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Abstract

This paper presents a hierarchical-compositional model of human faces, as a three-layer And-Or

graph to account for the structural variabilities over multiple resolutions. In the And-Or graph, an And-

node represents a decomposition of certain graphical structure which expands to a set of Or-nodes with

associated relations; an Or-node serves as a switch variable pointing to alternative And-nodes. Faces

are then represented hierarchically: the first layer treats each face as a whole; the second layer refines

the local facial parts jointly as a set of individual templates; the third layer further divides face into 15

zones and models detail facial features such as eye corners, marks or wrinkles. Transitions between

the layers are realized by measuring the minimum description length(MDL) given the complexity of an

input face image. Diverse face representations are formed by drawing from dictionaries of global faces,

parts and skin detail features. A sketch captures the most informative part of a face in a much more

concise and potentially robust representation. However, generating good facial sketches is extremely

challenging because of the rich facial details and large structural variations, especially in the high-

resolution images. The representing power of our generative model is demostrated by reconstructing

high-resolution face images and generating the cartoon facial sketches. Our model is useful for a

wide variety of applications, including recognition, non-photorealisitc rendering, super-resolution, and

low-bit rate face coding.
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I. INTRODUCTION

A. Motivation

Human faces have been extensively studied in vision and graphics for a wide range of tasks

from detection[30], [35], recognition[12], [14], [22], [38], [27], tracking[32], expression[26],

[34], animation[13], [29], to non-photorealistic rendering [3], [15], [25], [33], with both the

discriminative[3], [13], [28] and generative models[6], [11], [13], [22], [27]. Most existing

models were designed only for certain image scale and mainly aimed at faces of small or medium

resolutions. These models, though successful in their own problem domains, unfortunately do not

capture the rich facial details that appear on the high-resolution or highly-detail (especially aged)

faces. These details are very useful for identification and extremely important for generating

vivid facial sketches. Furthermore, in addition to the geometric and photometric variabilities,

the structural variations are also widely observed for human faces across different expressions,

genders, ages races (see Figure 1(a)) and over multi-scales (see Figure 1(b)) but rarely addressed

comprehensively by the existing methods. Such variations include the structure transforms of

facial parts in extreme expressions (e.g., scream or wink), and the appearance of new facial

features (e.g., wrinkles and marks) due to aging and scale transition. To overcome the limitations

of existing models, we find it necessary to introduce a flexible multi-resolution representation

of human faces, which can capture fine facial details and account for large structural variations.

 

Fig. 1. Face over different (a) expressions, genders, ages, races, and (b) scales.
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B. Overview of a layered, composite, deformable model

Faces may experience abrupt structural transforms during continuous changes of image scales

or resolutions. Imagine a person walking towards the camera from a distance: at first the face

image is so small and blurry that the whole face can be merely recognized; as the person

approaches, the image becomes bigger and clearer so that the individual facial parts can be

recognized; when the person is very close, the image is clear enough that all fine facial details

such as the marks or wrinkles are visible. We thus built a three-layer representation for faces

of low, medium, and high resolutions respectively as shown in Figure 2.

1) face layer, where faces are represented as a whole by PCA models[22], [27].

2) part layer, where the elements are templates of local facial parts plus the rest skin region.

Each part is represented individually and constrained by other parts.

3) sketch layer, where the elements are image primitives. A face is divided into 16 zones. Six

zones further decompose the local parts into sub-graphs of patches — transformed image

primitives. Another ten zones, shaped by the local parts, also represent the discovered

skin features (e.g., marks or wrinkles) as sub-graphs of patches.

According to the scale/resolution transition of input face images, elements of coarser layers

expand to a sub-graph of elements in the finer layers and thus leads to structural changes. For

example, a face expands to facial parts during transition from low to medium resolution, while

a facial part expands to image patches during transition from medium to high resolution. On the

other hand, the state transitions of facial parts can also cause structural changes like opening

or closing eyes, which are widely observed in facial motions. To account for these structural

variations, we formulate our representation as a three-layer And-Or graph shown in Figure 2.

An And-node represents a decomposition with the constituents as a set of Or-nodes, on which

the constraints of node attributes and spatial relations are defined as in a Markov random field
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Fig. 2. An illustration of the three-layer face And-Or graph representation. The dark arrows and shadow nodes represent

a composition of seven leaf-nodes 〈BrowType2(L/R), EyeType3(L/R), SkinType1, NoseType2,MouthType1〉, each

being a sub-template at the medium resolution layer. This generates a composite graphical template (at the bottom) representing

the specific face configuration with the spatial relations (context) inherited from the And-Or graph.

model. An Or-node functions as a switch variable in the decision trees, pointing to alternative

composite deformable templates that are And-nodes. The selection/transition is then realized by

applying a set of stochastic grammars and assigning values to the switch variables. A leaf-node

is an instantiation of the corresponding And-node, which is associated with an active appearance

model (AAM) to allow geometric and photometric variations.

In our model, parsing a face image is equivalent to finding a valid traversal from the root node

of the And-Or graph. Following the thick arrows to select appropriate templates in Figure 2,

we parse the input face image and arrive in a configuration as in Figure 3. In essence, an And-

Or graph is essentially a set of multi-scale faces of all structural, geometric and photometric
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Fig. 3. A face is parsed into the configuration of the local parts and skin zones, of which both the images and symbolic

representations are shown. Parts and skin zones can be further parsed into sub-graphs of image primitives.

variations. We construct the And-Or graph by maximizing the likelihood of parameters given

a set of annotated face parsing graphs. The parsing of a new face image is then conducted

in a coarse to fine fashion using maximum a-posteriori (MAP) formulation. To balance the

representation power and model complexity, we adopt minimum description length (MDL) as

the criterion to decide transitions between the graph layers. These transitions are based on not

only the scales/resolutions of input face images, but also the accuracy requirement of specific

tasks, e.g., low-resolution for detection, medium-resolution for recognition and high-resolution

for non-photorealistic rendering.

C. Related work

In computer vision, numerous methods had been proposed to model human faces. Zhao et

al suggested [38] that following the psychology study of how human use holistic and local

features, existing methods can be categorized as (1) global [5], [6], [11], [13], [27], [29], (2)

feature-based (structural) [8], [14], [28], [30], [31], [37], and (3) hybrid [12], [22] methods.

