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Abstract. Vision can be considered a highly specialized data collection and analysis
problem. We need to understand the special properties of natural image data in order to
construct statistical models and develop statistical methods for representing and recog-
nizing the wide variety of natural image patterns. One fundamental property of natural
image data that distinguishes vision from other sensory tasks such as speech recognition
is that scale plays a profound role in image formation and interpretation. Specifically,
visual objects can appear at a wide range of scales in the images due to the change of
viewing distance as well as camera resolution. The same objects appearing at different
scales produce different image data with different statistical properties. In particular, we
show that the entropy rate of the image data changes over scale. Moreover, the inferential
uncertainty changes over scale too. We call these changes information scaling. We then
examine both empirically and theoretically two prominent and yet largely isolated classes
of image models, namely, wavelet sparse coding models and Markov random field mod-
els. Our results indicate that the two classes of models are appropriate for two different
entropy regimes: sparse coding targets low entropy regimes, whereas Markov random
fields are appropriate for high entropy regimes. Because information scaling connects
different entropy regimes, both sparse coding and Markov random fields are necessary
for representing natural image data, and information scaling triggers transitions between
these two regimes. This motivates us to propose a modeling scheme that embraces both
regimes of models in a common framework. The contribution of our work is two-fold.
First, the study of information scaling provides a unifying perspective for the rich vari-
ety of natural image patterns. Second, the modeling scheme that we develop provides a
natural integration of different regimes of image models.
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1. Introduction. Computer vision can be considered to be a highly specialized data
collection and analysis problem, where existing concepts and methods in statistical theory
and information theory can in principle be used to model and interpret the image data
[23, 39]. However, vision also proves to be a highly specialized data collection and analysis
task. We must understand the special characteristics of the natural image data in order
to develop realistic models and efficient algorithms for representing and recognizing the
wide variety of natural image patterns.

(a) (b)

Fig. 1. Image patterns at different scales. (a) Tree leaves at different
viewing distances. (b) Tree trunks, branches, and twigs of different
sizes and viewing distances.

One fundamental property of natural image data that distinguishes vision from other
sensory tasks such as speech recognition is that scale plays a profound role in image
formation and interpretation. Specifically, visual objects can appear at a wide range of
scales in the images due to the change of viewing distance as well as camera resolution.
The same objects appearing at different scales produce different image data with different
statistical properties. See Figure (1.a) for an example. It shows tree leaves in four
different distance ranges. In region A at near distance, the leaves appear at a relatively
large scale, and the individual shapes of the leaves can be recognized. In region B at
intermediate distance, the image becomes more complex, and the leaves can no longer
be recognized individually. Instead, only a collective foliage impression is formed from
this part of the image. In region C at still farther distance, the image looks like noise.
In region D at very far distance, the image appears to be a smooth region. Figure (1.b)
shows another example, where tree trunks, branches and twigs appear at different scales,
producing image data with different appearances. These two examples show that the
change of scale causes the change of image properties, which may trigger the change of
the modeling scheme for image representation.

In this paper, we study the change of statistical properties, in particular, some informa-
tion-theoretical properties, of the image data over scale. We show that the entropy
rate, defined as entropy per pixel, of the image data changes over scale. Moreover, the
inferential uncertainty of the outside scene that generates the image data also changes
with scale. We call these changes information scaling.
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We then examine both empirically and theoretically two prominent and yet largely
isolated research themes in image modeling and representation, namely, wavelet sparse
coding [33, 42, 8] and Markov random fields [6, 20, 21]. Wavelets originated from har-
monic analysis. The key principle is sparsity, where the goal is to find a dictionary of
linear bases so that any typical natural image can be represented or approximated by a
small number of linear bases selected from the dictionary. Markov random fields origi-
nated from statistical physics. Instead of coding the image data deterministically with
a small number of linear bases, Markov random fields characterize the image data by
pooling some spatial statistics over the image domain.

Our results indicate that sparse coding and Markov random fields are appropriate for
two different entropy regimes: sparse coding targets low entropy regimes, whereas Markov
random fields are appropriate for high entropy regimes. Because information scaling
connects different entropy regimes, both classes of models are necessary for representing
and interpreting image data in the whole entropy range, and information scaling triggers
transitions between the two regimes of models. This motivates us to propose a modeling
scheme that embraces sparse coding and Markov random fields in a common framework.

The contribution of our work is as follows. First, the change of image data over scale
has been well understood in the literature [53, 31, 40]. However, the change of statistical
properties of the image data over scale, i.e., information scaling, has not been thoroughly
studied. Our study of information scaling provides a unifying perspective that connects
the rich variety of natural image patterns of widely different statistical properties. Our
work is different from previous results on the statistics of natural images [47, 17, 49, 50].
Existing results are concerned with the marginal statistics while integrating over scale.
Our work, however, is concerned with the conditional statistics given the scale, especially
how such conditional statistics change with the scale.

Second, the two important regimes of image models, i.e., sparse coding and Markov
random fields, have largely been isolated from each other, even though both have been
used extensively in image modeling and processing. Information scaling provides a unique
perspective to bridge the two regimes of models, and our modeling scheme provides a
natural integration of different regimes of models.

The plan of the paper is as follows. Section 2 describes an empirical study of a simple
model treated by Lee, Mumford and Huang (2001) [32] to illustrate information scaling.
Section 3 presents some theoretical results on information scaling. Section 4 examines
wavelet sparse coding and Markov random fields. Section 5 proposes a modeling scheme
that integrates different regimes of models. Section 6 concludes with a brief discussion.

2. Information scaling of the dead leaves model. To give the reader some con-
crete ideas, we first study information scaling empirically by experimenting with the
so-called dead leaves model.

2.1. Model and assumptions. The dead leaves model [37] was used by Lee, et al. [32]
in their investigation of image statistics of natural scenes. The model was also previously
used to model natural images [2]. For our purpose, we may consider that the model
describes an ivy wall covered by a large number of leaves of similar sizes. See Figure (3)
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for some examples. We assume that the leaves are of squared shape and are uniformly
colored. Each leaf is represented by:

(1) Its length or width r, which follows a distribution f(r) ∝ 1/r3 over a finite range
[rmin, rmax].

(2) Its color or shade a, which follows a uniform distribution over [amin, amax].
(3) Its position (x, y, z), where the wall serves as the (x, y)-plane, and z ∈ [0, zmax] is

the distance between the leaf and the wall. We assume that zmax is very small, so that
z matters only for deciding the occlusions among the leaves.

For the collection of leaves {(rk, ak, xk, yk, zk)}, we assume that the rk are independent
of each other, and so are the ak. (xk, yk, zk) follow a Poisson process in R2 × [0, zmax].
We assume that the intensity of the Poisson process λ is large enough so that the leaves
completely cover the wall. As noted by Lee et al. (2001), {(rk, ak, xk, yk, zk)} is a Poisson
process in the joint domain [rmin, rmax]× [amin, amax]×R2 × [0, zmax] with respect to the
measure f(r)drdaλdxdydz.

Lee et al. (2001) showed that this Poisson process is scale-invariant under the assump-
tion that [rmin, rmax] → [0,∞]. Specifically, under the scaling transformation x′ = x/s

and y′ = y/s, where s is a scaling parameter, we have r′ = r/s, and the Poisson pro-
cess will be distributed in [rmin/s, rmax/s] × [amin, amax] × R2 × [0, zmax] with respect
to the measure f(sr′)sdr′daλsdx′sdy′dz, which is equal to f(r′)dr′daλdx′dy′dz′ because
f(r) ∝ 1/r3. As [rmin, rmax] → [0,∞], [rmin/s, rmax/s] → [0,∞] too, so the Poisson pro-
cess is invariant under the scaling transformation. The assumption of Lee et al. (2000)
appears to hold for most of the studies of natural image statistics [47, 49, 50, 35].

However, in our experiment, [rmin, rmax] is assumed to be a relatively narrow range.
Under the scaling transformation, this range will change to [rmin/s, rmax/s], which is far
from being invariant. From this perspective, we may consider that Lee et al. (2001) and
the papers cited above are concerned with the marginal statistics by integrating over the
whole range of scale. Our work, however, is concerned with the conditional statistics
given a narrow range of scale, especially how such conditional statistics change under
the scaling transformation. While it is important to look at the marginal statistics over
the whole range of the scale, it is perhaps even more important to study the conditional
statistics at different scales in order to model different image patterns. Moreover, the
conditional statistics at different scales may have to be accounted for by different regimes
of statistical models.

2.2. Image formation and scaling. Let Ok ⊂ R2 be the squared area covered by leaf k

in the (x, y) domain of the ivy wall. Then the scene of the ivy wall can be represented by
a function W (x, y) = ak(x,y), where k(x, y) = arg maxk:(x,y)∈Ok

zk, i.e., the most forefront
leaf that covers (x, y). W (x, y) is a piecewise constant function defined on R2.

Now let’s see what happens if we take a picture of W (x, y) from a distance d. Suppose
the scope of the domain covered by the camera is Ω ⊂ R2, where Ω is a finite rectangular
region. As noted by Mumford and Gidas (2001) [40], a camera or a human eye only
has a finite array of sensors or photoreceptors. Each sensor receives lights from a small
neighborhood of Ω. As a simple model of the image formation process, we may divide the
continuous domain Ω into a rectangular array of squared windows of length or width σd,
where σ is decided by the resolution of the camera. Let {Ωij} be these squared windows,
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Fig. 2. Illustration of image formation. Each pixel (i, j) corresponds
to a squared window Ωij in the continuous domain Ω. The size of
the window is dσ, where d is the distance between the objects and
the camera, and σ is determined by the camera resolution.

with (i, j) ∈ D, where D is a rectangular lattice. See Figure (2) for an illustration, where
the domain is covered by 4 × 4 squared windows, so D in this case is 4 × 4.

The image I is defined on D. Let s = dσ be the scale parameter of the image formation
process. Then

Is(i, j) =
1
s2

∫
Ωij

W (x, y)dxdy, (i, j) ∈ D, (1)

which is the average of W (x, y) within window Ωij . Equation (1) can also be written as

ws(x, y) =
1
s2

∫
W (x′, y′)g((x − x′)/s, (y − y′)/s)dx′dy′ = W ∗ gs, (2)

Is(i, j) = ws(u + is, v + js), (3)

where g is a uniform density function within the window [−1/2, 1/2] × [−1/2, 1/2], and
gs(x, y) = g(x/s, y/s)/s2. (u, v) ∈ [0, s)2 denotes the small shifting of the rectangular
lattice. There are two operations involved. Equation (2) is smoothing: ws is a smoothed
version of W . Equation (3) is subsampling: Is is a discrete sampling of ws. To be more
general, g in Equation (2) can be any density function, for instance, a Gaussian density
function. See [40] for a more general mathematical model of the image formation process.

The scale parameter s can be changed by either changing the viewing distance d or
the camera resolution σ. If we increase s by increasing the viewing distance or zooming
out the camera, then both the size of the scope Ω and the size of the windows Ωij will
increase proportionally. So the resulting image Is will change. For example, if we double
s to 2s, then I2s will cover a scope 4 times as large as the scope of Is. Because each
squared window of size 2s contains 4 squared windows of size s, if we look within the
portion of I2s that corresponds to Is, then the intensity of a pixel in I2s is the block
average of the intensities of the corresponding 2 × 2 pixels in Is.

