible types for every local facial components, as shown
in Fig. 14. Then, these proposed templates were locally
diffused using pretrained constrained AAM models [8].
Finally, we resulted in a pairwise MRF of the proposed
templates. For each of them, we computed the local evidences
as the likelihood and parameter priors, while the compat-
ibilities were the pairwise constraints defined above. Each of
these proposals are associated with a sequence of messages
from every neighbors and its weight. We then introduced the
sequential belief propagation [25], [15] to update the messages
and weights sequentially until convergence or the algorithm
exceeds the prescribed maximum iterations. The quality of
proposals from pðWMjWLÞ affect the inference efficiency and
reliability in this layer. If the low-resolution layer AAM result
is seriously wrong, we may need to propose excessive
number of templates in wider ranges for correction. In this
rare case, we can provide a little manual constraints in the
low-resolution layer, as discussed in constrained AAM [8].

4.3 Layer 3: The High-Resolution Sketch Model

Similarly, we made reasonable assumption that WH only
depends on Iobs

H and WM:
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Fig. 14. Algorithm to infer the medium-resolution layer hidden variables.



W �
H ¼ arg max p WHjWM; I

obs
H

� �
¼ arg max p W fr

H jW st
H ; I

obs
H ÞpðW st

H jWM; I
obs
H

� �
;

ð29Þ

where W st
H and W fr

H are respectively the hidden variables of
the structural and free zones defined in Section 2.2. They are
inferred sequentially in the high-resolution layer.
W st

H includes six facial zones (Fig. 7a), in which the
eyebrows, eyes, nose, and mouth are further decomposed
into subgraphs of image primitives, e.g., the nose in Fig. 8a.
Once the W �

M was computed, the modes of these local facial
components are completely determined, e.g., whether the
mouth is open or closed. We model the subgraph W st;i

H of
zone i as a Markov network ofNi image primitives with fixed
structure:

pðW st;i
H jWi

cp; I
obs
H;�i
Þ / exp �

XNi

k¼1

jrkj2

2�2
k

� 1

2
d0i�

�1
ci

di

(

�
X
<k;l>

1

2
Ed
klðpk; plÞ þ Ea

klðpk; plÞ
� �)

;

ð30Þ

where Iobs
H;�i

denotes the pixels in zone i and fpkg are the image
primitives. r in the likelihood term denotes the reconstructed
residue of pk. di in the prior term is the center distance
between fpkg and the corresponding land mark points inWi

cp,
which serves as the global shape constraint. hk; li denotes a
pair of connected image primitives on which pairwise
energies are defined: Ed

klðpk; plÞ ¼ jek � elj
2=�2

dkl
for distance

between two nearest endpoints, and Ea
klðpk; plÞ ¼ j sinð�k �

�lÞ�	aklj
2=�2

akl
for the relative angle. f�2

kg, �ci , f�2
dkl
g, and

f	akl; �2
akl
g are all learned from the training data. We

sequentially maximized the posteriors of every facial zones
using belief propagation similar to [19]. Experiments showed
fast convergence and accurate fitting:

W st
H
� ¼ W st;i

H

�n o6

i¼1
¼ arg max

Y6

i¼1

p W st;i
H jWi

cp; I
obs
H;�i

� �
: ð31Þ

To help detect the iris that are partially occluded, we
combined the Hough transform of circles in between the
eyelids after the shape of eyes were accurately fitted.
W fr

H includes another 10 facial zones, covering the rest of
the skin regions. These zones, shown in Figs. 7b, 7c, and 7d,
are determined by landmark points computed from W st

H .
Similar to the structural zones, skin features such as wrinkles
and marks in the free zones are also represented by subgraphs
of image primitives, e.g., the laugh line in Fig. 8a. However,
the patterns of both the occurrence and distribution of these
features are much more random and sometimes locally
imperceptible without global context. We manually labeled
the skin features in every free zones for a set of training

images. Some “typical” curves are shown in Figs. 7b, 7c, and

7d, from which the prior models were learned in favor of

certain properties:

1. pnðNi ¼ nÞ ¼
PM

i¼1 �i�ðn� iÞ. Ni is the number of
curves in zone i,M is the maximum number of curves,
�i are frequencies of observed curve numbers.P
�i ¼ 1.