Early holistic approaches[11], [27] used intensity pattern of the whole face as input and modeled
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the photometric variation by linear combination of the eigenfaces. These PCA models cannot

efficiently account for the geometric deformation and require images to be well aligned. Some

later work separately modeled the shape and texture components of faces, e.g., the Active

Appearance Models(AAM)[6], [32] and Morphable Models[13], [29]. Although these well-

known methods captured some geometric and photometric variations, they are limited from

handling large-scale structural variations due to the linear assumption and fixed topology. To

relax the global constraint, some component-based/structural models were presented, including

the Pictorial Model[8], Deformable Templates[37], Constellation Model[31], and Fragment-

based Model[28]. These models first decompose faces into parts in supervised or unsupervised

manners, then the intensity patterns of parts are modeled individually and the spatial relations

among parts were mdoeled jointly. In addition, there are some hybrid methods [12], [22], which

corporate the global and local information to achieve better results. However, in spite of the

greater structural flexibility over the global methods, these models have their own limitations: (1)

in contrast to the hierarchical transforms that we observed during the scale/resolution changes

of face images, the structures of these models are flat and without scale transitions to account

for the emergence of new features (e.g.,marks or wrinkles); (2) the topologies of these models

are fixed and cannot account for structural changes caused by state transitions of the parts

(e.g.,opening or closing eyes); and (3) the relations among parts are usually modeled by global

Gaussian or pair-wise Gaussians and therefore the flexibilities are limited.

To model the scale variabilities, some researchers construct a Gaussian/Laplacian pyramid

from the input image [17] and encode images at multiple resolutions. Others model each

object as one point in the high-dimensional feature space, and increase the dimension to match

the augmented complexity[18]. Both methods are inefficient and inadequate for human faces

where dramatic variabilities exhibited, due to the absence of feature semantics and lack of
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structural flexibility. We thus call for meaningful features that are specially designed for different

scales/resolutions. In any case, constraints and relations on these features shall be enforced to

form valid configurations while still maintaining considerable (structural/geometric/photometric)

flexibilities. Ullman et al proposed Intermediate Complexity[28] as a criterion for selecting

the most informative features. Their learned image fragments of various sizes and resolutions

incidentally support our use of the three-layer dictionary: faces, parts, primitives. Similar to

the AAM models, each element in our dictionary is governed by a number of landmark

points to allow more geometric and photometric variabilities, where the landmark number

is determined by complexity of the element. For each part (e.g., mouth), we allow selecting

from a mixture of elements (e.g., open or closed mouth) and enforce the structural flexibility

during state transitions. In addition, a coarse element expands to a sub-graph of finer elements

and accounts for the structural change during scale transitions. The selections and expansions

are then implemented using the And-Or graph model. While the original And-Or graph was

introduced by Pearl as an AI search algorithm[20](1984), our model is more similar to some

recent works by Chen et al[4] and Zhu et al[40]. The And-Or graph that we use is shown to be

equivalent to an Context Sensitive Grammar(CSG)[24], which integrates the Stochastic Context

Free Grammar(SCFG)[9] and Markov Random Field(MRF)[39] models.

With the ability to represent large structural variations and capture rich facial details, our

model facilitates the generation of facial sketches for face recognition[34] and non-photorealistic

rendering[15], [33]. Supported by psychology studies[2], it is known that sketch captures the

most informative part of an object, in a much more concise and potentially robust representation

(e.g., for face caricaturing, recognition or editing). Related work includes [25] and [3]. The

former renders facial sketches similar to high-pass filtered images by combining linear eigen-

sketches, and does not provide any high-level description of the face. Constrained on an Active
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Shape Model(ASM)[5], the latter generates facial sketches by collecting local evidences from

artistic drawings in the training set, and lack of structural variations and facial details.

D. Our contributions and organization

We present a hierarchical compositional graph model for representing faces at multiple

resolutions (low, medium, and high) and large variations (structural,geometric,photometric).

Our model parses the input face images of given resolutions by traversing the constructed

And-Or graph and drawing from the multi-resolution template dictionaries. The traversals are

guided by the stochastic grammars (SG) and minimum description length (MDL) criterion. Our

hierarchical-compositional model, powered by the stochastic grammars, has been shown to help

reconstruct diverse high resolution face images with rich details, and facilitate the generation of

meaningful sketches for cartoon rendering. This model is useful for other applications, including

recognition, non-photorealisitc rendering, super-resolution, and low-bit face coding.

In the remainder of the paper, we first formulate the face modeling problem as constructing

a three-layer And-Or graph model in Section II. In Section III, we define the probabilities on

the And-Or graph model and learn the model parameters. Section IV introduces the Bayesian

inference algorithm and the scale transition process. Finally the experimental results on recon-

structing and sketching are reported in Section V.

II. COMPOSITE TEMPLATE MODEL FOR REPRESENTING FACE VARIABILITY

In the following section, we first introduce the And-Or graph with a three-layer face repre-

sentation as example. Then we follow with the details of each layer.

A. Introduction to Face And-Or Graph

And-Or graph was originally introduced in [20] and revisited in some recent work[4], [40].

In this paper, we adapted it to represent the composite deformable templates of human faces
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over multiple scales, as showed in Figure 2. The And-Or graph is formalized as a 5-tuple.

Gand−or =< S, VN , VT ,R,P > (1)

1 Root node S denotes the human face category, the Face node at the top of Figure 2, from

which the face instances of all variations are derived.

2 Non-terminal nodes VN = V and ∪ V or include a set of And-nodes and a set of Or-nodes.

The And-nodes {u : u ∈ V and} are shown by solid circles in Figure 2. Each And-node is a

composite template, which expands to a set of Or-nodes according to the image complexity

of input faces. The Or-nodes {v : v ∈ V Or} are indicated by dash ellipses in Figure 2.

Each Or-node is a switch variable pointing to a number of alternative composite templates

known as And-nodes. The dark arrows pointing from Or-nodes indicate the templates that

were actually selected in parsing. Both the expansions of And-nodes and selections on

Or-nodes are guided by a set of defined Stochastic Context Sensitive Grammars (SCSG).

3 Terminal nodes, known as Leaf-nodes, are a set of multi-resolution deformable templates

governed by various number of landmark points to allow geometric and photometric

variations, while the topologies are fixed as traditional deformable templates. Leaf-nodes

are essentially the instantiations of And-nodes where no further expansions available.