If g is a Gaussian kernel, then the set of {ws(x, y), s > 0} forms a scale space [53, 31].
The scale space theory can account for the change of image intensities due to scaling. But
it does not explain the change of statistical properties of the image data under the scaling
transformation.
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(1) (2) (3) (4)

(5) (6) (7) (8)

Fig. 3. Pictures of the simulated ivy wall taken at 8 viewing dis-
tances. The viewing distance of the (i + 1)-st image is twice that of
the i-th image.

2.3. Empirical observations on information scaling.
2.3.1. Simulated images. Figure (3) shows a sequence of 8 images of W taken at 8

viewing distances. The images are generated according to Equation (1). The viewing
distance of the (i + 1)-st image is twice that of the i-th image. So the viewing distance
of the last image is 128 times that of the first image. Within this wide range of viewing
distances, the images display markedly different statistical properties even though they
are generated by the same W . The reason is that the square leaves appear at different
scales in different images.

(1) For an image taken at a near distance, such as image (1), the window size of a
pixel is much less than the average size of the leaves, i.e., s � r. The image can be
represented deterministically by a relatively small number of occluding squares, or by
local geometric structures such as edges, corners, etc. The constituent elements of the
image are squares or local geometrical structures, instead of pixels.

(2) For an image at an intermediate distance, the window size of a pixel becomes
comparable to the average size of the leaves, i.e., s ≈ r. The image becomes more
complex. For images (4) and (5), they can no longer be represented by a small number
of geometrical structures. The basic elements have to be pixels themselves. If a simple
interpretation of the image is sought, this interpretation has to be some sort of simple
summary that cannot code the image intensities deterministically. The summary can be
in the form of some spatial statistics of image intensities.

(3) For an image at a far distance, the window size of a pixel can be much larger than
the average size of the squares, i.e., s 	 r. Each pixel covers a large number of leaves,
and its intensity value is the average of many leaves. The image is approaching the white
noise.
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Computer vision algorithms always start from the analysis of local image patches,
often at multiple resolutions. In Figure 4, we take some local 7 × 7 image patches from
the images at different scales shown in Figure (3). These local image patches exhibit
very different characteristics. Patches from near distance images are highly structured,
corresponding to simple regular structures such as edges and corners, etc. As the distance
increases, the patches become more irregular and random. So the local analysis in a
computer vision system should be prepared to deal with such local image patches with
different regularities and randomness.

Fig. 4. The 7 × 7 local patches taken from the images at different scales.

(a) (b)

Fig. 5. The change of statistical properties versus the scale. (a)
JPEG compression rate. (b) Entropy of marginal histogram of ∇xI.
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2.3.2. Change of compression rate. We perform some empirical studies on the change
of statistical properties of the image data versus the scale. What we care about most
is the complexity or randomness of the image, and we measure the complexity rate or
randomness empirically by the JPEG 2000 compression rate. Generally speaking, for a
simple and regular image, there are a lot of redundancies in the image intensities, so only
a small number of bits are needed to store the image without any loss of information
up to the discretization precision. For a complex and random image, there is no much
regularity or redundancy in the data, so a large number of bits are required to store the
image. The reason we use the JPEG 2000 compression rate to measure the complexity
rate is two-fold. First, JPEG 2000 is the state of the art image compression standard and
currently gives the best approximation to image complexity. Second, given the popularity
of JPEG 2000, our results should also be interesting to the image compression community.
See [15] for an in-depth treatment of data compression.

The image is compressed by JPEG 2000, and the size of the compressed image file is
recorded in terms of the number of bits. This number is then divided by the number
of pixels to give the compression rate in terms of bits per pixel. Figure (5.a) plots this
measure in the order of viewing distance for images in Figure (3). At the near distance,
the randomness is small, meaning that the image is quite regular. Then the randomness
starts to increase over distance, because more and more leaves are covered by the scope
of the camera. At the far distance, however, the randomness begins to decrease, because
the local averaging operation reduces the marginal variance and eventually smoothes the
image into a constant image because of the law of large numbers. In this plot, there are
three curves. They correspond to three different rmin in our simulation study, while rmax

is always fixed at the same value. For smaller rmin, the corresponding curve shifts to the
left, because the average size of the leaves is smaller.

We also use a simple measure of smoothness as an indicator of randomness or com-
plexity rate. We compute pairwise differences between intensities of adjacent pixels
∇xI(i, j) = I(i, j) − I(i − 1, j) and ∇yI(i, j) = I(i, j) − I(i, j − 1). ∇I(i, j) = (∇xI(i, j),
∇yI(i, j)) is the gradient of I at (i, j). The gradient is a very useful local feature that can
be used for edge detection [9]. It is also extensively used in image processing. We make a
marginal histogram of {∇xI(i, j), (i, j) ∈ D} and compute the entropy of the histogram.
Figure (5.b) plots this entropy over the order of distance for images in Figure (3). The
plot behaves similarly as the plot of the JPEG 2000 compression rate.

We also did some experiments on natural images. Figure (6) shows a sequence of
images taken at increasing distances from the trees. Figure (7) displays the change of
randomness measured by three indicators versus the order of the distance. The dashed
line is the JPEG compression rate. The solid line is the smoothness, i.e., the entropy of
∇xI. For the black dotted line, we code the image as a linear expansion of a set of local
linear bases selected from a large dictionary. We then record the number of the linear
bases that need to be included in order to reduce the mean squared error to 30% of the
variance of the original image. See Section 4 for more details. The three indicators are
linearly normalized so that they fit into the same plot. The change of randomness in
Figure (6) is consistent with the simulated example.
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Fig. 6. Natural images taken at different distances from the trees.

Fig. 7. The change of the randomness of the images in Figure 6
versus the approximate viewing distance.

We also did the same experiment for the pictures in Figure (8). Here we have an
image of an ivy wall and its zoomed-out versions. The randomness keeps increasing as
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(a)

(b)

Fig. 8. (a) The original image of an ivy wall and its zoomed-out
versions. (b) The change of randomness versus the zoom-out factor
or equivalently the viewing distance.

we zoom out the image, because the sequence of images does not cover the whole range
of the scale.

Fig. 9. A scale-invariant image and the change of randomness versus
the zoom-out factor or equivalently the viewing distance.

Finally, we repeat the same experiment for the picture in Figure (9) and its zoomed-
out versions (not shown). The picture appears to be scale-invariant, and the randomness
does not change much as we zoom out the image.

In Figure (8), [rmin, rmax] is very small, so we see a clear change of randomness with
respect to the scale. In Figure (9), however, [rmin, rmax] is much larger, and the image
is a mixture of objects and patterns of very different scales. In order to model natural
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images such as the one in Figure (9), we need to model image patterns over the whole
range of the scale.

2.3.3. Variance normalization. The local averaging operation in Equation (1) reduces
the marginal variance of the image intensities. A more appropriate measure of ran-
domness should be the compression rate of the variance-normalized image, so that this
measure is invariant under linear transformations of image intensities. Specifically, for
an image I, let σ2 be the marginal variance of I. Let I′(i, j) = I(i, j)/σ. Then I′ is
the variance-normalized version of I, and the marginal variance of I′ is 1. We compute
the JPEG compression rates of variance-normalized versions of the images in Figure (3).
Figure (10.a) displays the variance-normalized JPEG compression rate versus the order
of the distance for the three runs of the simulation study. The compression rate increases
monotonically towards an upper bound represented by the horizontal line. This suggests
that the scaling process increases the randomness and transforms a regular image to a
random image. The upper bound is the JPEG compression rate of the Gaussian white
noise process with variance 1.

The convergence of the compression rate of the variance-normalized image to that
of the Gaussian white noise image is due to the effect of the central limit theorem. As
another illustration, we compute the kurtosis of the marginal distribution of {∇xI(x), x ∈
D}. The kurtosis is decreasing monotonically towards 0, meaning that the image feature
becomes closer to a Gaussian distribution (see Figure 10.b).

(a) (b)

Fig. 10. (a) The change of JPEG compression rate of the variance-
normalized versions of the images in Figure (3). (b) The change of
kurtosis.

3. Theoretical results on information scaling. In this section, we present some
theoretical results on information scaling.

3.1. Basic information-theoretical concepts. Let I(x, y) be an image with (x, y) ∈ D,
where D is the discrete lattice of pixels (in what follows, we use (x, y) instead of (i, j)
to denote discrete pixels). Let p(I) be the distribution of I. We are interested in the
following statistical properties [12].
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1) Entropy and entropy rate: The entropy of p is defined as

H(p) = Ep[− log p(I)] = −
∫

p(I) log p(I)dI,

and the entropy rate of p is defined as H̄(p) = H(p)/|D|, where |D| is the number of
pixels in the lattice D.

2) Relative entropy and relative entropy rate: For two distributions p and q, the relative
entropy, or the Kullback-Leibler divergence between p and q, is defined as

K(p||q) = Ep

[
log

p(I)
q(I)

]
= −H(p) − Ep[log q(I)] ≥ 0.

The relative entropy rate is K̄(p||q) = K(p||q)/|D|.
3) Relative entropy with respect to Gaussian white noise: For an image distribution p,

let
1
|D|

∑
(x,y)∈D

E[I(x, y)2] = σ2

be the marginal variance. Let q be the Gaussian white noise distribution with mean 0
and variance σ2, i.e., I(x, y) ∼ N(0, σ2) independently. Then

K(p||q) = −H(p) − Ep[log q(I)] = H(q) −H(p) ≥ 0. (4)

The second equation in (4) follows from Ep[log q(I)] = Eq[log q(I)] because log q(I) is
linear in

∑
x,y I(x, y)2, which has the same expectations under both p and q. Because

H(q) ≥ H(p) according to (4), the Gaussian white noise distribution has the maximum
entropy among all the image distributions with the same marginal variance.

4) Entropy rate of variance-normalized image: Continuing from (4) and calculating
the entropy rate of Gaussian white noise explicitly, we obtain the relative entropy rate

K̄(p||q) = log
√

2πe − [H̄(p(I)) − log σ] = log
√

2πe − H̄(p(I′)),

where I′ = I/σ is the variance-normalized version of the image I, and p(I′) denotes
the distribution of I′. So the entropy rate of the variance-normalized image H̄(p(I′))
determines the relative entropy rate K̄(p||q) of p(I) with respect to the Gaussian white
noise q(I). In other words, H̄(p(I′)) measures the departure of p from the Gaussian white
noise hypothesis.

3.2. Change of entropy rate. For simplicity, let’s study what happens if we double the
viewing distance or zoom out the image by a factor of 2. Suppose the current image
is I(x, y), (x, y) ∈ D. If we double the viewing distance, the window covered by a pixel
will double its size. So the original I will be reduced to a smaller image I− defined on
a reduced lattice D−, and each pixel of I− will be the block average of four pixels of I.
More specifically, the process can be accounted for by two steps, similar to Equations (2)
and (3).

(1) Local smoothing: Let the smoothed image be J. Then J(x, y) =
∑

u,v I(x + u, y +
v)/4, where (u, v) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. We can write J = I ∗ g where g is the
uniform distribution over {(0, 0), (0,−1), (−1, 0), (−1,−1)}. In general, g can be any
kernel with appropriate bandwidth, such as a Gaussian distribution function.
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(2) Subsampling: I(u,v)
− (x, y) = J(2x + u, 2y + v), where, again, (u, v) ∈ {(0, 0), (0, 1),

(1, 0), (1, 1)}. Any of the four I(u,v)
− can be regarded as a subsampled version of J.

