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Abstract

This paper presents an effective jump-diffusion method for segmenting a range image and its associated

reflectance image in the Bayesian framework. The algorithm works on complex real-world scenes (indoor and

outdoor), which consist of an unknown number of objects (or surfaces) of various sizes and types, such as

planes, conics, smooth surfaces, and cluttered objects (like trees and bushes). Formulated in the Bayesian

framework, the posterior probability is distributed over a solution space with a countable number of subspaces

of varying dimensions. The algorithm simulates Markov chains with both reversible jumps and stochastic

diffusions to traverse the solution space. The reversible jumps realize the moves between subspaces of different

dimensions, such as switching surface models and changing the number of objects. The stochastic Langevin

equation realizes diffusions within each subspace. To achieve effective computation, the algorithm precomputes

some importance proposal probabilities over multiple scales through Hough transforms, edge detection, and

data clustering. The latter are used by the Markov chains for fast mixing. The algorithm is tested on 100 1D

simulated datasets for performance analysis on both accuracy and speed. Then the algorithm is applied to

three datasets of range images under the same parameter setting. The results are satisfactory in comparison

with manual segmentations.
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I. Introduction

a. office scene 1 b. office scene 2

c. a street scene d. a cemetery scene

Fig. 1. Four examples of indoor and outdoor scenes from the Brown range dataset. The laser scanner scans

the scene in cylindric coordinates and produces panoramic (wrapped) views of the scenes.

Research on range images in the past was mostly motivated by robotics applications for

recognizing industry parts on assembly lines, and most of the work was focused on simple

polyhedra objects. Recently, long-range laser scanners have become accessible to many users.

These scanners can capture accurate 3D range images of real-world scenes at large scales. For

example, Fig. 1 displays four panoramic range images of indoor and outdoor scenes scanned

in cylindric coordinates. Other examples are the 3D Lidar images in aerospace imaging which

can capture depth maps of terrain and city scenes with accuracy up to 1 centimeter. As

these range images provide much more accurate depth information than conventional vision

cues, such as motion, shading, and binocular stereo, they are important for a wide variety of

applications, for example, visualization of city scenes and historic sites [33], spatio-temporal

databases of 3D urban and suburban developments, 3D scene modelling, and natural scene

statistics analysis [22].

These new datasets pose much more serious challenges for range image analysis than the

traditional polyhedra world. The main difficulties lie in the following aspects.
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First, natural scenes contain many types of objects, for example, man-made objects (build-

ings, desks), animate objects (human and animals), and free-form objects (trees and terrain).

These objects should be represented by various families of surface models which have different

parameterization dimensions. Formulated in the Bayesian framework, the posterior proba-

bility is distributed over a solution (state) space with a countable number of subspaces of

varying dimensions. Each subspace is for a certain combination of surface models. Thus,

an algorithm must accommodate multiple surface models in representation and explore the

possible combinations of these models during computation.

Second, objects and surfaces in natural scenes appear at multiple scales. For example,

the office scenes in Fig. 1 contain large surfaces such as walls, ceilings, and floors; middle

size objects such as people, chairs and tables; and small objects such as books and cups on

the desktop. This is in contrast with the block world (see Figures 9 and 10) where objects

are of similar sizes. In the presence of such a broad range of perceptual scales, it becomes

difficult to segment small objects without over-segmenting large surfaces. Conventional model

complexity criteria like MDL and AIC [34], [1] do not easily deal with such cases as they are

based on image coding, not perception. Therefore, one should seek prior models to ensure

proper segmentation of surfaces at all sizes.

Third, although range data is accurate in general, it is rather noisy around object bound-

aries. It becomes rather messy for objects like trees and bushes. Also, depth data are missing

for objects at infinite distance like the sky, and at metal, glass and ceramic surfaces where the

laser rays never return to the scanner.

In the literature, range image segmentation methods are mostly adapted from algorithms

developed for optical images. For example, edge detection [24], region-based methods [2], [5],

surface fitting [19], clustering [20], [12], and the generalized Hough transform [3] for detecting

parametric surfaces of low dimension. We refer to Hoover et al. [21] for a survey of range
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segmentation algorithms and a good empirical comparison. Generally speaking, algorithms

for range segmentation are not as advanced as those for intensity image segmentation. For

example, there is no algorithm, to our knowledge, which can satisfactorily segment complex

scenes such as those displayed in Fig. 1.