Examples of the Leaf-nodes are shown in Figure 2, which are templates of faces, parts and

image primitives (e.g., edgelets, junctions or blobs) in low, medium and high resolutions

respectively. For each template, both its intensity and symbolic representations are kept

in the dictionaries, where the latter is essentially strokes linked by landmark points.

4 R = {r1, r2, ..., rN(R)} represents a set of pairwise relations defined on the edge between

two graph nodes {(vi, vj) : vi, vj ∈ VT ∪VN}. Each relation is a function of the attributes

on two nodes {ra = ψa(vi, vj) : a = 1, .., N(R)}, serving as a statistical constraint. Our

defined relations include center distance, size ratio, relative angle, closeness of bonding
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points and appearance similarity. Based on the nodes on which they are defined, relations

are categorized into two types. One type is vertically defined on the And-nodes and the

Or-nodes that they expand to (black arrows in Figure 2), maintaining the geometric and

photometric consistency between parent and children nodes. For example, the appearance

of a medium-resolution template shall resemble the composition of its high-resolution sub-

templates. Another type is defined horizontally on the Or-nodes of the same layer (dash

curves in Figure 2), keeping the spatial configurations valid. For example, the two eyes

shall be symmetric and the nose shall be placed above the mouth. The horizontal relations

are inheritable through the vertical relations. In other words, the Or-nodes expanded from

one And-node are implicitly correlated to the Or-nodes derived from another And-node,

through their parents — the And-nodes. We thus avoided designing explicit relations

between every two graph nodes in the same layer, which usually leads to over-complicated

model and computational inefficiency. In fact, we tend to assume that most of the parallel

nodes are conditionally independent given their parents.

5 P is the probability model defined on the graph structure. As the And-Or graph embeds

the MRF in a SCFG, the probabilities from both formulations are adopted.

Traversing from the root node of an And-Or graph to leaf-nodes, a finite set of all valid

face configurations Configurations Σ = {g1, g2, .., gM} can be generated. Each of these valid

traversals are called parsing graphs. Essentially, the And-Or graph stands for a set of multi-

resolution face instances with all possible structural, geometric and photometric variations. A

parsed example/configuration of the input face image is shown in Figure 3.

B. Three-Layer Face Representation

Given an input face image, the parsing process is trigged at the root node and continue

in coarse-to-fine fashion, until the best (sufficient yet compact according to the resolution)
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Fig. 4. Face high resolution image Iobs of 256×256 pixels is reconstructed by the And-Or graph model in coarse-to-fine. The

first row shows three reconstructed images Irec
L , Irec

M , Irec
H in low, medium and high resolution respectively. IrecL is reconstructed

by the low-resolution layer, and the facial components like eyes, nose and mouth are refined in IM with medium-resolution

layer. The skin marks and wrinkles appear in IrecH after adding the high-resolution layer. The residue images are shown in the

second row. The third row shows the sketch representations of the face with increasing complexity.

reconstruction is achieved. Figure 4 showed the input face images as well as the reconstructions

at various resolution levels. In the transitions from low resolution to medium resolution and from

medium resolution to high resolution, we see that more and more facial details being captured

and the residue being diminished. In designing the type of representing features for certain layers,

we resorted to the human intuition and decided on holistic face templates for low-resolution

layer, facial component templates (eyes, nose, mouth, etc.) for medium-resolution layer, and
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Fig. 5. (a) Face template with 17 landmark points. (b) The first 8 PCs (plus mean) in the dictionary ∆I
L.

image primitives like edgelets, junctions or blobs for high-resolution layer. The Intermediate

Complexity fragments proposed in [28] is probably regarded as the circumstantial evidence.

In the Low-resolution layer, we adopted the well-known Active Appearance Model (AAM) [6]

on modeling the holistic face templates. A number of landmark points are defined to describe the

shape/geometric deformation, while the normalized (according to mean shape computed from

training set) image is used to describe the texture/phtometric pattern. The idea is to model the

geometric and photometric information separately to allow more variations. Since the structures

of low resolution faces are generally simple, only 17 landmark points are (manually) labelled at

eye corners, nose wings, mouth corners and on face contour, as shown in Figure 5(a). Another

convenient assumption was made that all (frontal) face templates in low resolution layer share

the same (fixed) structure. From the training set (face images of 64× 64 pixels), a set of shape

vectors (landmark point coordinates) {x1, x2, ..., xM} and the corresponding texture vectors

(normalized image pixels) {g1, g2, ..., gM} are collected to build PCA models separately. The

principal components of the shape PCA and the texture PCA then form a dictionary in low

resolution layer as shown in Figure 5(b)

∆I
L = {Bgeo

L , Bpht
L } (2)

Let x and g denote the normalized shape and texture vectors of an input low resolution face

image gim, we have x = x+Qxcx and g = g+Qgcg. Here, x, g are the mean shape and mean
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texture, Qx, Qg are matrices with columns as the orthogonal bases from Bgeo
L , Bpht

L , and cx,

cg are the PCA coefficients. The final shape is then generated by a similarity transformation

X = fx(x), where fx has parameters of rotation θ, translation tx, ty and scale sx, sy. Similarly,

the final texture is generated by gm = (u1 + 1)g + u21, where u1 and u2 stand for the contrast

and brightness. To reconstruct the input image gim, we transform the final texture gm by a

warping function fw(gm), where fw has parameters of the mean shape x (source) and the final

shape X (target). We thus have the hidden variables in the low-resolution layer.

WL = (cx, cg, θ, tx, ty, sx, sy, u1, u2) (3)

An input low resolution face image Iobs
L of 64 × 64 pixels is then reconstructed as in Figure 4

Iobs
L = Irec

L (WL; ∆I
L) + Ires

L (4)

In the Medium-resolution layer, a face is composed of six local facial components (eyes,

eyebrows, nose and mouth) and the rest skin part, which are expanded from the face node in

low-resolution layer as in Figure 2. Figure 6(a) shows the partition of a medium resolution face

and the landmark points defined on its local parts. Let a medium size lattice ΛM denote a face

of medium resolution, and Λcp
i , i = 1, ..., 6 denote the six facial components, then

∪6
i=1Λ

cp
i = Λcp ⊂ ΛM (5)

Each ∆i
cp is an Or-node in the And-Or graph, pointing to a number of alternative deformable

templates that represent various modes/types, such as closed, open or wide-open mouths. By

examining our training data (AR[19],FERET[23],LHI[36] and other collections), we subjectively

categorized the local facial components into three types of eyebrows, five types of eyes, three

types of nose and four types of mouth. Each one type of the facial components itself is an

And-node, which is implemented as a constrained AAM model [6]. Therefore a total number
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Fig. 6. (a) The locations of facial components and the control points defined on them. (b) Dictionary ∆I
M of facial components

and their artistic sketches drawn according to the control points. The examples in the same row are of same type but different

modes, and selected by the Or-nodes according to grammar rules.

of 3 + 5 + 3 + 4 = 15 AAM models are trained from the manually labelled medium resolution

face images. The dictionary of these models is shown in Figure 6(b).