Theorem 1. Smoothing effect: Let D be an M × N lattice, and let I be defined on
D. Let J = I ∗ g, where g is a local averaging kernel or a probability distribution. As
min(M, N) → ∞,

H̄(p(J))− H̄(p(I)) → 1
4π2

∫ 2π

0

∫ 2π

0

log |ĝ(ω)|dω ≤ 0, (5)

where ω = (ωx, ωy) is the spatial frequency, and ĝ(ω) =
∑

x,y g(x, y) exp{−i(ωxx+ωyy)}
is the Fourier transform of the kernel g, where the sum is over the support of g.

Proof. Let I be the image defined on the integer lattice [0, M − 1] × [0, N − 1]. The
discrete Fourier transform of I is

Î(ω) =
M−1∑
x=0

N−1∑
y=0

I(x, y) exp{−i(ωxx + ωyy)},

where ωx ∈ {2πm/M, m = 0, ..., M −1} and ωy ∈ {2πn/N, n = 0, ..., N−1}. The Fourier
transforms of J and g can be similarly defined. Because Î and Ĵ are obtained from I and
J respectively by the same linear transformation, H(p(Ĵ))−H(p(Î)) = H(p(J))−H(p(I)).

For a convolution with periodic boundary condition, Ĵ(ω) = Î(ω)ĝ(ω). So

H̄(p(J)) − H̄(p(I)) =
1
|D|

[
H(p(Ĵ)) −H(p(Î))

]

=
1

MN

∑
ω

log |ĝ(ω)| =
1

4π2

∑
ω

log |ĝ(ω)|∆ω

→ 1
4π2

∫ 2π

0

∫ 2π

0

log |ĝ(ω)|dω,

as min(M, N) → ∞, where ∆ω = (2π/M) × (2π/N).
A smoothing kernel g is a probability distribution function, ĝ is the characteristic

function of g, and

ĝ(ω) =
∑
x,y

g(x, y) exp{−i(ωxx + ωyy)}

= Eg [exp{−i(ωxX + ωyY )}] ,
where (X, Y ) ∼ g(x, y). Then,

|ĝ(ω)|2 = |Eg [exp{−i(ωxX + ωyY )}]|2

≤ Eg

[
| exp{−i(ωxX + ωyY )}|2

]
= 1.

Thus,
∫

log |ĝ(ω)|dω ≤ 0. �
The above theorem tells us that there is always loss of information under the smoothing

operation. This is consistent with intuition in scale space theory, where the increase in
scale results in the loss of fine details in the image. The change of entropy rate under
linear filtering was first derived in the classical paper of Shannon (1948) [48].

Next, let’s study the effect of subsampling. There are four subsampled versions
I(u,v)
− (x, y) = J(2x + u, 2y + v), where (u, v) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. Each I(u,v)

−
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is defined on a subsampled lattice D−, with |D−| = |D|/4. See Figure (11) for an
illustration.

Fig. 11. The four subsampled versions of the original image.

Theorem 2. Subsampling effect: The average entropy rate of I(u,v)
− is no less than the

entropy rate of J,
1
4

∑
u,v

H̄(p(I(u,v)
− )) − H̄(p(J)) = M̄(I(u,v)

− , ∀(u, v)) ≥ 0, (6)

where M(I(u,v)
− , ∀(u, v)) = K(p(J)||

∏
u,v p(I(u,v)

− )) is defined as the mutual information
among the four subsampled versions, and M̄ = M/|D|.

Proof.

∑
u,v

H(p(I(u,v)
− )) −H(p(J)) = E

[
log

p(J)∏
u,v p(I(u,v)

− )

]

= K(p(J)||
∏
u,v

p(I(u,v)
− ))

= M(I(u,v)
− , ∀(u, v)) ≥ 0,

where the expectation is with respect to the distribution of J, which is also the joint
distribution of I(u,v)

− . �
The scaling of the entropy rate is a combination of Equations (5) and (6):{

1
4

∑
u,v

H̄(p(I(u,v)
− )) − H̄(p(I))

}
−

{
M̄(I(u,v)

− ) +
1

4π2

∫
log |ĝ(ω)|dω

}
→ 0. (7)

For regular image patterns, the mutual information per pixel can be much greater than
−

∫
log |ĝ(ω)|dω/4π2, so the entropy rate increases with distance, or in other words, the

image becomes more random. For very random patterns, the reverse is true. When the
mutual information rate equals −

∫
log |ĝ(ω)|dω/(4π2), we have scale-invariance. More

careful analysis is needed to determine when this is true.
Next we study the change of entropy rate of the variance-normalized image H̄(p(I′)).

For simplicity, let’s assume that p(I) comes from a stationary process, and I− can be
any subsampled version of J = I ∗ g, which is also stationary. Let σ2 = Var[I(x, y)] and
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σ2
− = Var[I−(x, y)] be the marginal variances of I and I− respectively. Let I′ = I/σ and

I′− = I−/σ− be the variance-normalized versions of I and I− respectively. It is easy to
show that

ρ2 =
σ2
−

σ2
=

1
4

∑
u,v

corr(I(x, y), I(x + u, y + v)) ≤ 1, (u, v) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)},

so the smoothing operation reduces the marginal variance. Therefore, we can modify (7)
into

H̄(p(I
′

−)) − H̄(p(I′)) ≈ M̄(I(u,v)
− ) − log ρ +

1
4π2

∫
log |ĝ(ω)|dω, (8)

where the difference between the left-hand side and the right-hand size converges to 0 as
|D| → ∞. In (8), the term − log ρ is positive, and it compensates for the loss of entropy
rate caused by smoothing, i.e.,

∫
log |ĝ(ω)|dω/(4π2), which is negative. As a matter of

fact, the first two terms, i.e., the mutual information term and the − log ρ term on the
right-hand side of (8) balance each other, in the sense that if one is small, then the other
tends to be large. However, we have not been able to identify conditions under which
the right-hand side of (8) is always positive, which would have established the monotone
increase of the entropy rate of the variance-normalized image or the monotone decrease
of the departure from Gaussian white noise.

The entropy rate of the variance-normalized image is expected to eventually converge
to that of Gaussian white noise, which has the maximum entropy rate among all image
distributions with fixed marginal variance. The central limit theorem has been proved
by Newman (1980) [41].

Theorem 3. Newman’s central limit theorem: Let I(x, y), (x, y) ∈ Z2 be a stationary
spatial process with E[I(x, y)] = 0 and satisfying the following two conditions:

1) Finite susceptibility:

V =
∑

(x,y)∈Z2

Cov(I(0, 0), I(x, y)) < ∞. (9)

2) Positive association:

Cov(F (I(x1, y1), ..., I(xn, yn)), G(I(x1, y1), ..., I(xn, yn))) ≥ 0, (10)

for any {(xi, yi), i = 1, ..., n}, where F and G are coordinate-wise increasing functions.
For a positive integer s ∈ Z, and (x, y) ∈ Z2, define the block window

Ωs,x,y = {(x′, y′) : x′ ∈ {xs, ..., (x + 1)s − 1}, y′ ∈ {ys, ..., (y + 1)s − 1}},

and let

Is(x, y) =
∑

(x′,y′)∈Ωs,x,y

I(x′, y′)/s. (11)

Then as s → ∞, Is converges weakly to Gaussian white noise with mean 0 and marginal
variance V .

Natural scenes consist of objects with occluding surfaces of smooth colors, and the
colors of different objects are more or less independent. Therefore, pixels that sample the
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same object tend to have similar intensities, whereas the intensities of pixels that sample
different objects tend to be independent. Therefore, the positive association condition
(10) is reasonable for natural images. For the finite susceptibility condition (9) to be
true, we need to require that the sizes of objects have an upper bound, so that there is
no long range dependence between pixel intensities.

In Newman’s theorem, the size of the block Ωs,x,y is s2, but we divide the block sum
by s instead of s2 in (11), so that the marginal variance of Is(x, y) converges to the
constant V . That is, dividing the block sum by s instead of s2 amounts to asymptotic
variance-normalization.

The convergence of the entropy of Is(x, y) to that of a Gaussian distribution has been
established by [28]. But the monotone convergence has only been established for the iid
case by [4].

The change of the entropy rate of the image data versus the scale can be used to
explain the transition from a deterministic interpretation to a statistical interpretation
of the image intensities. We only need to assume a bound on the complexity of the
allowable interpretation. If a local image patch has a low entropy rate, we can code
this pattern with a small number of variables deterministically. But if the local image
patch has a high entropy rate, a small number of variables will not be able to account
for the image intensities deterministically, and we have to interpret the image pattern
statistically, by leaving the unaccounted complexity to randomness.

3.3. Change of inferential uncertainty. The above analysis on the entropy rate is only
about the observed image I alone. The goal of computer vision is to interpret the observed
image in order to recognize the objects in the outside world. In this subsection, we shall
go beyond the statistical properties of the observed image itself and study the interaction
between the observed image and the outside scene that produces the image.

Again, we would like to use the dead leaves model in Section 2 to convey the ba-
sic idea. Suppose our attention is restricted to a finite scope Ω ⊂ R2, and let W =
{(xi, yi, ri, ai), i = 1, ..., N} be the leaves in Ω that are not completely occluded by other
leaves. Then we have W ∼ p(W ) and I = γ(W ), where p(W ) comes from the Poisson
process that generates the dead leaves, and γ represents the transformation defined by
Equation (1) for a scale parameter s.

For convenience, assume that both W and I are properly discretized. For any joint
distribution p(W, I), the conditional entropy H(p(W | I)) is defined as

H(p(W | I)) = −
∑
W,I

p(W, I) log p(W | I). (12)

H(p(W | I)) measures the inferential uncertainty or imperceptibility of W from the image
I.

Proposition 1. If W ∼ p(W ) and I = γ(W ), then H(p(W |I)) = H(p(W )) − H(p(I)).
That is, imperceptibility = scene entropy - image entropy.

This proposition is easy to prove. The marginal distribution of I is p(I) =∑
W :γ(W )=I p(W ). The posterior distribution of W given I is p(W |I) = p(W, I)/p(I) =

p(W )/p(I). Here p(W, I) = p(W ) because I is determined by W . Following the definition
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in (12), H(p(W | I)) = −
∑

W p(W )(log p(W ) − log p(I)) = H(p(W )) − H(p(I)). Here
EW [log p(I)] = EI[log p(I)] since I is determined by W .

If we increase the viewing distance or equivalently zoom out the camera while fixing
the scope Ω ⊂ R2, i.e., fixing W , then we obtain a zoomed-out version I− = R(I),
where R represents the zooming-out operation of smoothing and subsampling, and is a
many-to-one transformation. During the process of zooming out, the total entropy of
the image will decrease, i.e., H(p(I−)) ≤ H(p(I)), even though the entropy per pixel can
increase as we have shown in the previous subsection. Therefore, we have the following
result.

Proposition 2. If W ∼ p(W ), I = γ(W ), and I− = R(I), where R is a many-to-
one mapping, then H(p(W |I−)) ≥ H(p(W |I)), i.e., the imperceptibility increases as the
image is reduced.

What does this result tell us in terms of interpreting the image I or I−? Although
the model W ∼ p(W ) and I = γ(W ) is the right physical model for all scales s, this
model is meaningful in interpreting I only within a limited range, say s ≤ sbound, so
that the imperceptibility H(p(W | I)) is below a small threshold. In this regime, the
representation I = γ(W ) is good for both recognition and coding. For recognition,
H(p(W | I)) is small, so W can be accurately determined from I. For coding, we can
first code W according to p(W ), with a coding cost H(p(W )). Then we code I using
I = γ(W ) without any coding cost. The total coding cost would be just H(p(W )). If the
imperceptibility H(p(W | I)) is small, H(p(W )) ≈ H(p(I)), so coding W will not incur
coding overhead.