This paper presents a stochastic jump-diffusion algorithm for segmenting 3D scenes and

reconstructing object surfaces from range images and their reflectance images. This work

is an extension of our recent image segmentation work on data-driven Markov chain Monte

Carlo [36]. It makes the following contributions to the range segmentation literature.

1. To deal with the variety of objects in real-world scenes, this algorithm incorporates five

types of generative surface models, such as planes and conics for man-made objects, splines for

free-form flexible objects, and a non-parametric (3D histogram) model for free-form objects

(trees). These surfaces models compete to explain the range data under the regularity of

a statistical prior for model complexity. The paper also introduces various prior models on

surfaces, boundaries, and vertices (corners) to enforce regularities. The generative models and

prior models are integrated in the Bayesian framework.

2. To handle missing range data, the algorithm uses the reflectance image as a different data

channel and integrates it with the range data in the Bayesian framework. The reflectance

image measures the proportion of laser energy returned from surface and therefore carries

material properties. It is useful for segmenting glass, metal, ceramics, and the sky.

3. To explore the solution (state) space which consists of a countable number of subspaces of

varying dimension, the algorithm simulates both reversible jumps and stochastic diffusions.

The jumps realize split, merge, and model switching, while the diffusions realize boundary

evolution and competition and model adaptation. These moves, in combination, simulate a

Markov chain process sampling from the Bayesian posterior probability, and the final solution

is obtained by annealing the temperature of the posterior probability.
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4. To improve computational speed, the algorithm precomputes some bottom-up heuristics in

a coarse-to-fine manner, such as edge detection and surface clustering at multiple scales. The

computed heuristics are expressed as importance proposal probabilities [36] on the surfaces and

boundaries which narrow the search space in a probabilistic fashion, and drive the Markov

chain for fast mixing.

We first test the algorithm using 100 1D simulated range datasets for performance analysis

where the ground truth is known. Then we apply the algorithm to three datasets of range

images. Two are the standard polyhedra dataset and curved-surface dataset from the vision

group at University of South Florida, and the other dataset, collected by the pattern theory

group at Brown University, contains real-world scenes. The experiments demonstrate robust

and satisfactory results under the same parameter setting and the results are compared with

manual segmentation.

The paper is organized as follows. We present the jump-diffusion algorithm and evaluate

its performance on 1D simulated data in Section II. Then we present a Bayesian formulation

of the problem in Section III and the design of the algorithm in Section IV. Then we show

the experimental results in Section V and conclude the paper with some critical discussions

in Section VI.

II. Jump-diffusion for 1D signal segmentation: a toy example

This section presents the jump-diffusion algorithm for segmenting 100 simulated 1D range

signals. With this simplified example, we illustrate the basic ideas of the algorithm without

becoming entangled in the complexity of real range images. Since the ground truth is known

for the simulated data, we can evaluate how well the algorithm approaches the globally optimal

solutions. We also compare the speeds of the algorithm with different designs and evaluate

how much the various bottom-up heuristics expedite the Markov chain search.
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b
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d

Fig. 2. a. A 1D range image I(x), x ∈ [0, 1), b. the true segmentation Wth, c. edgeness measure b(x) x ∈ [0, 1).

A large value b(x) indicates a high probability for x being a change point. d. The best solution W ∗ (red)

found by the algorithm plotted against Wth (green).

A. Segmenting 1D range data: problem formulation

Figure 2.a displays an example of a simulated 1D range image I(x), x ∈ [0, 1]. It is generated

by adding Gaussian noise N(0, σ2) to the original surfaces Io in figure 2.b. Io consists of an

unknown number of k surfaces which could be either straight lines or circular arcs, separated

by k − 1 change points,

0 = x0 < x1 < x2 < · · · < xk−1 < xk = 1.

Let `i ∈ {line, circle} index the surface type in interval [xi−1, xi) with parameters θi, i =

1, 2, ..., k. For a straight line, θ = (s, ρ) represents the slope s and intercept ρ. For a circular

arc, θ = (ξ, η, γ) represents the center (ξ, η) and radius γ. Thus the 1D “world scene” is
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represented by a vector of random variables,

W = (k, {xi : i = 1, 2, ..., k − 1}, {(`i, θi); i = 1, 2, ..., k}).