∆I
M = {Bgeo

cp,j, Bpht
cp,j, j = 1, .., 15} (6)

where Bgeo
cp,j and Bpht

cp,j are the geometric and photometric bases of the jth model. The hidden

variables in this layer are the union of variables from the local AAM models.

WM = {(�i, c�ix , c�ig , θ�i , t�ix , t�iy , s�ix , s�iy , u�i1 , u�i2 )}6
i=1 (7)

where �i = {1, ..., 15} is the index of the selected AAM model — switch variable for the ith

Or-node. The Λcp is then reconstructed as the union of reconstruction of Λcp
i , i = 1, ..., 6.

Irec
cp (WM; ∆I

M) = ∪6
i=1I

rec
cp,j

An input medium resolution face image Iobs
M of 128 × 128 pixels is then reconstructed as in

Figure 4. The rest skin pixels Λncp = ΛM − Λcp are up-sampled from Irec
L with boundary
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Fig. 7. (a). 16 facial zones for high-resolution face features. Six zones, indicated by solid shapes, are to refine the eyebrows,

eyes, nose and mouth. Another ten zones, indicated by shaded regions, are where the skin features like marks or wrinkles

occur. These zones are localized by shapes of the facial parts computed in the medium-resolution layer. (b-c-d) typical wrinkles

(curves) patterns of the ten skin zones. To reliably detect these subtle features needs strong prior models and global context.

conditions of Λcp.

Irec
M (x, y) =




Irec
cp (x, y) if (x, y) ∈ Λcp

Irec
L (x/2, y/2) if (x, y) ∈ Λncp

(8)

In the High-resolution layer, much more subtle features are exposed as we can see from

Figure 4. Thus the medium-resolution layer representations is further decomposed into sub-

graphs of sketchable [10] image primitives (edgelets, junctions, blobs, etc.), to capture the high

resolution details such as eye-corners, nose-tip, wrinkles and marks. Intuitively, an input face was

divided into 16 facial zones, shown in Figure 7, according to the shapes of facial components

and face contour reconstructed in medium-resolution layer. The first six zones refine the local

facial components inherited from medium-resolution layer, and the 10 new zones are introduced

to cover the features that appear on rest of the skin (forehead, canthus, eyehole, laughline,

cheek and chin). We called the former structural zones since they are very much dependent

on the existing medium-resolution layer facial components, while we called the latter free

zones since the occurrence and pattern of features within them are rather random. Examples
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Fig. 8. (a) Refinement of the nose and a “smile fold” by sketch primitives, which are represented by small rectangles. (b)

Dictionary ∆I
H of sketch primitives and their corresponding sketch strokes.

of a structural zone (nose) and a free zone (laughline) are shown in Figure 8(a). Each of the

rectangles represents an image primitive with (small) geometric and photometric deformations.

In training stage, both the structural and free zones of the high resolution face images are

manually sketched, then a huge number of image patches of certain size (e.g. 11 × 11 pixels)

are collected along the sketches, from which the image primitives are learned through clustering.

Figure 8(b) shows the dictionary of the learned image primitives and their corresponding sketch

representations. Note that we defined a small number (2 ∼ 4) of control points for each sketch

patch, to connect with neighboring patches properly and generate smooth face sketches.

∆I
H = {Bgeo

H,i , Bpht
H,i , i = 1, .., N} (9)

where N is the number of different image primitives, which was decided empirically. The hidden

variables of this layer are

WH = (K, {(�k, θ�k , t�kx , t�ky , s�kx , s�ky , u�k1 , u�k2 )}Kk=1) (10)

where K is the total number of image patches, �k is the primitive type, and θ�k , (t�kx , t
�k
y ),

(s�kx , s
�k
y ), u�k1 , u�k2 are respectively the rotation, translation, scale, contrast and brightness. Let



17

ΛH be an input high resolution face image of 256 × 256 pixels, its sketchable part Λsk is

covered by transformed image primitives and form Irec
sk (WH; ∆I

H). The rest non-sketchable part

Λnsk = ΛH − Λsk is up-sampled from Irec
M with boundary conditions of Λsk.

Irec
H (x, y) =




Irec
sk (x, y) if (x, y) ∈ Λsk

Irec
M (x/2, y/2) if (x, y) ∈ Λnsk

(11)

Our sketch representation capture more prolific facial details than the state-of-art face sketch

method [3] and expression classification method [26].

III. LEARNING PROBABILISTIC MODELS ON THE AND-OR GRAPH

A. Defining the Probabilities

Let P be the probability model defined over the And-Or graph (see Section II(A)), we argue

that P corresponds to a probabilistic context-sensitive grammar (PCSG), which embeds an

Markov random fields model (MRF) in a stochastic context-free grammar tree (SCFG). To

show this, we first define a parsing graph g as a valid traversal of an And-Or graph G. It

consists of a set of traversed nodes V = {v1, v2, ..., vN(v)} ∈ VN ∪ VT and a set of observed

relations R ∈ R. The probability of a graph is then denoted as p(g; Θ).