But if s is very large, the imperceptibility H(p(W | I)) can be large according to
Proposition 2. In this case, the representation I = γ(W ) is not good for either recognition
or coding. For recognition, W cannot be estimated with much certainty. For coding, if
we still code W first, and code I by I = γ(W ), this will not be an efficient coding, since
H(p(W )) can be much larger than H(p(I)), and the difference is the imperceptibility
H(p(W | I)).

Then what should we do? The regime of s > sbound is quite puzzling for vision mod-
eling. Our knowledge about geometry, optics, and mechanics enables us to model every
phenomenon in our physical environment. Such models may be sufficient for computer
graphics as far as generating physically realistic images is concerned. For instance, a
garden scene can be constructed by simulating billions of leaves and grass strands, and
the image can be produced by projecting these billions of objects onto the image with
perspective geometry. A river scene, a fire scene or a smoke scene can be obtained using
computational fluid dynamics. A piece of cloth can be generated using a dense set of
particles that follow the laws of mechanics. Realistic lighting can be simulated by ray
tracing and optics. But such models are hardly meaningful for vision, because the im-
perceptibilities of the underlying elements or variables are intolerable. When we look at
a garden scene, we never really perceive every leaf or every strand of grass. When we
look at a river scene, we do not perceive the constituent elements used in fluid dynamics.
When we look at a scene with sophisticated lighting and reflection, we do not trace back
the light rays. In those situations where physical variables are not perceptible due to
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scaling or other aspects of the image formation process, it is quite a challenge to come
up with good models for the observed images. Such models do not have to be physically
realistic, but they should generate visually realistic images, so that such models can be
employed to interpret the observed image at a level of sophistication that is comparable
to human vision.

The following are some of our simple theoretical considerations of this problem from
the perspectives of recognition and coding. We shall become more concrete on the mod-
eling issue in subsequent sections.

Suppose the image I is reduced to an image I− = R(I), so that W cannot be reliably
inferred. Then, instead of pursuing a detailed description W from I−, we may choose to
estimate some aspects of W from I−. For instance, in the simulated ivy wall example,
we may estimate properties of the overall distribution of colors of leaves, as well as the
overall distribution of their sizes, etc. Let’s call it W− = ρ(W ), with ρ being a many-to-
one reduction function. It is possible that we can estimate W− from I− because of the
following result.

Proposition 3. Letting W ∼ p(W ), I = γ(W ), and W− = ρ(W ), I− = R(I), where
both ρ and R are many-to-one mappings, we have

(1) H(p(W−|I−)) ≤ H(p(W |I−)),

(2) p(I−|W−) =

∑
W :ρ(W )=W−;R(γ(W ))=I−

p(W )∑
W :ρ(W )=W−

p(W )
.

Result (1) tells us that even if W is imperceptible from I−, W− may still be perceptible.
Result (2) tells us that although W defines I deterministically via I = γ(W ), W− may
only define I− statistically via a probability distribution p(I−|W−). While W represents
deterministic structures, W− may only represent some texture properties. Thus, we have
a transition from a deterministic representation of the image intensities I = γ(W ) to a
statistical characterization I− ∼ p(I−|W−). See Figure (12) for an illustration.

Fig. 12. Transition from deterministic representation to statistical description.

For an image I, we may extract F (I), which can be a dimension reduction or a sta-
tistical summary, so that F (I) contains as much information about I as possible as far
as W or W− is concerned. In the following proposition, we shall not distinguish between
(W, I) and (W−, I−) for notational uniformity.
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Proposition 4. Let F = F (I).
(1) If W ∼ p(W ), I = γ(W ), then K(p(W |I)||p(W |F )) = H(p(I|F )).
(2) If W ∼ p(W ) and [I|W ] ∼ p(I|W ), then K(p(W |I)||p(W |F )) = M(W, I|F ), where

M(W, I|F ) = EW,I {log[p(W, I|F )/(p(W |F )p(I|F ))]} is the mutual information between
W and I given F .

Result (1) tells us that for F (I) to contain as much information about W as possible,
we want to make H(p(I|F )) be as small as possible, so that F can be used to reconstruct I
accurately. Result (2) tells us that if we want to estimate W , we want F to be sufficient
about I as far as W is concerned. M(W, I|F ) can be considered to be a measure of
sufficiency.

Now let’s study this issue from the coding perspective. Suppose the image I follows
a true distribution f(I), and we use a model w ∼ p(w), and [I | w] ∼ p(I | w) to code
I ∼ f(I). Here the variable w is augmented solely for the purpose of coding. It might
be some w = W− = ρ(W ), or it may not have any correspondence to the reality W . In
the coding scheme, for an image I, we first estimate w by a sample from the posterior
distribution p(w|I), then we code w by p(w) with coding length − log p(w). After that,
we code I by p(I|w) with coding length − log p(I|w). So the average coding length is
−Ef

[
Ep(w|I)(log p(w) + log p(I|w))

]
.

Proposition 5. The average coding length is Ef [H(p(w|I))] + K(f(I)||p(I)) + H(f),
where p(I) =

∑
w p(w)p(I | w) is the marginal distribution of I under the model. So,

coding redundancy = imperceptibility + model bias.

The above proposition provides a selection criterion for models with latent variables.
The imperceptibility term comes up because we assume a coding scheme where w must
be coded first, and then I is coded based on w. Given the latent variable structure of
the model, it is very natural to assume such a coding scheme.

4. Wavelet sparse coding and Markov random fields. In this section, we shall
examine two concrete classes of image models and analyze their entropy behaviors. Before
doing that, we shall briefly describe the Gabor wavelets, which are mathematical models
of simple neuron cells in the primary visual cortex. The Gabor wavelets play an important
role in both types of models.

4.1. Gabor wavelets. Huber and Wiesel (1962) [27] discovered that simple neuron cells
in the primary visual cortex (or what is called the V1 area) selectively respond to visual
stimuli such as bars and edges at different locations, scales, and orientations. Daugman
(1980) [13] proposed a mathematical model for the response properties of these simple
cells using Gabor wavelets. These wavelets are translated, dilated and rotated versions
of the following function:

G(x, y) ∝ 1
σxσy

exp{− x2

2σ2
x

}eiωx, (13)

which is a pair of local sine and cosine waves propagating along the x-axis, where the
localization is achieved by multiplying the sine waves by a Gaussian function. σy is
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larger than σx, so G(x, y) is elongated along the y-axis. ω and σx are chosen so that the
amplitude of the sine or cosine wave decays to 0 very quickly.

Another model [56] comes from the derivatives of the Gaussian function,

G(x, y) ∝ ∂k

∂xk

1
σxσy

exp{− x2

2σ2
x

}, (14)

where k = 1 and 2, i.e., the first and second derivatives of an elongate Gaussian function.
The function (14) is similar to the Gabor function in (13); in particular, the first derivative
in (14) is similar to the Gabor sine component, and the second derivative is similar to
the Gabor cosine component.
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Fig. 13. (a) A sample of Gabor wavelets at different locations, scales,
and orientations. (b) An example of a Gabor sine wavelet. (c) An
example of a Gabor cosine wavelet.

We can dilate and rotate the Gabor function with scale s and orientation α,

Gs,α(x, y) ∝ G ([x cosα + y sin α]/s, [−x sin α + y cos α]/s) . (15)

We can then translate Gs,α to make it centered at (x, y),

Bx,y,s,α(x′, y′) = Gs,α(x′ − x, y′ − y). (16)

See Figure (13) for an illustration of a set of Bx,y,s,α at different locations (x, y), scales
s and orientations α [29].

For an image I(x, y), one can define the inner product or filter response as

rx,y,s,α = 〈I, Bx,y,s,α〉 =
∑
x′,y′

I(x′, y′)Bx,y,s,α(x′, y′).

(rx,y,s,α, (x, y) ∈ D) is said to be the filtered image where the filter is indexed by scale
and orientation (s, α). 〈I, Bx,y,s,α〉 has a large magnitude if Bx,y,s,α lies on an edge or a
bar.

We can sample (x, y, s, α) to form a large but finite dictionary {Bx,y,s,α}. The dictio-
nary can be overcomplete in the sense that the number of bases in {Bx,y,s,α} is larger
than the dimensionality of the image I.
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4.2. Sparse coding. Field and Olshausen (1996) [42] proposed an elegant explanation
for Gabor wavelets. The principle they adopted is the sparsity principle. The question
they asked was: for the ensemble of natural images, can we find a dictionary of linear
bases, so that for every image in that ensemble, we can almost always find a small number
of linear bases from this dictionary to represent this image?

Field and Olshausen (1996) collected a sample of natural image patches (of size 12 ×
12), Im, m = 1, ..., M . Then they estimated image bases {Bi, i = 1, ..., N} (which are also
images of 12× 12, with N > 12× 12, i.e., the dictionary is overcomplete) by minimizing

M∑
m=1

[
‖Im −

N∑
i=1

cm,iBi‖2 + λ

N∑
i=1

δ(cm,i)

]
, (17)

over all possible {Bi}, where δ() is a measure of sparsity, and λ is a tuning constant. In
the objective function (17), the first term requires that the linear expansion

∑
i cm,iBi

should be close to the observed image Im. The second term requires that only a small
number of cm,i are significantly different from 0. The simplest measure of sparsity is to
count the number of nonzero {cm,i}, i.e., δ(c) = 1 if c �= 0, and δ(c) = 0 if c = 0. But
this measure is not differentiable, making it hard for optimization. For computational
convenience, it can be replaced by some measure such as the lp-norm of the sequence
{cm,i, i = 1, ..., N}, with 0 < p ≤ 1. Using a gradient algorithm, Field and Olshausen
(1996) were able to learn localized, scaled, and oriented base functions very similar to the
Gabor wavelets shown in Figure (13). That is, each learned that Bi can be approximated
by a Bx,y,s,α defined by (15) and (16), where, again, (x, y) is the center, s is the scale,
and α is the orientation.

This problem can be formulated in terms of a statistical model [30, 43]:

ci ∼ p(c) independently, (18)

I =
N∑

i=1

ciBi + ε, (19)

where p(c) is assumed to be a heavy-tailed distribution. The model used by [43] for
p(c) is a mixture of two Gaussian distributions ρN(0, σ2

1) + (1 − ρ)N(0, σ2
0). The two

mixture components represent two states of the coefficients. One is the active state, with
probability ρ, which is very small, and the variance σ2

1 is very large. The other state is
the inactive state, with probability 1−ρ, which is very large, and the variance σ2

0 is very
small or even 0 [45].

The independence assumption in (18) is only for convenience. In general, one can
write the wavelet sparse coding model in the following form:

C = {ci} ∼ p(C), (20)

I =
N∑

i=1

ciBi + ε, (21)

where C = {ci} are coefficients, and ε is assume to be Gaussian white noise. We can
rewrite the model (20) and (21) in the matrix form C ∼ p(C), J = BC, and I = J + ε,
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where I and J become vectors, B is the matrix whose column vectors are the bases Bi,
and C is the vector consisting of all the ci.