The surface Io is fully determined by W with Io(x) = Io(x; `i, θi), x ∈ [xi−1, xi), i = 1, 2, ..., k.

By the standard Bayesian formulation, we have the posterior probability

p(W |I) ∝ exp{− 1

2σ2

k∑

i=1

∫ xi

xi−1

(I(x)− Io(x; `i, θi))
2dx} · p(k)

k∏

i=1

p(`i)p(θi|`i) (1)

The first factor above is the likelihood and the rest are prior probabilities p(k) ∝ exp−λok

and p(θi|`i) ∝ exp−λ#θi , which penalize the number of parameters #θi. p(`i) is a uniform

probability on the lines and arcs. Thus an energy function is defined,

E(W ) =
1

2σ2

k∑

i=1

∫ xi

xi−1

(I(x)− Io(x; `i, θi))
2dx + λok + λ

k∑

i=1

#θi. (2)

The problem is that W does not have a fixed dimension. The probability p(W |I) (or the energy

E(W )) is thus distributed over a countable number of subspaces of varying dimension. The

following subsection briefly introduces the jump-diffusion process for exploring such solution

spaces.

B. Background on jump-diffusion

In the statistics literature, there are some designs of hybrid samplers [35] which traverse

parameter spaces of varying dimension by random choices of different Markov chain moves.

Grenander and Miller [18] introduced the jump-diffusion process which mixed the Metropolis-

Hastings method [29] and Langevin equations [14]. Other notable work includes [15] for

reversible jumps and [31] for model comparison with reversible jumps. This subsection briefly

presents the basic ideas and discusses the main difficulty, namely the computational speed.

In the 1D range segmentation problem above, let Ω denote the solution space which is a

union of a countable number of subspaces

Ω = ∪∞n=1Ωn,
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where n = (k, `1, ..., `k) indexes the subspaces. To traverse such solution space, the algo-

rithm needs two types of moves: reversible jumps between different subspaces and stochastic

diffusions within each continuous subspace.

1. Reversible jumps. Let W = (n, ψ) be the state of a Markov chain at time t

where ψ ∈ Ωn represents the continuous variables for the change points and the parameters

of lines and arcs. In an infinitesimal time interval dt, the Markov chain jumps to a new space

Ωm (m 6= n) at state W ′ = (m,φ). There are three types of moves: (1). switching a line

to a circular arc, or vice versa, (2). merging two adjacent intervals to a line or a circle, (3).

splitting an interval into two intervals (lines or circles).

The jump is realized by a Metropolis move [29] which proposes to move from (n, ψ) to

(m,φ) (m 6= n) by a forward proposal probability q(n → m)q(φ|m)dφ. The backward proposal

probability is q(m → n)q(ψ|n)dψ. The forward proposal is accepted with probability

α((n, dψ) → (m, dφ)) = min(1,
q(m → n)q(ψ|n)dψ · p(m,φ|I)dφ

q(n → m)q(φ|m)dφ · p(n, ψ|I)dψ
). (3)

The dimension is matched in the above probability ratio.

2. Stochastic diffusions. Within each subspace Ωn with n = (k, `1, ..., `k) fixed, the

energy functional E(W ) is

E[ψ] = E(x1, ..., xk−1, θ1, ..., θk) =
1

2σ2

k∑

i=1

∫ xi

xi−1

(I(x)− Io(x; `i, θi))
2dx + const.

We adopt a stochastic diffusion (or Langevin) equation to explore the subspace. The Langevin

equations are the steepest descent PDE (partial differential equations) driven by Brownian

motions dB(t) with temperature T . Let ψ(t) denote the variables at time t,

dψ(t) = −dE[ψ]

dψ
dt +

√
2T (t)dwt, dwt ∼ N(0, (dt)2). (4)

For example, the motion equation of a change point xi is

dxi(t)

dt
=

1

2σ2
((I(x)− Io(x; `i−1, θi−1))

2 − (I(x)− Io(x; `i, θi))
2) +

√
2T (t)N(0, 1).
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This is the 1D version of the region competition equation [39]. The movement of the point xi

is driven by the fitness of data I(xi) to the surface models of the two adjacent intervals plus

a Brownian motion. In practice, the Brownian motion is found to be useful in avoiding local

pitfalls.