2. p‘ðLj ¼ ‘Þ ¼ �‘Le
��L

‘! . Lj is the length of curve j, and �L
is specified by “typical” curves.

3. ponðonjx; yÞ ¼ pon
xy is the chance that point ðx; yÞ is on

a curve. p�ð�kjx; yÞ ¼ Gð�k;	�xy; ��xyÞ. �k is the orienta-
tion of primitive k centered at ðx; yÞ. We learned pon

xy,
	�xy, and ��xy by accumulating information from
nearby “typical” curves in the normalized training
data (Fig. 16b).

4. psmðpk; plÞ/ expf� 1
2 ðEdþ E�þ EsþEtÞg guarantees

the position, orientation, scale, and intensity consistency
of two consecutive primitives pk and pl, where
Ed¼jek�elj2=�2

d,E
�¼j sinð�k��lÞj2=�2

�, E
s¼jsk�slj2=�2

s ,
and Et¼jpk�plj2=�2

t .

We therefore rewrote the posterior of free zone i, which

was partitioned by W st
H :

p W fr;i
H jIobs

H;�i

� �
/ pnðNiÞ �

YNi

j¼1

p‘ðLjÞ �
Y
<k;l>

psmðpk; plÞ

�
YK
k¼1

ponðonjxk; ykÞp�ð�kjxk; ykÞprðrkÞ;
ð32Þ

where K is the number of primitives, and prðrkÞ ¼
1
Zr

expf� jrkj
2

2�2
r
g is local likelihood of primitive k.

Before pursuing curves in zone i, a quick bottom-up step

(edge and ridge detection and steering filters) was taken for

initialization (Fig. 16a). In step tþ 1, we proposed W fr;i
H;tþ1

from W fr;i
H;t by selecting from a set of grammars (Fig. 15) and

computed the posterior ratio:

p W fr;i
H;tþ1jIobs

H;�i

� �
p W fr;i

H;t jIobs
H;�i

� � ¼ �: ð33Þ

We choose the grammar that gives the greatest � > 1. If

� 
 1 for all grammars, the pursuit stops. The algorithm of

curve pursuit proceeds in Fig. 17, and results are shown in
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Fig. 15. Grammars used for free curve pursuit in the high-resolution

layer, including birth/death, split/merge, and connect.

Fig. 16. The process of curve tracking. (a) The bottom-up results of
orientation and gradient magnitudes. (b) The prior of orientation field and
gradient magnitudes learned from training data. (c) Curve tracking
results.



Fig. 20. Gabor filters of various scales are used in capturing
other features like marks and specularities.

4.4 Experiment 2: Scale Transition and Model
Selection

A crucial yet unaddressed issue is the scale transition. In

previous sections, we showed how to parse an input face

image on all three layers of the AND-OR graph. However,

the layers of representations that we need depends on both

the resolution of observed images and the model complex-

ity. It is against our intuition to model a high-resolution

face with a simple holistic PCA or to describe a low-

resolution face with a sophisticated graphical model of

image primitives. Similar to [9], we formulated this

problem as model selection under the MDL principle:

DL ¼ Lð�I ; �Þ þ Lð�Þ, where �I ¼ fI1; . . . ; IMg is the

sample set. The first term is the expected coding length of

�I given dictionary �, and the second term is the coding

length of �. Empirically, we can estimate DL by

D̂L ¼
X
Ii2�I

X
w�pðW jIi;�Þ

� log pðIijw; �Þ � log pðwÞð Þ þ j�j
2

logM:

ð34Þ

We randomly partitioned the face images into a training

set and a testing set. Training data was used to construct

the three-layer AND-OR graph model. Then, the testing data

was resized in four different resolutions: 32� 32, 64� 64,

128� 128, and 256� 256. D̂L was computed for every

resolution set with different layers of our model. To obtain

the MDL, we simply variate the size of the dictionaries/code

books, e.g., increasing the number of principal components or

image primitives.
In practice, we computed � log pðIijw; �Þ by the recon-

struction error, � log pðwÞ by counting bits of the binary file

storing the variables, j�j by counting bits of the binary file

storing the models, and M was the number of testing data.