The uncertainty caused by the overcompleteness can easily be seen via the singular
value decomposition of B = U(Λ, 0)(V1, V0)′. B is a |D|×N matrix, where |D| is the size
of the image lattice D, and N is the total number of bases. Because of overcompleteness,
|D| < N . U is a |D| × |D| orthogonal matrix. Λ is a |D|-dimensional diagonal matrix of
singular values. V = (V1, V0) is the N ×N orthogonal matrix, where V1 is N × |D|, and
V0 is N × (N − |D|). Let C̃ = (C̃1 = V ′

1C, C̃0 = V ′
0C). Then J = BC = UΛC̃1. That is,

only C̃1 can be solved from J, while C̃0 cannot be determined.
For an analysis of entropy,

H(p(C)) = H(p(C̃)) = H(p(C̃1)) + H(p(C̃0|C̃1)),

H(p(J)) = log |det(Λ)| + H(p(C̃1)) =
1
2

log |det(BB′)| + H(p(C̃1)).

Proposition 6. In the above notation,

H(p(J)) = H(p(C))−H(p(C̃0|J)) +
1
2

log |det(BB′)|.

Low entropy regime: If p(C) is very sparse, for instance, the parameter ρ in the mixture
model ρN(0, σ2

1) + (1 − ρ)N(0, σ2
0) is very small, then H(p(C)) is small; thus H(p(J)) is

also small. So the sparse coding model targets the low entropy component J of an image
I.

If the image I comes from a high entropy distribution such as random texture, the
sparse coding model may not be able to account for the high entropy by the signal part
J. As a result, all the remaining entropy will be absorbed by the white noise ε, but the
white noise model cannot capture texture information. If we force ε to be close to 0,
then the representation will not be sparse any more.

Suppose we are given a dictionary of Gabor wavelet bases {Bx,y,s,α}. Then we may
write the model (20) and (21) in a more geometrically explicit form:

S = {(xj , yj , sj , αj), j = 1, ..., n} ∼ p(S), (22)

(c1, ..., cn) ∼ p(c1, ..., cn), (23)

I =
n∑

j=1

cjBxj ,yj ,sj ,αj
+ ε, (24)

where S = {(xj , yj , sj , αj), j = 1, ..., n} is the set of n bases selected from the dictionary
to code I, where n is a small number. Compared to the general form (20) and (21),
model (22)–(24) captures the sparsity of p(C) in (20) explicitly by the selection of the
small set S of bases, while the small coefficients of the inactive bases are ignored. S =
{(xj , yj , sj , αj), j = 1, ..., n} forms a sketch of image I. For different images, different S

will be selected, and the size of S, i.e., n, can vary. Under the independence assumption
of model (18) and (19), S follows a Poisson process that penalizes the number of bases
n. In general, S should be modeled by a more sophisticated spatial point process p(S)
that describes the geometric pattern formed by the selected bases [54, 57].
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Mallat and Zhang (1993) [34] proposed a greedy algorithm called a matching pursuit
algorithm for finding a sparse representation I =

∑n
1 cjBxj ,yj ,sj ,αj

+ε, while not assuming
any sophisticated model p(S) beyond sparsity. The algorithm starts from an empty set
of bases. Each time, it selects a base that leads to the largest reduction in the l2-norm
of error. The algorithm stops when the error is smaller than a threshold. This algorithm
fits the model (18) and (19) approximately. Wu, Zhu, and Guo (2002) [54] proposed
a Markov chain Monte Carlo version of the matching pursuit algorithm that rigorously
samples from the posterior distribution of model (18) and (19).

(a) (b) (c) (d)

Fig. 14. Sparse coding. (a) and (c) are observed images of 128×128
pixels. (b) and (d) are respectively the reconstructed images using
300 bases.

Now let’s examine the sparse coding model empirically by some experiments. In the
experiments, we use an overcomplete dictionary of linear bases such as those depicted in
Figure (13). At each pixel, there are localized bases of different scales and orientations.
So the set of bases is highly overcomplete. We use the matching pursuit algorithm to
construct the sparse coding of the observed images.

Figure (14) shows two examples of sparse coding. (a) and (c) are observed images
of 128 × 128 pixels, and (b) and (d) are images reconstructed by 300 bases. We can
see that sparse coding is very effective for images with sparse structures, such as image
(a). However, the texture information is not well represented. We can continue to add
more bases in the matching pursuit process if we want to code texture, but then the
representation will no longer be sparse.

There is one more problem with the sparse coding model (18) and (19), which does
not have a sophisticated p(S). See Figure (15). (a) is the observed image of 300 × 200
pixels. (b) is the image reconstructed using 500 bases. (c) is a symbolic representation
where each base in the sparse coding is represented by a bar at the same location with
the same elongation and orientation as the corresponding base (we also include some
isotropic bases in the dictionary, and they are represented by circles). As shown by this
experiment, the bases do not line up very well, indicating that we need a stronger model
p(S) for the spatial organization of the local bases, so that they line up into more regular
structures. To conclude, sparsity alone cannot capture the low entropy of very regular
patterns.

4.3. Markov random fields. The Markov random fields originated in statistical physics,
and they were first introduced to statistics by Besag (1974) [6]. Geman and Geman
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(a) (b) (c)

Fig. 15. Sparse coding. (a) is the observed 300×200 image. (b) is the
image reconstructed using 500 bases. (c) is a symbolic representation
where each base is represented by a bar at the same location with
the same elongation and orientation.

(1984) [20] and many other researchers used Markov random fields for image processing
and modeling. Zhu and Mumford (1997) [60] connected Markov random fields to partial
differential equations and the variational approaches to image processing.

The Markov property of a Markov random field is defined with respect to a neigh-
borhood system, where for each pixel (x, y) ∈ D, there is a set of neighboring pixels
∂(x, y) ⊂ D. The neighborhood relationship is a mutual relationship; that is, if (x, y) is
a neighbor of (x′, y′), then (x′, y′) is also a neighbor of (x, y). From the neighborhood
system ∂ = {∂(x, y) : (x, y) ∈ D}, one can define the set of cliques. A clique A is a set
of pixels so that any two pixels in A are neighbors.

p(I) is a Markov random field with respect to the neighborhood system ∂, if for all
(x, y) ∈ D,

p(I(x, y) | I(D\(x, y))) = p(I(x, y) | I(∂(x, y))). (25)

By convention, for A ⊂ D, we define I(A) as the intensities of all the pixels in A.
D\(x, y) denotes all the pixels in D except (x, y). The Markov property (25) means that
the distribution of the pixel intensity only depends on the intensities of the neighboring
pixels.

According to the Hammersley-Clifford theorem [25], a Markov random field with re-
spect to the neighborhood system ∂ can be written as a Gibbs distribution:

p(I) =
1
Z

exp{−
∑
A

UA(I(A))},

where UA() is a potential function defined on the clique A, and Z is the normalizing
constant to make p(I) sum or integrate to 1.

For modeling purposes, if A has many pixels, then UA is a high-dimensional function,
and it can be difficult to specify it and estimate it from the image data. In statistical
physics as well as in early research on image processing, people often assume pairwise
potentials, that is, all the UA with the cardinality of the clique |A| > 2 are set to 0.
However, for natural images, pairwise relationship can hardly be an adequate description.

Zhu, Wu, and Mumford (1997) [60] proposed a modeling strategy to get around this
problem: replacing the high dimension I(A) by low-dimensional features. The key to their
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model construction is to match the marginal distributions of filter responses. Specifically,
suppose the image I is a random sample from an unknown distribution f(I), which we
want to estimate or approximate. Let fx,y,s,α be the marginal distribution of 〈I, Bx,y,s,α〉
under f(I), and let

fs,α =
1
|D|

∑
(x,y)∈D

fx,y,s,α

be the marginal distribution pooled over D. If f(I) is stationary, then fx,y,s,α = fs,α for
all (x, y). fx,y can be estimated from image I by pooling the marginal histogram of filter
responses {〈I, Bx,y,s,α〉, ∀(x, y) ∈ D}. The basic idea of Zhu et al. (1997) is to select a
set of filters (sk, αk), k = 1, ..., K, and construct a distribution p(I) so that

psk,αk
= fsk,αk

, k = 1, ..., K, (26)

where psk,αk
is the marginal distribution under p(I), defined in a similar way as fsk,αk

.
There can be many p(I) that satisfy the constraint (26). The one that achieves the

maximum entropy is in the form of the following Gibbs distribution or Markov random
field:

pλ(I) =
1

Z(λ)
exp{

K∑
k=1

∑
(x,y)∈D

λk(〈I, Bx,y,sk,αk
〉)}, (27)

where λ = {λk(), k = 1, ..., K} is a set of functions of filter responses, Z(λ) is the
normalizing constant depending on {λk()}, and λ = {λk(), k = 1, ..., K} is chosen so that
the constraint (26) is satisfied. The reason for choosing a maximum entropy distribution
among all the p(I) that satisfy (26) is that this distribution is the most random and
therefore introduces the least amount of prejudice in approximating f(I).

Proposition 7. Let p(I) be any distribution such that (26) is satisfied. Let pλ(I) be
defined as (27), and assume that pλ(I) satisfies (26). Then H(pλ)−H(p) = K(p||pλ) ≥ 0.

Proof. The key to the proof is the observation that

Ep

[∑
x,y

λk(〈I, Bx,y,sk,αk
〉)

]
= Epλ

[∑
x,y

λk(〈I, Bx,y,sk,αk
〉)

]
= |D|

∫
λk(r)fsk,αk

(r)dr,

because both p and pλ share the same marginal distribution fsk,αk
. Thus Ep[log pλ(I)] =

Epλ
[log pλ(I)]. Therefore,

H(pλ) −H(p) = Ep[log p(I)] − Epλ
[log pλ(I)]

= Ep[log p(I)] − Ep[log pλ(I)] = K(p||pλ) ≥ 0. �

This proposition leads to the following conclusions:
Maximum entropy: For a fixed set of filters (sk, αk, k = 1, ..., K), pλ of (27) achieves

the maximum entropy among all those p(I) satisfying (26), because H(pλ) −H(p) ≥ 0.
Minimum entropy: The true unknown distribution f(I) also satisfies (26), so the above

result also holds if we replace p(I) by f(I), that is, H(pλ)−H(f) = K(f ||pλ). If we want
to find the set of filters (sk, αk, k = 1, ..., K) to minimize K(f‖pλ), we need to minimize
the entropy of pλ.
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High entropy regime: pλ approaches the true distribution f from above in terms of
entropy. That is, pλ is always more random than f . So Markov random field models are
capable of modeling high entropy patterns.

Discretization and exponential family model: One can further parametrize λk() by
step functions over a set of bins ∆t, t = 1, ..., T , so that λk(〈I, Bx,y,sk,αk

〉) = λkt if
〈I, Bx,y,sk,αk

〉 ∈ ∆t. Then model (27) can be written as

pλ(I) =
1

Z(λ)
exp{

∑
k

∑
x,y

∑
t

λk,tδ(〈I, Bx,y,sk,αk
〉 ∈ ∆t)} (28)

=
1

Z(λ)
exp{

∑
k

∑
t

λk,tHk,t(I)} (29)

=
1

Z(λ)
exp{

∑
k

〈λk, Hk(I)〉}. (30)

In (28), δ(〈I, Bx,y,sk,αk
〉 ∈ ∆t) = 1 if 〈I, Bx,y,sk,αk

〉 ∈ ∆t, and δ = 0 otherwise. In (29),
Hk,t(I) =

∑
x,y δ(〈I, Bx,y,sk,αk

〉 ∈ ∆t), i.e., the number of 〈I, Bx,y,sk,αk
〉 falling into bin

∆t. In (30), Hk = (Hk,t, ∀t) is the marginal histogram of {〈I, Bx,y,sk,αk
〉, ∀(x, y)}. Let

hk(I) = Hk(I)/|D| be the normalized histogram. If I ∼ f(I), then hk(I) is an estimate
of the marginal distribution fsk,αk

.
Model (30) is the so-called exponential family model. Hk(I) are the sufficient statistics.