As one component of p(g; Θ), the SCFG (parsing tree) can be expressed as the product of

probabilities of all switch variables T = {ω1, ω2, ..., ωN(ω)} on the visited Or-nodes.

p(T ) =
∏
ωi∈T

pi(ωi) (12)

Another component, the MRF is probability on the configuration C of resulting nodes. It is

written in terms of pairwise energies on two nodes and constraints on each single node.

p(C) =
1

Z
exp{− ∑

vi∈V
αiφ(vi) −

∑
<vi,vj>∈E

βijψ(vi, vj)} (13)

where E is the set of node pairs on which relations are defined, and φ and ψ are respectively

the functions of single nodes and node pairs. Given that T is the parsing tree of g, we would
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like to derive p(g) by minimizing the KL divergence of p(g) and p(T ), subject to constraints

that expectations of the energy functions shall match what we observed from training data.

p∗ = arg min
∑
g p(g) log p(g)

p(T )

subject to




Ep(g)[φ
(a)(vi)] = µi, a = 1, 2, ..., N(φ)

Ep(g)[ψ
(b)(vi, vj)] = µij, b = 1, 2, .., N(ψ)

(14)

where N(φ) and N(ψ) are respectively the number of singleton constraints and pairwise

constraints. Solving this constrained optimization by Lagrange multipliers yields:

p(g; Θ) =
1

Z(Θ)
p(T ) exp{− ∑

vi∈V

N(φ)∑
a=1

α
(a)
i φ(a)(vi) −

∑
<vi,vj>∈E

N(ψ)∑
b=1

β
(b)
ij ψ

(b)(vi, vj)} (15)

where Θ = (θ, α, β), θ is the parameters in p(T ) while α and β are Lagrange multipliers.

B. Estimating the Model Parameters

Given a set of observed parsing graphs Ĝ = {g1, g2, ..., gN} from the training set, we can

estimate parameters Θ by maximizing the log-likelihood L(Θ; Ĝ) =
∑
gi log p(gi; Θ).

Θ∗ = arg max
N∑
i=1

log p(gi; Θ) (16)

Let p(ωi) be the probability over the switch variable at an Or-node, the values that ωi takes

depend on the grammar rules we defined on the Or-node. Examples of such grammar rules in

medium-layer Or-nodes are shown in Figure 9, which set a specific mode for the facial parts,

such as to open an eye or to shut a mouth. Let θij be the probability that ωi takes value j —

the jth rule, and nij be the number of times that we observed this rule, p(T ) is rewritten as

p(T ) =
∏
ωi∈T

N(ωi)∏
j=1

θ
nij
ij (17)

Plug it back into p(g; Θ) and the MLE for θ is now rewritten as

∂L(Θ; Ĝ)

∂θ
= −N ∂ logZ(Θ)

∂θ
−

N∑
k=1

∑
ωi∈T

N(ωi)∑
j

n
(k)
ij

θij
= 0

subject to
N(ωi)∑
j=1

θij = 1, for all ωi ∈ T (18)
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Create a closed eye 
with curves

Create  an open eye 
with upper curve

Create  an open eye 
with both curve

Create  an open eye 
with lower curve

Create an open eye 
with no curve

Create a closed eye 
with no curves

Create a nose with 
nostril half shown

Create a nose with
no nostril shown

Create a nose with 
nostril all shown

Create a bended and 
thin eyebrow

Create a bended and 
thick eyebrow

Create a straight 
and thick eyebrow Create a closed mouth 

Create an open mouth 

Create a half-open 
mouth 

Create a wide-open 
mouth 

 

Fig. 9. Grammars defined on Or-nodes of medium-resolution layer, for switching among various composite templates.

where n(k)
ij is the nij for a specific graph gk. Solve this with Lagrange multiplier yields

θ̂ij =

∑N
k=1 n

(k)
ij

Nωi −N ∂ logZ(Θ)
∂θ

+N ∂ logZ(Θ)
∂θ

=
Nij

Nωi

(19)

where Nωi is the total number of times that ωi was assigned some value in all graphs. Thus θ̂ij

is just the frequency of rule j being applied at Or-node i observed in the training set. Sampling

from the p(T ) enables us to generate novel parsing trees, e.g. winking and excited, that were

not even seen in the training data as shown in Figure 10.

After p(T ) is learned, we need to derive α and β to impose the constraints among nodes.

Given Ĝ, we define the collection of output values from φ and ψ as histograms Hφ and Hψ,

then rewrite the energy terms in MRF as
∑
a < αa, Ha

φ > and
∑
b < βb, Hb

ψ >. Therefore the

MLE of α and β is equivalent to maximizing the entropy of p(g; Θ) subject to the constraint

that the expected histograms shall match the observed histograms [39].

∂L(Θ; Ĝ)

∂α
= −N ∂ logZ(Θ)

α
− ∑

a

N∑
k=1

H
(a)
φ (gk) = 0

subject to Ep(g)[H
(a)
φ (g)] =

1

N

N∑
k=1

H
(a)
φ (gk), for all a; (20)

∂L(Θ; Ĝ)

∂β
= −N ∂ logZ(Θ)

β
− ∑

b

N∑
k=1

H
(b)
ψ (gk) = 0
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Fig. 10. Different face configurations are composed by various types of local facial components. (a) The four typical face

configurations in the AR dataset as neutral, laughing, angry and screaming. (b) The eight novel face configurations inferred

from the frames in a personal video clip. These configurations correspond to new dramatic expressions, e.g., winking or excited.

subject to Ep(g)[H
(b)
ψ (g)] =

1

N

N∑
k=1

H
(b)
ψ (gk), for all b (21)

Similar to [39], we solve for α and β by iteratively updating them with

dα

dt
= Ep(g)[Hφ(g)] − 1

N

N∑
k=1

Hobs
φ (gk) = Hsyn

φ −Hobs
φ (22)

dβ

dt
= Ep(g)[Hψ(g)] − 1

N

N∑
k=1

Hobs
ψ (gk) = Hsyn

ψ −Hobs
ψ (23)

The algorithm of learning α and β proceeds in Figure 11. The sampling results of the learning

procedure are shown in Figure 12.

C. Experiment I: Sampling Faces from And-Or Graph

Once the And-Or graph of face is constructed, we can sample the generative model to provide

believable human faces of different configurations and large structural variations.
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Given a set of observed parsing graph Ĝ and the initial α(0) = 0 and β(0) = 0.

1) Compute Hobs
φ and Hobs

ψ from Ĝ.

2) Repeat until |Hobs −Hsyn
(t−1)

| − |Hobs −Hsyn
(t)

| < ε, where ε is the prescribed threshold.

a) Sample a set of parsing graphs G′ from current p(g; Θ) and compute the synthesized

histograms Hsyn
(t) for all defined φ and ψ

b) Update α and β

α(t) = α(t−1) + ηφ(H
syn
φ,(t) −Hobs

φ )

β(t) = β(t−1) + ηψ(Hsyn
ψ,(t) −Hobs

ψ )

where ηφ and ηψ are the step factors that are decided empirically.

Fig. 11. Algorithm for learning parameter of the MRF model.