For computing the parameters θi, i = 1, 2..., k, running the diffusion is more robust and

often faster than fitting the best θi for each interval [xi−1, xi) deterministically since the

deterministic fit is an “over-commitment”. Especially it is true when the current interval

contains more than one objects.

It is well-known [14] that the continuous Langevin equations in (4) simulate Markov chains

with stationary density

p(ψ) ∝ exp{−E(ψ)

T
}.

This is the posterior probability within subspace Ωn at temperature T .

3. The coordination of jumps and diffusions. The continuous diffusions are

interrupted by jumps at time instances t1 < t2 < · · · < tM ... as Poisson events. In practice,

the diffusion always runs at a discrete time step ∆t. Thus the discrete waiting time τj between

two consecutive jumps is

w =
tj+1 − tj

∆t
∼ p(w) = e−τ τw

w!
,

where the expected waiting time E[w] = τ controls the frequency of jumps. Both jump and

diffusion processes should follow an annealing scheme for lowering the temperature gradually.

For illustration, Figure 4.a shows two trials (thin and thick curves respectively) of the jump-

diffusion process running on the input 1D range data in Figure 2.a. The energy plots go up

and down (i.e. the algorithm is not greedy) and the continuous energy curves (diffusion) are

interrupted by jumps.

4. Reversibility and global optimization. From an engineering point of view, the
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most important property of the jump-diffusion process is that it simulates Markov chain to

traverse the complex solution space. This property distinguishes it from greedy and local

methods. In theory, this Markov chain samples from the posterior probability p(W |I) over

the solution space Ω [18]. With an annealing scheme, it can theoretically achieve the globally

optimal solution with probability close to one. The reversibility of the jumps may not be

a necessary condition; however, it is a useful tool for achieving irreducibility of the Markov

chain in the complex solution space. To the best of our knowledge, there is no alternative way

for traversing such complex spaces except exhaustive searches.

5. The speed bottlenecks. Conventional jump-diffusion designs are limited by their

computing speed. However, this problem can be overcome by better design of the proposal

probabilities as we shall show in the next subsection. We observed that the bottlenecks are

in the jumps affected by the design of the proposal probabilities. In equation (3), a proposal

probability q(φ|m) in interval [xi−1, xi) can be divided into three cases. (1). Switching to a new

model with φ = θi. (2). Merging to form a new interval [xi−2, xi) with type ` and parameter

φ, (3). Splitting to form two new intervals with models (`a, θa) and (`b, θb) respectively.

q(φ |m) =





q(θi|`i, [xi−1, xi)) switch [xi−1, xi) to model (`i, θi);

q(θ|`, [xi−2, xi)) merge to a model (`, θ);

q(x|[xi−1, xi))q(θa|`a, [xi−1, x))q(θb|`b, [x, xi)) split [xi−1, xi) into (`a, θa) and (`b, θb) at x.

(5)

In the statistical literature [18], [15], the proposal probabilities were taken mostly as uniform

distributions, i.e. jumps to randomly selected lines or/and circles for new models. Such

proposals are almost always rejected because the ratio p(m,φ|I)/p(n, ψ|I) = e−∆E could be

close to zero. This causes extremely long waiting. We can overcome this problem by a better

design than the uniform proposal probabilities, as the data-driven Markov chain Monte Carlo
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method has shown [36].

C. Data-driven techniques for design proposal probabilities

The basic concept of a data-driven Markov chain Monte Carlo scheme [36] is to compute

proposal probabilities by bottom-up methods in each of the parameter spaces for x, (line, s, ρ)

and (arc, ξ, η, γ) respectively. In the 1D range signal, we use Hough transformation and

change-point detection.

Line Hough Transform for signal No.19

30 40 50 60 70 80 90 100 110 120 130

200

250

300

350

400

450

500

550

600

650

a. Hough transform for lines b. Hough transform for arcs.