λk = (λk,t, ∀t) are the parameters. λ = (λk, ∀k) can be estimated from the observed
image Iobs by solving the following estimation equation:

Eλ[Hk(I)] = Hk(Iobs), ∀k. (31)

Filter pursuit: Zhu, et al. (1997) proposed a filter pursuit procedure to add one filter
at a time, so that the added filter leads to the maximum reduction of the entropy of
the fitted model pλ. Figure (16) displays an example of a filter pursuit procedure on a
homogeneous texture. With the K = 0 filter, the sampled image is white noise. With
the K = 7 filters, the sampled image in (e) is perceptually equivalent to the input image.

(a) observed (b) K = 0 (c) K = 2 (d) K = 3 (e) K = 7

Fig. 16. Filter pursuit: adding one filter at a time to reduce the entropy.

Micro-canonical ensemble: Wu, Zhu, and Liu (2000) [55] considered the following
ensemble, which is called a micro-canonical ensemble in statistical physics (Chandler,
1987):

Ω(h) = {I : hk(I) = hk, ∀k}, (32)
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where h = (hk, ∀k) can be estimated from the observed image. This is a deterministic
concept of equivalent class, where all the images in this ensemble share the same set of
spatial statistics.

Fig. 17. The deterministic concept of a micro-canonical ensemble
defined on D → Z2 produces the probabilistic concept of a Markov
random field on a fixed patch D0, according to the equivalence of
ensembles in statistical physics.

As observed by Wu, et al. (2000), the uniform distribution over Ω(h), Unif(Ω(h)),
can be made equivalent to a Markov random field, thanks to two of the most profound
results in statistical physics and information theory respectively.

1) According to the equivalence of ensembles in statistical physics [11], under
Unif(Ω(h)), for any fixed part of the image lattice D0 ⊂ D, as D → Z2, the image
intensities of D0 converge to

p(ID0 | I∂D0) =
1

Z(λ)
exp{

∑
k

∑
x,y∈D0

λk(〈I, Bx,y,sk,αk
〉)},

where ∂D0 are the neighboring pixels of D0 so that pixels in ∂D0 and pixels in D0 may
be covered by the same filters. λ can be solved from Equation (31).

2) According to the asymptotic equipartition property in information theory [1, 3], as
D → Z2, the Markov random field model (30) is equivalent to the uniform distribution
over a micro-canonical ensemble (32) in the absence of a phase transition. One can
show that the entropy rate of the Markov random field model approaches log |Ω(h)|/|D|
asymptotically, where |Ω(h)| is the volume of Ω(h).

The following are some experiments with a fixed set of filters. These experiments show
that the filter statistics are quite effective in representing stochastic textures. Figure (18)
shows two examples. (a) and (c) are observed images, and (b) and (d) are respectively
the “reconstructed” images. Here the reconstruction is of a statistical nature: (b) and
(d) are sampled from the respective micro-canonical ensembles (32) by matching feature
statistics. See [26, 46] for more discussions on feature statistics.

We need to stress that, under the Markov random field model or equivalently the
micro-canonical ensemble, the filter responses 〈I, Bx,y,s,α〉 are not independent of each
other, because the number of bases Bx,y,s,α far exceeds the number of pixels. Although
only marginal distributions are specified, the dependencies among adjacent responses
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(a) (b) (c) (d)

Fig. 18. (a) and (c) are observed images. (b) and (d) are simulated
by matching marginal histograms.

from the same filter can be accounted for implicitly by the distributions of the responses
from other filters. Sometimes, long range patterns can emerge by matching statistics of
local features.

But still, since the model only specifies the marginal distributions of filter responses,
it cannot represent large regular structures very well. See Figure (19) for two examples
with line structures. In order to model regular structures, we need to represent these
structures explicitly. Moreover, we also need to model the spatial organizations of these
structures.

(a) (b) (c) (d)

Fig. 19. (a) and (c) are observed images. (b) and (d) are simulated
by matching marginal histograms.

In the end, we would like to mention that if the linear bases form a complete system,
i.e., the number of bases is the same as the number of pixels, then both the wavelet
model (18) and (19) (with ε = 0) and the Markov random field model (27) reduce to the
independent component analysis model [5].

5. Integrating different regimes of models.
5.1. Motivation. Our examination of wavelet sparse coding and Markov random fields

indicates that they are appropriate for different entropy regimes. Because information
scaling transforms a low-entropy image to a high-entropy image, we need both models
to represent natural images over the whole range of the scale. For instance, Figure (20)
displays results for two images of leaves. (a) is the observed 300 × 200 image of leaves
at a near distance. (b) is the image reconstructed by the matching pursuit algorithm
using 1,000 wavelet bases. (c) is the observed image at a far distance. (d) is obtained
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(a) (b) (c) (d)

Fig. 20. From sparse coding to random field. (a) Observed 300 ×
200 image at a near distance. (b) Reconstructed by sparse coding
with 1,000 bases. (c) Observed 300 × 200 image at a far distance.
(d) Synthesized by matching marginal histograms.

by matching the histograms of filter responses from a set of filters. (d) is not an exact
reconstruction of (a), but it captures the texture appearance of (c).

Because visual objects can appear at different scales in the same image, we need to
combine the two regimes of models into an integrated model. In what follows, we shall
first propose such a model, which we call the “primal sketch” model. Experiments on this
model show that it can represent a large variety of natural images. After that we propose
a statistical theory that embraces different regimes of models in a common theoretical
framework.

5.2. Primal sketch model. The term “primal sketch” comes from Marr (1982) [36],
who, in his book on vision, proposed a symbolic representation of image intensities for
the initial stage of visual computation.

As shown by Figure (15) as well as Figure (20.b), the wavelet sparse coding model
(18) and (19) with independence assumptions on the wavelet coefficients is not efficient
for coding geometric structures such as edges and bars, as well as lines, curves, junctions,
and corners. The reason is that the independence assumption does not capture the low
entropy of these geometric structures. There are two schemes to improve upon model (18)
and (19). (1) Replace the wavelet bases by some more sophisticated image functions or
primitives for sparse coding. (2) Model the joint distributions of the wavelet coefficients.
These two schemes are closely related. In the primal sketch model, we introduce explicit
geometric sketch primitives as the elements for sparse coding. In the next subsection, we
shall study the connection between the two schemes.

Figure (21) illustrates the basic idea of the primal sketch model. Figure (21.a) is the
observed image, the same as the observed image in Figure (15). It is represented by a
small number of sketch primitives, which form a sketch graph; see Figure (21.b). The
nodes are end points, corners, and junctions. The nodes are connected by edges and
bars. These sketch primitives generate what we call the “sketchable” part of the image;
see Figure (21.c). The image intensities generated by these primitives are very close
to the corresponding image intensities of the original image. That is, we seek a sparse
deterministic coding for the sketchable part of the image, which captures the low entropy
portion of the image. For the remaining “nonsketchable” part of the image, we fill in
textures by matching the marginal histograms of filter responses, or more formally, we
use Markov random fields to characterize the high entropy portion of the image. The



30 YING NIAN WU, CHENG-EN GUO, AND SONG-CHUN ZHU

(a) Original image (b) Sketch graph

(c) Sketchable part (d) Synthesized image

Fig. 21. Primal sketch model. (a) Observed image. (b) “Sketchable”
part is described by a geometric sketch graph. (c) The sketchable
part of the image. (d) Fill in the “nonsketchable” part by matching
feature statistics.

Markov random fields fill in the nonsketchable part while using the sketchable part as
the boundary condition. So the final result in Figure (21.d) is a seamless integration of
structures and textures.

Geometric sketch primitives: A most common sketch primitive is an oriented and
elongated structure such as an edge or a bar:

Φ(x, y) = h(−(x − x0) sin α + (y − y0) cosα), (x, y) ∈ D0,

where h() is a one-dimensional profile function, and D0 is an oriented rectangle set of
pixels along direction α. The low entropy is achieved by the fact that the two-dimensional
image patch I(D0) can be represented accurately by a one-dimensional profile h() along
a direction α. Moreover, the profile h() can be further modeled by some parametric
functions. For edges, Elder and Zucker (1998) [16] proposed the following profile. Let
h0(x) be a step edge: h0(x) = 1/2 for x ≤ 0, and h0(x) = −1/2 for x > 0. Let
h(x) = a + bh0∗gs, where gs is a Gaussian kernel with bandwidth s. Here the parameter of
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such an edge primitive is θ = (x0, y0, l, w, s, α, a, b) with location (x0, y0), length l, width
w, scale s, orientation α, local intensity level a, edge contrast b. The convolution with
Gaussian kernel of scale s is used to reflect the blurred transition of intensity values across
the edge, caused by the three-dimensional shape of the underlying physical structure that
produces the edge, as well as the resolution and focus of the camera. A bar structure is
a composition of two edges. Junctions and corners are compositions of edges and bars.

Integrated model: For an image I defined on a lattice D, let S = {Φi(x, y | θi), i =
1, ..., n} be the set of sketch primitives to be used to model the sketchable part of I. Let
DS be the sketchable part of the lattice. Let DS,i be the pixels covered by Φi(x, y | θi).
Then DS =

⋃n
i=1 DS,i. Let D̄S = D\DS be the nonsketchable part of the image. The

primal sketch model is as follows:

I(x, y) = Φi(x, y|θi) + ε, ε ∼ iid N(0, τ2), (x, y) ∈ DS,i, i = 1, ..., n; (33)

p(I(D̄S) | I(DS)) =
1

Z(λ)
exp{

∑
k

∑
(x,y)∈D̄S

λk(〈I, Bx,y,sk,αk
〉)}. (34)

In the above model, the sketchable part of the image is represented by a small number
of sketch primitives. The nonsketchable part of the image is described by the Markov
random field model. According to that model, the nonsketchable part I(D̄S) is generated
conditionally on the sketchable part I(DS). In the language of Markov random fields,
I(DS) serves as the boundary conditions, because some of the bases Bx,y,sk,αk

in the
above Markov random field model can cover both I(DS) and I(D̄S). One may also
consider p(I(D̄S) | I(DS)) as an inpainting I(D̄S) by interpolating I(DS), where λk

functions control the overall smoothness as well as other texture properties. See [10] for
more details on inpainting. See also [44] for an image decomposing scheme in terms of
cartoons and textures.

The nonsketchable part may consist of several regions of different textures with differ-
ent marginal histograms. If this is the case, we need to segment the nonsketchable part
of the image and fit a separate Markov random field for each segmented region.

The prior model for S is of the following form: p(S) ∝ exp{β(S)}, where β(S) is
specified to favor sketch graphs with extended and connected primitives by penalizing
the number of primitives and the number of free end points. We refer to the companion
paper [24] for details on this issue.