To sample the configurations, we first learned the p(T ) from AR[19] dataset, in which there

are four typical configurations that correspond to expressions of neutral, smiling, angry and

screaming as shown in Figure 10(a). However, eight facial configurations were observed in

a personal video of facial motions, which are different from the training data. These novel

configurations unseen in training set, such as winking and excited, were then successfully

sampled from our And-Or graph model to match the new observations as shown in Figure 10(b).

Figure 12 visualizes the learning of the MRF model in the medium layer. During this

procedure, facial structures which satisfy the learned constraints are synthesized. In the early

stage, the synthesized faces appeared rather random and the Hsyn differed from the Hobs

significantly. After the algorithm ran for a certain number (e.g., 50) of sweeps, the synthesized

faces started to resemble the observed faces as the Hsyn approximated the Hobs. We define φ as

the constraints on single nodes such as the shape prior and appearance prior of AAM models,

while ψ are the pairwise relations such as center distance, size ratio, relative angle, closeness

of bonding points and appearance similarity. By using these pairwise constraints, the sampled

faces accommodate larger structural variations than the global AAM models.
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Face Samples (Images + Shapes) Feature Histograms

Observed:

Learned: 
(5 sweeps)

Learned: 
(50 sweeps)

 

Fig. 12. Examples of observed and synthesized face samples, including images and shapes, and the feature histograms.
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Fig. 13. The diagram of our model and algorithm. The arrows indicate the inference order. Left panel is the three layers.

Right panel is the synthesis steps for both image reconstruction and sketching using the generative model.

IV. BAYESIAN INFERENCE AND SCALE TRANSITION

Given an input face image Iobs, our goal is to determine the W = (WL,WM,WH) defined in

Section II(B) by maximizing the Bayesian posterior.

(WL,WM,WH)∗ = arg max p(WL,WM,WH|Iobs) = arg max p(Iobs|W )p(W )

= arg max p(WH|WM,WL, I
obs)p(WM|WL, I

obs)p(WL|Iobs) (24)

We notice that the parsing graph g∗ for Iobs can be derived from W . For example in the

medium-resolution layer, the {�i} in WM represent the switch variables {ωi} on the Or-nodes

in g∗, while the {(cix, cig, θi, tix, tiy, six, siy, ui1, ui2)} in WM expand the attributes of the And-nodes

{vi} in g∗. The same analogy applies to the other layers and we have p(W ) = p(g; Θ),

as defined in Section III. Given an input image of certain resolution, all Leaf-nodes of the

resulting parsing graph sit in the same layer — of same scale. We first build a three-layer

gaussian pyramid (Iobs
L , Iobs

M , Iobs
H ) from the input image. Then (WL,WM,WH)∗ shall be gradually

optimized according to the layers in coarse-to-fine as shown in Figure 13.
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A. Layer 1: the low resolution AAM model

Only one Leaf-node denoting frontal faces will be derived in the low-resolution layer. We

adopted the well-known AAM model [6] in learning and computing WL.

W ∗
L = arg max p(WL|Iobs) = arg max p(Iobs

L |WL; ∆I
L)p(WL)

= arg max exp{−|Iobs
L − Irec

L |2/(2σ2
L) − 1

2
W ′

L(S−1
WL

)WL} (25)

The first term of second row denotes the likelihood, where Irec
L is the reconstructed low resolution

layer governed by WL and σ2
L is the variance of reconstruction error learned from training data.

The second term denotes the prior, where SWL
is the covariance matrix of WL. The optimized

W ∗
L can be computed efficiently by stochastic gradient descent [6].

B. Layer 2: the medium resolution compositional AAM model

The medium-resolution layer is inferred by maximizing posterior of WM given Iobs
M and W ∗

L .

W ∗
M = arg max p(WM|WL, I

obs) = arg max p(Iobs
M |WM,WL; ∆I

M,∆
I
L)p(WM|WL) (26)

The first term indicates the likelihood probability.

p(Iobs
M |WL,WM; ∆I

M,∆
I
L) ∝ exp{−1

2
(Iobs

M − Irec
M )′Σ−1

r (Iobs
M − Irec

M )}

= exp{−
6∑
i=1

|rcp,i|2
2σ2

cp,i

− |rL|2
2σ2

L

} (27)

where {rcp,i}6
i=1 denote the reconstructed residue of the pixels covered by the six facial com-

ponents Λcp, rL is the reconstructed residue of the rest pixels Λncp, {σ2
cp,i}6

i=1 and σ2
L are the

variances of errors learned from training data. The second term of the conditional prior can be

factorized to three components.

p(WM|WL) ∝
6∏
i=1

p(�i) ·
6∏
i=1

p(W i
cp|WL) · ∏

<vk,vl>∈Ecp

p(W k
cp,W

l
cp) (28)



25

The first component denotes the prior probability of the parsing tree as defined in Section III.

6∏
i=1

p(�i) ∝
6∏
i=1

N(ωi)∏
j=1

θ
δ(�i,j)
ij =

6∏
i=1

θi�i (29)

where δ(.) is a Delta function and θi�i is simply the frequency of that the ith switch variable

was assigned value �i in the training data. The second component is the singleton prior of WM

conditioned on WL in a manner similar to the constrained AAM model[6].

6∏
i=1

p(W i
cp|WL) ∝

6∏
i=1

exp{−W i
cp

′
S−1
W i

cp
W i

cp − dicp,L
′
S−1
di

dicp,L} (30)

where dicp,L denotes the photometric and geometric displacements between current Ŵ i
cp and

W ∗
L . In this paper, we actually computed the geometric displacement only and ignored the

photometric displacement, although which is critical for other applications like super-resolution.

Here dicp,L = (ditx , d
i
ty , d

i
θ, d

i
sx , d

i
sy)

′ are respectively the center displacement, relative angle and

scale ratio between the global face template and each of the local part templates. SW i
cp

and

Sdi are the covariance matrix of W i
cp = (c�ix , c

�i
g , θ

�i , t�ix , t
�i
y , s

�i
x , s

�i
y , u

�i
1 , u

�i
2 ) and dicp,L. The third

component addressed the pairwise constraints defined on each graph node and their neighbors,

including center distance(ψtx , ψty), size ratio(ψsx , ψsy), relative angle(ψθ), closeness of bonding

points(ψcl) and appearance similarity(ψsm).