Fig. 3. Results of Hough transforms on the signal in Fig. 2.a (a). on the line model space (s, ρ), b). in the

circle model space (ξ, η, γ).

1. Hough transformation in the model spaces. Figure 3.a shows the Hough trans-

form [3] in the line space (i.e. plane θ = (s, ρ)). The crosses are detected as line candi-

dates θ
(1)
line, θ

(2)
line, ..., θ

(Nline)
line . Figure 3.b is the Hough transform result on the circular arc space

θ = (ξ, η, γ) with bounds. The balls are arc candidates θ(1)
arc, θ

(2)
arc, ..., θ

(Narc)
arc with the sizes repre-

senting the weights (total number of votes received). Thus, when we propose a new model for

an interval [a, b), we compute the importance proposal probability by Parzen windows centered

at the candidates.

q(θ | `, [a, b)) =
N∑̀

i=1

ωiG(θ − θ
(i)
` ), ` ∈ {line, arc}. (6)
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ωi is the accumulated weights voted from the data in [a, b) and G(x) is a Parzen window

centered at 0.

2. Change point detection in the x space. Figure 2.c shows the result of an edge strength

f(x|∇G ∗ I,∇2G ∗ I) based on two filters: the 1st and 2nd derivatives of a Gaussian shape.

Instead of making a hard decision which is bound to be unreliable, we treat the strength

measure as a probability. Thus the proposal for a change point x is

q(x | [a, b)) =
f(x|∇G ∗ I,∇2G ∗ I)

∫ b
a f(x|∇G ∗ I,∇2G ∗ I)dx

(7)

D. Speed analysis and empirical evaluation

Replacing the uniform proposal probabilities by data-driven probabilities does not degrade

the jump-diffusion process to a local algorithm. First, the data-driven proposal probabilities

in (6) and (7) are non-zero in the entire parameter spaces, so the moves are still reversible and

the Markov chain still can traverse the space. Second, by lowering the threshold, the chance

of missing a line or arc in the Hough transforms can be made zero because any line or arc with

non-trivial length should receive a number of votes in proportion to its length. The proposal

probabilities only narrow the focus of the Markov chain search probabilistically.

Recent theoretical analysis [27] confirms our observation. Consider a finite space with M

(very large) states Ωo = {1, 2, ..., M} and a posterior probability p = (p1, ..., pM). We sample

p by an independent Metropolis method with proposal probability q = (q1, ..., qM).

Theorem [Maciuca and Zhu, 2003] For the independent Metropolis sampler above, let τ(i)

be the first hitting-time when the Markov chain first visits a state i ∈ Ωo and E[τ(i)] its

expectation. Then

1

min{pi, qi} ≤ E[τ(i)] ≤ 1

min{pi, qi} ·
1

1− ‖p− q‖ , ∀ i ∈ Ωo, (8)

where ‖p− q‖ = 1
2

∑
i∈Ωo

|pi − qi| measures the difference between q and p.
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The theorem indicates that if the bottom-up proposal q is close to p, the Markov chain will

hit the optimal state in about 1/p∗ steps on average with p∗ = max{p1, ..., pM}. For posterior

probabilities p of low entropy, this means a small number of steps even though the space size

M is huge.

However, for a more complex space Ω, we have not yet been able to analytically link the

design of q()’s to the convergence rate. Thus we seek empirical comparison on the performance

of various designs.

A set of 100 1D range datasets (like Fig. 2.a) are simulated randomly with the known true

segmentation. Three Markov chain designs are compared over the 100 1D range data.

MCMC I uses uniform distributions for q()’s without data-driven heuristics. MCMC II uses

Hough transform results for q(θ | `, [a, b)) and a uniform distribution for q(x|[a, b)), i.e. the

change point detection heuristics are omitted. MCMC III uses both the Hough transform and

change point detection heuristics for proposals.

a. diffusion with jumps b. average energy plot c. zoomed-in view

Fig. 4. a. Energy plots for two trials (MCMC II - thin curve and MCMC III - thick curve) of the jump-

diffusion processes. Continuous energy changes in diffusion are interrupted by energy jumps. b. Comparison

of the energy curves in the first 10,000 steps of three Markov chains MCMC I, II, and III averaged over 100

randomly generated signals. c. Zoomed-in view of MCMC II and III for the first 2,000 steps. Note the energy

scale is different from b.