Connection between sparse coding and Markov random field: The primal sketch model
combines sparse coding (33) and the Markov random field (34). These two components
are closely connected. On the sketchable part of the image, which can be accurately
represented by sketch primitives, the filter responses 〈I, Bx,y,s,α〉 exhibit very regular
spatial patterns. As a matter of fact, the sketch primitives such as edge and bar segments
are detected from such regular patterns of filter responses. In particular, those bases
Bx,y,s,α that achieve a local maximum are typically located on the edge or bar segments
with their orientations aligned with those of the corresponding edge and bar segments.
On the remaining part of the image where there are no such joint patterns formed by
filter responses, the image cannot be sketched, and can only be summarized by marginal
histograms of filter responses due to the lack of joint patterns. In this sense, the marginal
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(a) (b) (c)

Fig. 22. Examples of primal sketch model. (a) Observed image. (b)
Sketch graph. (c) Synthesized image from the fitted model.

(a) (b) (c)

Fig. 23. Examples of primal sketch model. (a) Observed image. (b)
Sketch graph. (c) Synthesized image from the fitted model.
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histograms recycle the filter responses that fail to detect sketch primitives or fail to form
joint patterns.

Under the scaling transformation of zooming out the image, the sketch primitives will
become smaller and eventually out of zoom. Consequently, the joint patterns of the filter
responses gradually diminish, with only the marginal distributions left to be used for
characterizing the image.

A stage-wise procedure is used to fit the above model. In the first stage, the sketch
primitives are identified by minimizing

∑
i

∑
(x,y)∈DS,i

(I(x, y)−Φi(x, y|θi))/2τ2 − β(S),
after the filter responses identify the candidates for the sketch primitives. In the second
stage, the remaining nonsketchable part of the image lattice is segmented into homo-
geneous regions, and a random field model is fitted in each region by reproducing the
marginal histograms of filter responses. The reader is referred to [24] for a more sophisti-
cated version of the algorithm with all the technical details. Figures (22) and (23) show
some examples.

5.3. Towards a unified theoretical framework. Following the theory of Della Pietra,
Della Pietra, and Lafferty [14], we propose a theoretical framework for image modeling
and learning. This framework embraces different regimes of models.

Let f(I) be an unknown distribution that we want to estimate or approximate based
on random samples from f(I). For instance, f(I) may be the distribution of a texture
pattern, or the distribution of geometric primitives, or the distribution of a class of
objects such as faces or cars.

From test statistics to models: We start from a reference model or a null hypothesis
H0 : I ∼ q(I). For example, q(I) can be the uniform distribution, or the Gaussian white
noise distribution, or the current approximation to f(I). We then modify q(I) to a model
p(I) by identifying test statistics to reject the null hypothesis H0.

Specifically, we extract a set of low-dimensional distributions from the high-dimen-
sional f(I). Let’s denote them by ϕ(f). ϕ(f) can be estimated using random samples
from f and can serve as the test statistics that reveal the departure of f(I) from q(I). We
want to choose the dimensions of ϕ(f) so that ϕ(f) exposes the most glaring departure
from q(I) or provides the strongest evidence against H0. From such ϕ(f), a model can
be constructed by improving upon q(I) along the dimensions of ϕ(f) while leaving the
remaining dimensions unchanged.

According to the Stein-Chernoff Lemma [12], K(p||q) measures the optimal exponential
decay rate of type I error for testing the hypotheses: H0 : I ∼ q(I) versus H1 : I ∼ p(I), if
we let the type II error goes to 0. K(p||q) is also the expected log-likelihood ratio under
H1. Therefore, we use K(p||q) to measure the departure of p(I) from q(I).

(1) Minimum divergence: For a given ϕ, among all the distributions p(I) that satisfy
ϕ(p) = ϕ(f), we choose the one that minimizes K(p||q). Specifically, let

pϕ = arg min
p:ϕ(p)=ϕ(f)

K(p||q)

be such a minimum divergence distribution. pϕ is the model resulting from matching the
low-dimensional distributions ϕ(f).

(2) Maximum divergence: Among all possible ϕ, we choose the one that maximizes
K(pϕ||q), where for each ϕ, pϕ is the minimum divergence distribution obtained by (1).
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Fig. 24. Illustration of the max-min divergence principle. Each dis-
tribution is a point. The solid curve represents {p : ϕ(p) = ϕ(f)} for
some ϕ. The dotted curve corresponds to another ϕ, which is less
preferable than the ϕ of the solid curve.

This max-min divergence principle is a generalized version of the minimax entropy
principle studied by [60]. Given ϕ, we want ϕ(p) to match ϕ(f), but other than that,
we want p to stay as close to q as possible. One may interpret this as a “least action
principle” in modeling, where, other than ϕ(f), we should refrain from introducing ar-
tificial evidence against H0. Thus K(pϕ||q) measures the strength of evidence in ϕ(f)
alone. Among all possible ϕ, we want to choose ϕ so that the resulting least action or
most conservative pϕ is as far from q as possible. Figure (24) illustrates the basic idea,
where each distribution is a point. For each ϕ, the set of distributions {p : ϕ(p) = ϕ(f)}
is represented by a curve. pϕ can be imagined as the “projection” of q onto this curve,
and K(p||q) can be imagined as squared distance. In Figure (24), the ϕ of the solid curve
is preferred to the ϕ of the dotted curve.

The following are two types of ϕ(f).
(1) Marginal distributions: Let fx,y,sk,αk

be the distribution of 〈I, Bx,y,sk,αk
〉 under

f(I), for a selected set of filters {(sk, αk), k = 1, ..., K}. Let fsk,αk
=

∑
(x,y)∈D fx,y,sk,αk

/

|D|. If f(I) is stationary within the lattice D, then fx,y,sk,αk
= fsk,αk

for all (x, y) ∈ D,
and fsk,αk

can be estimated by the marginal histogram Hk(I) in (30). fsk,αk
involves

spatial pooling over pixel locations. We can write ϕ = {(sk, αk), k = 1, ..., K}.
(2) Joint distributions: Let S = (Bxj ,yj ,sj ,αj

, j = 1, ..., n) be a small number of select
bases. Let fS be the joint distribution of (〈I, Bxj ,yj ,sj ,αj

〉, j = 1, ..., n) under f(I). fS can
also be estimated using random samples from f . fS involves bases at selected locations.
We can write ϕ = S = (Bxj ,yj ,sj ,αj

, j = 1, ..., n).
The following propositions give specific forms of pϕ, which are parametrized by pλ(I).

Proposition 8. Let p(I) be a distribution such that psk,αk
= fsk,αk

, k = 1, ..., K. Then
among all such p(I), suppose there is a distribution of the following form:

pλ(I) = exp{
K∑

k=1

∑
(x,y)∈D

λk(〈I, Bx,y,sk,αk
〉)}q(I). (35)

Then K(p||q) − K(pλ||q) = K(p||pλ) ≥ 0. That is, among all such p, pλ achieves the
minimum of K(p||q). Moreover, K(f ||pλ) = K(f ||q) − K(pλ||q). Thus by maximizing
K(pλ||q) among all possible sets of filters {(sk, αk), k = 1, ..., K}, we minimize K(f ||pλ).
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Proof. Because both p and pλ satisfy psk,αk
= fsk,αk

, we have

Epλ

⎡
⎣ ∑

(x,y)∈D

λk(〈I, Bx,y,sk,αk
〉)

⎤
⎦ = Ep

⎡
⎣ ∑

(x,y)∈D

λk(〈I, Bx,y,sk,αk
〉)

⎤
⎦

= |D|
∫

λk(r)fsk,αk
(r)dr.

Then

K(pλ||q) = Epλ

[
log

pλ(I)
q(I)

]
= Ep

[
log

pλ(I)
q(I)

]

= Ep

[
log

p(I)
q(I)

− log
p(I)
pλ(I)

]
= K(p||q) −K(p||pλ).

The above equation is still true if we replace p by f . Therefore, K(f ||pλ) = K(f ||q) −
K(pλ||q). �

Connection to Markov random field: Compared to model (27), the normalizing con-
stant Z(λ) is absorbed into the λk functions in (35). Also, in model (27), q(I) is assumed
to be a uniform measure, whereas in model (35), q(I) can be any distribution or measure.

Proposition 9. For S = (Bxj ,yj ,sj ,αj
, j = 1, ..., n), let p(I) be a distribution such that

pS = fS . Then among all such p(I), there is a distribution

pλ(I) = exp{λ(〈I, Bxj ,yj ,sj ,αj
〉, j = 1, ..., n)}q(I), (36)

where λ(r1, ..., rn) = log(fS(r1, ..., rn)/qS(r1, ..., rn)), rj = 〈I, Bxj ,yj ,sj ,αj
〉, j = 1, ..., n.

K(p||q)−K(pλ||q) = K(p||pλ) ≥ 0, and K(pλ||q) = K(fS ||qS) = K(f ||q)−K(f ||pλ). Thus
by maximizing K(fS ||qS) among all possible S = (Bxj ,yj ,sj ,αj

, j = 1, ..., n), we minimize
K(f ||pλ). In other words, we identify S so that the hypothesis testing H0 : (r1, ..., rn) ∼
qS versus H1 : (r1, ..., rn) ∼ fS has the maximum expected log-likelihood ratio.

The above proposition can be proved in a similar way as the proof of Proposition
8. But it can be written in a more explicit form. Consider a linear change of variable
I → (R, R̄), where R = (r1, ..., rn)′, and R̄ consists of the coordinates of I in the subspace
that is orthogonal to the space spanned by S = (Bxj ,yj ,sj ,αj

, j = 1, ..., n). We can choose
any orthonormal basis in this subspace. Under such a linear transformation, let q(R, R̄)
and f(R, R̄) be the joint distributions of (R, R̄) under q and f respectively. Then under
pλ, the distribution of (R, R̄) is fS(R)q(R̄ | R), where q(R̄ | R) = q(R, R̄)/qS(R) is the
conditional distribution of R̄ given R under q. That is, pλ is constructed by replacing
the distribution qS(R) by fS(R), while maintaining q(R̄ | R).

Model (36) is actually a generalized version of projection pursuit [19]. In model (36),
multiple bases can be selected at once, and the selected bases can form specific patterns
modeled by p(S) and fS(R). 〈I, Bxj ,yj ,sj ,αj

〉 can be discretized, or fS and qS can be
estimated by histograms. 〈I, Bxj ,yj ,sj ,αj

〉 can also be replaced by nonlinear transforms.
Connection to sparse coding model: Model (36) can be written in the form of the

sparse coding model (23) and (24). In matrix form, let S = (Bxj ,yj ,sj ,αj
, j = 1, ..., n) be

the |D|×n matrix whose columns are vectorized versions of Bxj ,yj ,sj ,αj
. So R = S′I. Let

S̄ be the (|D| × (|D| − n))-dimensional matrix whose columns are orthonormal and are



36 YING NIAN WU, CHENG-EN GUO, AND SONG-CHUN ZHU

orthogonal to the columns of S, so R̄ = S̄′I. Let C = (c1, ..., cn)′ = (S′S)−1R be the least
squares coefficients that project I onto the subspace spanned by S = (Bxj ,yj ,sj ,αj

, j =
1, ..., n). Then I =

∑
j cjBxj ,yj ,sj ,αj

+ ε, where ε = S̄R̄ is the residual image residing
in the subspace spanned by S̄. If q(I) is a Gaussian white noise model with mean 0
and variance σ2, then R̄ is independent of R, and each component of R̄ follows N(0, σ2).
Therefore, model (36) can be written as

(c1, ..., cn) ∼ f(c1, ..., cn); (37)

I =
n∑

j=1

cjBxj ,yj ,sj ,αj
+ ε; (38)

ε = S̄R̄; R̄ ∼ iid N(0, σ2), (39)

where f(c1, ..., cn) in (37) is the distribution of (c1, ..., cn) under f(I) and can be obtained
from fS(R) via the linear transformation C = (S′S)−1R. The above model is essentially
the same as the sparse coding model (23) and (24). The only difference is that C =
(c1, ..., cn) becomes a deterministic transform of I, and ε in (38) and (39) is a white noise
model in the residual (|D| − n)-dimensional space that is orthogonal to (Bxj ,yj ,sj ,αj

, j =
1, ..., n). Model (36) or model (37)–(39) has the advantage that the log-likelihood is in
closed form, so the model can be easily fitted to the observed data. The original sparse
coding model (23) and (24) treats C as a latent variable; thus the model fitting involves
integrating out C.