∏
<vk,vl>∈Ecp

p(W k
cp,W

l
cp) ∝ exp{− ∑

<vk,vl>∈Ecp

∑

ψ(b)∈Ψkl

β
(b)
kl ψ

(b)(vk, vl)} (31)

where Ecp is a set of edges that linked the nodes, Ψkl ⊆ {ψtx , ψty , ψsx , ψsy , ψθ, ψsm} is a

set of pairwise constraints defined on 〈vk, vl〉, and {β(a)
kl } are the potential functions. These

constraints helps maintain the consistency of our graph configuration. For example, the left eye

and right eye tend to be symmetric (both shape and appearance) when they are of the same

mode (open/closed). However, to model all possible constraints on every two graph nodes is

expensive in computation and usually unnecessary. For example, we can safely assume that the

appearance of the nose and mouth of the same person is remotely relevant. In this paper, the
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constraints were selected based on minimax entropy [39]. Figure 12 showed some examples as

histograms of the output values of the chosen constraints functions.

For computational simplicity and efficiency, we approximated W ∗
M in three steps. Firstly from

p(WM|WL) we proposed a set of templates (only the geometric part) with all possible types for

every local facial components. Then these proposed templates were locally diffused using pre-

trained constrained AAM models [6]. Finally we resulted in a pairwise MRF of the proposed

templates. For each of them, we computed the local evidences as the likelihood and parameter

priors, while the compatibilities were the pairwise constraints defined above. We then introduced

belief propagation [21] in finding the optimized W ∗
M. The algorithm proceeds as in Figure 14.

Given W ∗
L computed from the low-resolution layer and the medium-resolution input image Iobs

M .

1) For every medium-resolution layer Or-nodes, propose a set of templates (only the geometric

part) of all possible types based on WL.

2) For every proposed templates, diffuse them locally using the corresponding constrained AAM

models and record the reconstruction errors as likelihoods.

3) For the proposed and diffused templates, compute the local evidences as likelihoods and

parameter priors, while compute the compatibilities as the aforehand defined pairwise

constraints. Use belief propagation algorithm to find the optimized configuration W ∗
M.

Fig. 14. Algorithm for inference of the medium-resolution layer hidden variables.

C. Layer 3: the high resolution sketch model

Similarly we made reasonable assumption that WH only depends on Iobs
H and WM.

W ∗
H = arg max p(WH|WM, I

obs
H ) = arg max p(W fr

H |W st
H , I

obs
H )p(W st

H |WM, I
obs
H ) (32)

where W st
H and W fr

H are respectively the hidden variables of the structural and free zones defined

in Section II(B). They are inferred sequentially in the high-resolution layer.
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W st
H includes six facial zones (Figure 7(a)), in which the eyebrows, eyes, nose and mouth

are further decomposed into subgraphs of image primitives, e.g. the nose in Figure 8(a). Once

the W ∗
M was computed, the modes of these local facial components are completely determined,

e.g. whether the mouth is open or closed. We model the subgraph W st,i
H of zone i as a Markov

network of Ni image primitives with fixed structure.

p(W st,i
H |W i

cp, I
obs
H,Λi

) ∝ exp{−
Ni∑
k=1

|rk|2
2σ2

k

− 1

2
di

′Σ−1
ci

di −
∑
<k,l>

1

2
(Ed

kl(pk, pl) + Ea
kl(pk, pl))} (33)

where Iobs
H,Λi

denotes the pixels in zone i and {pk} are the image primitives. r in the likelihood

term denotes the reconstructed residue of pk. di in the prior term is the center distance between

{pk} and the corresponding land mark points in W i
cp, which serves as the global shape constraint.

〈k, l〉 denotes a pair of connected image primitives on which pairwise energies are defined:

Ed
kl(pk, pl) = |ek − el|2/σ2

dkl
for distance between two nearest endpoints, and Ea

kl(pk, pl) =

| sin(θk−θl)−µakl|2/σ2
akl

for the relative angle. {σ2
k}, Σci , {σ2

dkl
}, and {µakl, σ2

akl
} are all learned

from the training data. We sequentially maximized the posteriors of every facial zones using

belief propagation similar to [16]. Experiments showed fast convergence and accurate fitting.

W st
H

∗
= {W st,i

H

∗}6
i=1 = arg max

6∏
i=1

p(W st,i
H |W i

cp, I
obs
H,Λi

) (34)

W fr
H includes another 10 facial zones, covering the rest of the skin regions. These zones, shown

in Figure 7(b, c, d), are determined by landmark points computed from W st
H . Similar to the

structural zones, skin features such as wrinkles and marks in the free zones are also represented

by subgraphs of image primitives, e.g. the laugh-line in Figure 8(a). However, the patterns of

both the occurrence and distribution of these features are much more random and sometimes

locally imperceptible without global context. We manually labelled the skin features in every

free zones for a set of training images. Some “typical” curves are shown in Figure 7(b, c, d),

from which the prior models were learned in favor of certain properties.
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1. pn(Ni = n) =
∑M
i=1 αiδ(n, i). Ni is the number of curves in zone i, M is the maximum

number of curves, αi are frequencies of observed curve numbers.
∑
αi = 1.

2. p�(Lj = �) = λL
�e−λL
�!

. Lj is the length of curve j and λL is specified by “typical” curves.

3. pon(on|x, y) = pon
xy is the chance that point (x, y) is on a curve. pθ(θk|x, y) = G(θk;µ

θ
xy, σ

θ
xy).

θk is the orientation of primitive k centered at (x, y). We learned pon
xy, µ

θ
xy and σθxy by accumu-

lating information from nearby “typical” curves in the normalized training data (Figure 15(b)).

4. psm(pk, pl) ∝ exp{−1
2
(Ed + Eθ + Es + Et)} guarantees the position, orientation, scale

and intensity consistency of two consecutive primitives pk and pl, where Ed = |ek − el|2/σ2
d,

Eθ = | sin(θk − θl)|2/σ2
θ , Es = |sk − sl|2/σ2

s , and Et = |pk − pl|2/σ2
t .