Figure 2.d displays the optimal solution W ∗ found by MCMC III which coincides with the
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ground truth with a relative energy error under 0.2%. Figure 4.a shows the energy E(W )

against running time for the input in Figure 2.a by the thin curves (MCMC II) and thick

curves (MCMC III). We select a number of time steps to only show the jump and diffusion

processes in this figure.

The main results are shown in Figures 4.b and c. The Markov chains all start with random-

ized initialization and follow annealing schemes carefully tuned to the three cases. We plot

the energy changes averaged over 100 signals for 10, 000 steps. The energy jumps disappear

because of averaging. In Figure 4.b, the dotted curve is for MCMC I, the dash-dotted curve

is for MCMC II, and the solid curve is for MCMC III. The bottom line is the average “true”

global optimal energy. Clearly the MCMC II and MCMC III always achieve solutions near the

ground truth (with relative energy error under 2% in the first 10,000 steps). The bottom-up

heuristics drastically improve the speed in comparison with MCMC I. Figure 4.c is a zoomed-in

view of the first 2,000 steps of MCMC II and MCMC III. It shows that change-point detection

heuristics offer only a little bit of improvement.

III. Bayesian Formulation: integrating cues, models and prior

This section formulates the problem of 2D range segmentation and surface reconstruction

under the Bayesian framework by integrating two cues, five families of surface models, and

various prior models.

A. Problem formulation

We denote an image lattice by Λ = {(i, j) : 0 ≤ i ≤ L1, 0 ≤ j ≤ L2}. A range scanner

captures two images. One is the 3D range data which is a mapping from lattice Λ to a 3D

point,

D : Λ →R3, D(i, j) = (x(i, j), y(i, j), z(i, j)).
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(i, j) indexes a laser ray that hits a surface point (x, y, z) and returns. The other image is a

reflectance map

I : Λ → {0, 1, ..., G}.

I(i, j) is the portion of laser energy returned from point D(i, j). I(i, j) is small at surfaces

with high specularity, such as glass, ceramics, and metals that appear dark in I, and I(i, j) = 0

for mirrors and the sky. D(i, j) is generally very noisy and unreliable when I(i, j) is low, and

is considered missing if I(i, j) = 0.

The objective is to partition the image lattice into an unknown number of K disjoint regions,

Λ = ∪K
n=1Rn, Rn ∩Rm = ∅ ∀m 6= n.

Since natural scenes contain different types of surfaces like the 1D example, at each region R

the range data is fit to a surface model of type `D with parameter ΘD and the reflectance is

fit to a reflectance model of type `I with parameter ΘI . We denote a solution by

W = (K, {Ri : i = 1, 2, ..., K}, {(`D
i , ΘD

i ), (`I
i , Θ

I
i ) : i = 1, 2..., K}).

The algorithm should maximize a Bayesian posterior probability over a solution space Ω 3 W ,

W ∗ = arg max
W∈Ω

p(W |D, I) = arg max
W∈Ω

p(D, I|W )p(W ). (9)

In practice, two regions Ri, Rj may share the same surface model but with different re-

flectance models, that is, (`D
i , ΘD

i ) = (`D
j , ΘD

j ) but (`I
i , Θ

I
i ) 6= (`I

j , Θ
I
j ). For example, a picture

or a piece of cloth hung on a wall, or a thin book or paper on a desk, may fit to the same

surfaces as the wall or desk respectively, but they have different reflectances. It is also possible

that (`D
i , ΘD

i ) 6= (`D
j , ΘD

j ) but (`I
i , Θ

I
i ) = (`I

j , Θ
I
j ). To minimize the coding length and to pool

information from pixels over large areas, we shall allow adjacent regions to share either depth

or reflectance models. Thus a boundary between two regions could be labelled as a reflectance

boundary, a depth boundary, or both. In the following, we briefly describe the likelihood model

p((D, I)|W ) and the prior probability p(W ).
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B. Likelihood coupling a mixture of surface and reflectance models

In the literature, there are many ways for representing a surface, such as implicit polynomials

[5], [19], superquadrics, and other deformable models. In this paper, we choose five types of

generative surface models to account for various shapes in natural scenes. New models can

be added under the same formulation and algorithm.