One can also take q(I) as the uniform distribution over the sphere Ω(σ2) = {I :
‖I‖2/|D| = σ2}, where σ2 is the marginal variance of the observed image. We can get a
model similar to the above, except that in (39), σ2 needs to be replaced by the unbiased
estimate of the residual variance.

Connection to primal sketch model and sketchability: In model (36), S = (Bxj ,yj ,sj ,αj
,

j = 1, ..., n) can be assumed to follow a distribution p(S). There are various p(S) and the
corresponding fS(R). For the primal sketch model (33) and (34), the p(S) and fS(R) are
of very low entropy. Consider a simple example where there is an edge segment Φ(x, y | θ),
and I(x, y) = Φ(x, y | θ) + N(0, τ2). If we choose S = (Bxj ,yj ,sj ,αj

, j = 1, ..., n), so that
they form a straight line segment that is identical to Φ, or more specifically, {Bxj ,yj ,sj ,αj

}
are connected, (xj , yj) lie on the central line of Φ and are equally spaced, and sj and
αj are all identical, where αj is the same as the orientation of the edge segment, then
fS(r1, ..., rn) = N(µ, S′Sτ2), where rj has the same expectation µ because Φ has a
constant step-edge profile. If τ2 is small, this fS(r1, ..., rn) has very low entropy. So
detecting Φ amounts to finding S = (Bxj ,yj ,sj ,αj

, j = 1, ..., n) to maximize K(fS ||qS). If
q(I) is a white noise model with iid N(0, σ2), then qS(r1, ..., rn) = N(0, S′Sσ2). In other
words, we are searching for the following “sketchability” test:

H0 : (r1, ..., rn) ∼ N(0, S′Sσ2) versus H1 : (r1, ..., rn) ∼ N(µ, S′Sτ2) (40)

with the maximum likelihood ratio. The resulting S = (Bxj ,yj ,sj ,αj
, j = 1, ..., n) then

gives us the line segment. See also [38] for a hypothesis testing approach to detecting
line segments based on meaningful alignment.



INFORMATION SCALING OF NATURAL IMAGES TO STATISTICAL MODELS 37

On the part of the image where sketchability tests have failed, i.e., we fail to find the
joint distributions of the form (40) in H1 to reject H0, we can only reject H0 by pooling
the marginal distributions, which can be highly non-Gaussian. This gives us model (35).

Scaling triggers transitions: Both the sparse coding model and the Markov random
field model are special cases of the common modeling scheme proposed in the beginning
of this subsection. The sparse coding model identifies the joint distribution of bases at
selected locations. These selected bases form the low entropy foreground. The Markov
random field model pools the marginal distributions pooled over locations. These mar-
ginal distributions characterize the high entropy background where no low entropy joint
patterns can be detected.

Under the scaling process of zooming out the image, the joint patterns will be gradually
weakened and eventually out of zoom, so that only the marginal distributions are available
to reject the Gaussian white noise hypothesis. As the scaling process goes on, the image
will eventually converge to the Gaussian white noise. The modeling process is the process
of identifying departures from the Gaussian white noise hypothesis. We shall study the
scaling transition in more depth in future work.

Mid-entropy regime: The transition from low entropy geometric patterns to high en-
tropy texture patterns is a gradual one during the scaling process. There is a mid-entropy
regime between the low entropy regime and the high entropy regime. For images in this
regime, if we look at a 30 × 30 image patch, we do not see long lines and big regions, nei-
ther do we see random textures, but we see various types of objects, such as faces and cars.
Let f(I) be such a mid-entropy distribution. f(I) can still be modeled by (36), except
that p(S) is not a low entropy geometric pattern where all the (Bxj ,yj ,sj ,αj

, j = 1, ..., n)
form simple straight lines. Instead, S = (Bxj ,yj ,sj ,αj

, j = 1, ..., n) captures the more
complex overall shapes of the objects, and p(S) should account for shape deformation
by allowing the Bxj ,yj ,sj ,αj

to actively shift their locations and orientations. Moreover,
p(S) and fS(R) can only be learned from multiple training images. We shall report our
work on this model elsewhere.

Connection to AdaBoost: For mid-entropy f(I), if we do not model the deformation,
and if we discretize 〈I, Bxj ,yj ,sj ,αj

〉 into binary values by thresholding, then we obtain
the following model:

pλ(I) =
1

Z(λ)
exp{

n∑
j=1

λjδ(〈I, Bxj ,yj ,sj ,αj
〉)}q(I), (41)

where we further simplify the λ function in (36) into an additive form. δ(〈I,Bxj ,yj ,sj ,αj
〉)=

1 if |〈I, Bxj ,yj ,sj ,αj
〉| > ξ, where ξ is a threshold. δ = 0 otherwise. λ = (λj , j = 1, ..., n)

are parameters, and Z(λ) is the normalizing constant. This model can be considered to
be a generative version of the AdaBoost method [18] of Viola and Jones (2004) [52], who
used Harr wavelets instead of Gabor wavelets for computational efficiency. In AdaBoost,
δ(〈I, Bxj ,yj ,sj ,αj

〉) are called weak classifiers, and they are introduced one by one. We
can also introduce these weak classifiers one by one into the model (41) in a fashion very
similar to AdaBoost, by following Della Pietra, Della Pietra, and Lafferty [14].
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Specifically, let qn(I) be the current model of the form (41) after n weak classifiers are
introduced. We can update qn(I) to a model

qn+1(I) = qn(I)
f(δ(〈I, Bx,y,s,α〉))
qn(δ(〈I, Bx,y,s,α〉))

, (42)

by choosing a new weak classifier δ(〈I, Bx,y,s,α〉), so that K(f(δ)||qn(δ)) is maximized
among all (x, y, s, θ). Here f(δ) and qn(δ) are the Bernoulli distributions of the bi-
nary variable δ(〈I, Bx,y,s,α〉) under f and qn respectively. More specifically, f(1) is
the probability that |〈I, Bx,y,s,α〉| > ξ under f , and f(0) = 1 − f(1). qn(1) is the
probability that |〈I, Bx,y,s,α〉| > ξ under qn, and qn(0) = 1 − qn(1). K(f(δ)||qn(δ)) =
f(1) log(f(1)/qn(1)) + f(0) log(f(0)/qn(0)). One can write (42) as qn+1(I) = f(δ)qn(I |
δ), where qn(I | δ) is the conditional distribution of I given δ(〈I, Bx,y,s,α〉) under qn.

After choosing Bx,y,s,α to maximize K(f(δ)||qn(δ)), we can write (42) as

qn+1(I) = qn(I) exp{λδ(〈I, Bx,y,s,α〉)}/Z(λ),

where λ = log(f(1)/qn(1)) − log(f(0)/qn(0)) and Z(λ) = qn(0)/f(0). Then we let
λn+1 ← λ, (xn+1, yn+1, sn+1, αn+1) ← (x, y, s, α), n ← n + 1, and iterate.

Let I1, ..., IM be random samples from f(I). f(1) and f(0) can be estimated as
frequencies. If we generate random samples J1, ...,JM from qn(I), then qn(1) and qn(0)
can also be estimated as frequencies. The new weak classifier δ(〈I, Bx,y,s,α〉) is chosen
to tell apart I1, ..., IM and J1, ...,JM with maximum K(f(δ)||qn(δ)) = K(qn+1||qn) =
K(f ||qn) −K(f ||qn+1).

We can also replace K(f(δ)||qn(δ)) = K(f ||qn) −K(f ||qn+1) by

−
[
∂K(f ||qn+1)

∂λ

]
λ=0

= f(1) − qn(1),

which is the misclassification rate.
So in each step of the above procedure, a new weak classifier is trained by I1, ..., IM and

J1, ...,JM , where J1, ...,JM serve as negative examples. Unlike the original AdaBoost,
where the samples are reweighted at each step, in the above procedure, the negative
examples are sampled at each step from the current model qn. If the selected bases do
not overlap, then qn(1) and qn(0) can be calculated in closed form without simulation.

The above procedure is valid for any types of weak classifiers, not limited to the form
of δ(〈I, Bx,y,s,α〉). The reader is also referred to the pioneering work of Della Pietra,
Della Pietra, and Lafferty (1997) [14] on introducing features, where model (41) is a
special case. We would also like to point out that simultaneous to our work, Tu (2007)
[51] independently explored the connection between AdaBoost and the generative model
and obtained interesting experimental results.

6. Discussion. This paper studies entropy rate, inferential uncertainty, hypothesis
testing, and statistical modeling from the perspective of scaling, which is ubiquitous in
natural images. The hope is that the theory presented in this paper will eventually lead
to robust and efficient procedures and algorithms for learning and recognizing the whole
spectrum of visual patterns and objects. The following are some points we want to make
regarding our work.
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Nonlinear transforms: The linear filter 〈I, Bx,y,s,α〉 in the model can be replaced by
nonlinear local operators, such as the local gradients or local orientations at different
scales. Such nonlinear operators can be built on 〈I, Bx,y,s,α〉 . Generalizing linear filters
to nonlinear operators does not affect the validity of the theoretical results derived in the
previous sections, in particular, the previous subsection.

Multi-scale analysis and compositional relationships: An image can be analyzed at
multiple resolutions [7], or be analyzed by Gabor wavelets Bx,y,s,α within a large range
of scale. Ideally, image understanding should involve recognizing patterns at multiple
resolutions, and these patterns form recursive whole-part compositional relationships
[22]. Our results on information scaling also apply to the change of the analysis resolution
in addition to the change of the camera resolution and the viewing distance. However,
our current model does not account for the compositional relationships of patterns at
multiple resolutions. This issue is treated extensively in Zhu and Mumford (2007) [59].
Such relationships are important constraints that help resolve ambiguities in recognizing
patterns at multiple resolutions.

Model complexity versus entropy rate: It is important to distinguish between image
complexity and model complexity. The complexity of the image data can be measured by
the entropy rate, with or without variance-normalization. The complexity of the model
can be measured by the dimensionality or the number of parameters in the model. For
instance, an image generated by Gaussian white noise has the maximum entropy rate
among images with fixed marginal variance. But the Gaussian white noise model is a very
simple model with only one parameter for the marginal variance. Although the variance-
normalized entropy rate tends to increase over the scaling process, the model complexity
does not always increase. As a matter of fact, the image changes from simple regularity
such as long straight edges and large smooth regions to simple randomness such as the
Gaussian process and white noise. In between, it goes through more complex regularity
such as object patterns and more complex randomness such as highly non-Gaussian
texture patterns. The model complexity is expected to peak in the mid-resolution, where
the entropy rate of the image data is in the medium range. This is the regime where
we obtain most of the visual information. Our work on this mid-entropy regime will be
reported elsewhere.
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