Fig. 18 showed that enlarging the code book soon reached

limit if the resolution continuously increased, thus switching

to more sophisticated models (finer layers) became necessary.
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Fig. 17. Algorithm for pursuing free curves of facial zone i.

Fig. 18. Plot of coding length D̂L for the ensemble of testing images

versus dictionary size j�j at four different scales.

Fig. 19. Comparison of reconstruction errors of our composite model

against a global AAM model. The test is conducted on (a) selected

testing images from AR and MSRA images and (b) images from self-

captured videos.

Fig. 20. Sketching results for aged faces, where wrinkles are very

important features for perception.



5 EXPERIMENT 3: RECONSTRUCTING IMAGES AND

GENERATING CARTOON SKETCHES

We construct a three-layer AND-OR graph model with 811

parse graphs annotated on face images across different

genders, ages, and expressions selected from AR [23], FERET

[27], LHI [39], and some MSRA images. In performing the

comparison (Figs. 18 and 19), 650 parse graphs were used for

training and the other 161 as testing. Given an input image,

the faces are first localized by AdaBoost [33] in OpenCV, on
which the parsing proceeds until reaching a valid configura-
tion. Experiments show that our model reconstructs face
images with rich details, generates vivid facial sketches
(Fig. 21), and especially helps where the details (e.g.,
wrinkles) are critical for face characterization. Quantitative
improvement of the reconstruction accuracy on images from
both standard databases and personal videos is shown in
Fig. 19, where our composite model compares favorably in
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Fig. 21. More results of reconstructed images, automatically generated sketches and residue images of our model. The residue images from

reconstruction without sketch layer are also shown for comparison. We easily see that our model helps capture rich details and generate vivid facial

sketches. Difference styles can be achieved by replacing the rendering dictionaries.



terms of lower error and better consistency (smoother curves)
against a global AAM model with code book of approxi-
mately same size. Furthermore, the structural variabilities of
our model is illustrated by parsing a video of facial motion in
Fig. 10b with the hair manually labeled.

After computing ðW �
L;W

�
M;W

�
HÞ, we reconstructed ðIrec

L ;

Irec
M ; Irec

H Þ and generated the corresponding sketches ðSsyn
L ;

Ssyn
M ; Ssyn

H Þ by replacing the rendering dictionaries:

Bpht
L ;Bpht

cp ;B
pht
H

� �
�! Bgeo

L ;Bgeo
cp ;B

geo
H

� �
: ð35Þ

We called Ssyn
L , Ssyn

M the initial sketches not shown since
they are formed by linking the landmark points. The final
facial sketch Ssyn

H assembles the symbolic representations of
the image primitives, where smoothness constraints are
enforced on their connections. The objective evaluation of
facial sketches is difficult, and we must resort to human
perceptions at the beginning. The preliminary studies
showed that people are more sensitive to global properties
like hair styles, face contour, or shading effect. Being able to
correctly capture (even exaggerate) the distinctive features
is also crucial. For example, people pay immediate attention
to facial components of irregular size/shape/expression or
the wrinkle patterns in aged faces.

6 CONCLUSION AND FUTURE WORK

In conclusion, we present a hierarchical-compositional
representation for modeling human faces in the form of an
AND-OR graph model, which simultaneously account for the
face regularity and dramatic structural variabilities caused by
scale transitions and state transitions. Experiment had shown
that our model helps reconstruct face images with great
structural variations and rich details and facilitates the
generation of vivid cartoon sketches. We can also generate
stylish sketches by learning the dictionaries from artistic
drawings [5], or produce lively cartoon animations from
video [44]. Another interesting future work is to synthesize
the images from sketches.
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