1. Family D1: planar surfaces with unit normal (a, b, c) and intercept d, ax + by + cz =

d; a2 + b2 + c2 = 1. We denote the space of all planes by ΩD
1 3 Θ with Θ = (a, b, d) being

the plane parameters.

2. Family D2: conic surfaces – spheres, ellipsoids, cylinders, cones, and tori for many man-

made objects and parts. We adopt the representation in [28]. These surfaces are specified

by 7 parameters Θ = (%, ϕ, ϑ, k, s, σ, τ). We refer to [28] for detailed discussions and fitting

methods. We denote by ΩD
2 3 Θ the space of family D2.

3. Family D3: B-spline surfaces with 4 control points. As surfaces in a natural scene have a

broad range of sizes and orientation, we choose a reference plane ρ : ax + by + cz = d which

approximately fits the surface normal. Then a rectangular domain [0, δ]× [0, φ] is adaptively

defined on ρ to just cover the surface indexed by two parameters (u, v), because a domain

much larger than the surface will be hard to control. A grid of h×w control points are chosen

on this rectangular domain. A B-spline surface is

s(u, v) =
h∑

s=1

w∑

t=1

ps,tBs(u)Bt(v),

where ps,t = (ηs,t, ζs,t, ξs,t) is a control point with (ηs,t, ζs,t) being coordinates on ρ and ξs,t is

the degree of freedom at a point. By choosing h = w = 2, a surface in D3 is specified by 9

parameters Θ = (a, b, d, δ, φ, ξ0,0, ξ0,1, ξ1,0, ξ1,1). We denote by ΩD
3 3 Θ the space of family D3.

4. Family D4: B-spline surfaces with 9 control points. Like D3, it consists of a reference plane

ρ and a 3× 3 grid. It is specified by 14 parameters Θ = (a, b, d, δ, φ, ξ0,0, ..., ξ2,2).

5. Family D5: cluttered surfaces. Some objects in natural scenes, such as trees and bushes,
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have very noisy range depth. There are no effective models in the literature for such surfaces.

We adopt a non-parametric 3D histogram for the 3D points in the region. It is specified by

Θ = (hu
1 , h

u
2 , ..., h

u
Lu

, hv
1, h

v
2, ..., h

v
Lv

, hw
1 , hw

2 , ..., hw
Lw

), where Lu, Lv and Lw are the number of

bins in the u, v, and w directions respectively. We denote by ΩD
5 3 Θ the space of family D5.

Figure 5 displays some typical surfaces for the five families.

a. plane b. sphere/ellipsoid c. cylinder d. cone

e. torus f. 4-point spline g. 9-point spline h. clutter

Fig. 5. Some typical surfaces for the five families of surfaces for fitting the range data D.

For the reflectance image I, we use three families of models, denoted by ΩI
i , i = 1, 2, 3

respectively.

1. Family I1: regions with constant reflectance Θ = µ ∈ΩI
1. They represent most of the

surfaces with uniform material properties, or surfaces where range data are missing.

2. Family I2: regions with smooth variation of reflectance, modelled by a B-spline model as

in family D3.

3. Family I3: This is a cluttered region with a non-parametric 1D histogram Θ = (h1, h2, ..., hL)

for its intensity, with L being the number of bins.

For the surface and reflectance models above (except the histogram models), the likelihood

model for a solution W assumes the fitting residues to be Gaussian noise subject to some
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robust statistics treatment [6], so the likelihood is

p(D, I |W ) =
K∏

n=1

p(DRn , IRn ; (`D
n , ΘD

n ), (`I
n, Θ

I
n)) (10)

=
K∏

n=1

Cn exp{− ∑

(i,j)∈Rn

E(D(i, j), I(i, j); (`D
n , ΘD

n ), (`I
n, ΘI

n))}. (11)

Cn is a constant depending on the model in region Rn. At each pixel (i, j) in Rn, the data

energy Ei,j = E(D(i, j), I(i, j); (`D
n , ΘD

n ), (`I
n, Θ

I
n)) is the squared distance from the 3D point

D(i, j) = (x(i, j), y(i, j), z(i, j)) to the fitting surface S(`D
n , ΘD

n ) plus the fitness distance of

reflectance I(i, j) to the reflectance model J(`I
n, ΘI

n).