We therefore rewrote the posterior of free zone i which was partitioned by W st
H .

p(W fr,i
H |Iobs

H,Λi
) ∝ pn(Ni)·

Ni∏
j=1

p�(Lj)·
K∏
k=1

pon(on|xk, yk)pθ(θk|xk, yk)pr(rk)·
∏
<k,l>

psm(pk, pl) (35)

where K is the number of primitives and pr(rk) = 1
Zr

exp{− |rk|2
2σ2
r
} is local likelihood of primitive

k. Before pursuing curves in zone i, a quick bottom-up step (edge and ridge detection, steering

filters) was taken for initialization (Figure 15(a)). In step t+ 1 we proposed W fr,i
H,t+1 from W fr,i

H,t

(a) (b) (c)  

Fig. 15. The process of curve tracking. (a) The bottom-up results of orientation and gradient magnitudes; (b) The prior of

orientation field and gradient magnitudes learned from training data; (c) Curve tracking results.
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∅

∅
 

Fig. 16. Grammars used for free curve pursuit in the high-resolution layer, including birth/death, split/merge, and connect.

by selecting from a set of grammars (Figure 16) and computed the posterior ratio.

p(W fr,i
H,t+1|Iobs

H,Λi
)

p(W fr,i
H,t |Iobs

H,Λi
)

= θ (36)

We choose the grammar that gives the greatest θ > 1. If θ ≤ 1 for all grammars, the pursuit

stops. The algorithm of curve pursuit proceeds in Figure 17, and results are shown in Figure 20.

Gabor filters of various scales are used in capturing other features like marks and specularities.

Given the high-resolution input image Iobs
H and a partitioned free facial zone i.

1) Compute bottom-up results and initialize W fr,i
H,0 = Ø.

2) In step t + 1, for every grammars {gj}, propose W fr,i
H,t+1 from W fr,i

H,t and calculate

the posterior ratio
p(W

fr,i
H,t+1|I

obs
H,Λi

)

p(W
fr,i
H,t

|Iobs
H,Λi

)
= θjt+1.

3) Select the greatest θjt+1 > 1, accept W fr,i
H,t+1, and repeat step 2. Otherwise if θjt+1 ≤ 1

for all gj , stop the pursuit.

Fig. 17. Algorithm for pursuing free curves of zone i in the high-resolution layer.

D. Experiment II: Scale Transition and Model Selection

A crucial yet unaddressed issue is the scale transition. In previous sections, we showed how

to parse an input face image on all three layers of the And-Or graph. However, the layers of

representations that we need depends on both the resolution of observed images and the model

complexity. It is against our intuition to model a high resolution face with a simple holistic PCA,

or to describe a low resolution face with a sophisticated graphical model of image primitives.
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Fig. 18. Plot of coding length D̂L for the ensemble of testing images v.s. dictionary size |∆| at four different scales.

Similar to [7], we formulated this problem as model selection under the minimum description

length (MDL) principle: DL = L(ΩI ; ∆) + L(∆), where ΩI = {I1, ..., IM} is the sample set.

The first term is the expected coding length of ΩI given dictionary ∆ and the second term is

the coding length of ∆. Empirically, we can estimate DL by:

D̂L =
∑

Ii∈ΩI

∑
w∼p(W |Ii;∆)

(− log p(Ii|w; ∆) − log p(w)) +
|∆|
2

logM (37)

We randomly partitioned the face images into a training set and a testing set. Training data

was used to construct the three-layer And-Or graph model. Then the testing data was resized

in four different resolutions: 32 × 32, 64 × 64, 128 × 128 and 256 × 256. D̂L was computed

for every resolution set with different layers of our model. To obtain the minimum description

length, we simply variate the size of the dictionaries/codebooks, e.g. increasing the number of

principal components or image primitives. In practice, we computed − log p(Ii|w; ∆) by the

reconstruction error, − log p(w) by counting bits of the binary file storing the variables, |∆|

by counting bits of the binary file storing the models, and M was the number of testing data.

Figure 18 showed that enlarging the codebook soon reached limit if the resolution continuously

increased, thus switching to more sophisticated models (finer layers) became necessary.
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Fig. 19. Comparison of reconstruction errors of our composite model against a global AAM model. The test are conducted

on (a) Selected testing images from AR and MSRA images; and (b) images from self-captured videos.

V. EXPERIMENT III: RECONSTRUCTING IMAGES AND GENERATING CARTOON SKETCHES

We construct a three-layer And-Or graph model with 811 parsing graphs annotated on face

images across different genders, ages, and expressions selected from AR[19], FERET[23],

LHI[36] and some MSRA images. Given an input image, the faces are first localized by

AdaBoost[30] in OpenCV, on which the parsing proceeds until reaching a valid configuration.

Experiments show that our model reconstructs face images with rich details, generates vivid

facial sketches (Figure 21), and especially helps where the details (e.g.,wrinkles) are critical

for face characterization (e.g., aged people in Figure 20). Quantitative improvement of the

reconstruction accuracy on images from both standard databases and personal videos is shown

in Figure 19, where our composite model compares favorably in terms of lower error and better

consistency (smoother curves) against a global AAM model with codebook of approximately

same size. Furthermore, the structural variabilities of our model is illustrated by parsing a video

of facial motion in Figure 10(b) with the hair manually labelled.

After computing (W ∗
L ,W

∗
M,W

∗
H), we reconstructed (Irec

L , Irec
M , Irec

H ) and generated the corre-

sponding sketches (Ssyn
L , Ssyn

M , Ssyn
H ) by replacing the rendering dictionaries in Figure 4.

(Bpht
L ,Bpht

cp ,B
pht
H ) −→ (Bgeo

L ,Bgeo
cp ,B

geo
H ) (38)
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Fig. 20. Sketching results for aged faces where wrinkles are very important features for perception.

We called Ssyn
L , Ssyn

M the initial sketches not shown since they are formed by linking the

landmark points. The final facial sketch Ssyn
H assembles the symbolic representations of the image

primitives, where smoothness constraints are enforced on their connections. More sketching

results are shown in Figure 21.

VI. CONCLUSION AND FUTURE WORK

In conclusion, we present a hierarchical-compositional representation for modeling human

faces in the form of an And-Or graph model, which simultaneously account for the face

regularity and dramatic structural variabilities caused by scale transitions and state transitions.

Experiment had shown that our model helps reconstruct face images with great structural

variations and rich details, and facilitates the generation of vivid cartoon sketches. We can

also generate stylish sketches by learning the dictionaries from artistic drawings[3]. Another

interesting future work is to synthesize the images from sketches.
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Input image Reconstructed image Residue image

 

Sketching result Without sketch layer

Fig. 21. More results of reconstructed images, automatically generated sketches and residue images of our model. The residue

images from reconstruction without sketch layer are also shown for comparison. We easily see that our model helps capture

rich details and generate vivid facial sketches. Difference styles can be achieved by replacing the rendering dictionaries.
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