Ei,j = d2(D(i, j), S(`D
n , ΘD

n )) · δ(I(i, j) ≥ τ) + d2(I(i, j), J(`I
n, ΘI

n))

The depth data D(i, j) is considered missing if the reflectance I(i, j) is lower than a threshold

τ , i.e δ(I(i, j) ≥ τ) = 0. Such D(i, j) will not be used.

In practice, we use a robust statistics method to handle outliers [6] which truncates points

that are less than 25% of the maximum error. We further adopt the least median of squares

method based on orthogonal distance [38]. Alternative likelihood models for laser radar range

data [16], [17] could also be used in our framework.

C. Prior models on surfaces, boundaries and corners

In general, the prior model p(W ) should penalize model complexity, enforce stiffness of

surfaces, enhance smoothness of the boundaries, and form canonical corners at junctions. In

this paper, the prior model for W is

p(W ) = p(K)p(πK)
K∏

n=1

p(`D
n )p(ΘD

n |`D
n )p(`I

n)p(ΘI
n|`I

n).

πK = (R1, ..., RK) denotes a K-partition of the lattice Λ which forms a planar graph with

K faces for the regions, M edges for boundaries, and N vertices for corners, πK = (Rk, k =

1, ..., K; Γm,m = 1, ...,M ; Vn, n = 1, ..., N). We treat energy terms on Rk, Γm, and Vn
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independently, thus

p(πK) =
K∏

k=1

p(RK)
M∏

m=1

p(Γm)
N∏

n=1

p(Vn).

Our prior probability p(W ) consists of four parts.

1. Prior on surface number and area sizes

It is well known that a higher order model always fits a surface better than a lower or-

der model, but the former could be less stable in the presence of noise. Some conventional

model complexity criteria in model selection and merging techniques include MDL (minimum

description length) [34], AIC (Akaike Information Criterion), BIC (Bayesian information crite-

rion) [1]. A survey study for range surface fitting is reported in [7]. According to such criteria,

model complexity is regularized by three factors, which penalizes the number of surfaces K

and the number of parameters in each surface model #|Θ| respectively.

p(K) ∝ e−λoK , p(ΘD
n | `D

n ) ∝ e−λD#|ΘD
n |, and p(ΘI

n | `I
n) ∝ e−λI#|ΘI

n|, ∀n. (12)

However, in our experiments as well as in our previous work [36], we observed that such

criteria are not appropriate in comparison with human segmentation results. Conventional

model complexity criteria, like MDL, are motivated by shortest image coding. But the task

of segmentation and image understanding is very different from coding. The extent to which

an object is segmented depends on the importance and familiarity of the object in the scene

and the task. In particular, natural scenes contain a very broad range of sizes measured by

their areas. Unfortunately, it is impractical to define the importance of each type of object

in a general purpose segmentation algorithm, so we adopt a statistical model on the surface

areas |Rn|

p(Rn) ∝ e−α|Rn|c , ∀n = 1, 2, ..., K. (13)

where c is a constant and α is a scale factor to control the scale of the segmentation. In our

experiments, α is the only parameter that is left to be adjusted. All other parameters are set

to a single value for all experiments.
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2. Prior on B-spline control points for surface stiffness

For all the B-spline models, a prior is imposed on the control points {ξs,t : 0 ≤ s, t ≤ 2 or 3}

such that the surface is as planar as possible. We triangulate the spline grid on the ρ-plane,

and every adjacent three control points form a plane. The prior energy terms enforce the

normals of adjacent planes to be parallel to each other. A similar prior was used in the

wireframe reconstruction in [25].

3. Prior for surface boundary smoothness

Due to the heavy noise of the range data along surface boundaries, a boundary smoothness

prior is adopted, like in the SNAKE [23] or region competition model [39]. Let Γ(s) =

(x(s), y(s)), s ∈ [a, b] be a boundary between two surfaces,

p(Γ(s)) ∝ exp{−
∫

φ(Γ̇(s)) + φ(Γ̈(s))ds}, or p(Γ(s)) ∝ exp{−
∫ √

ẋ2(s) + ẏ2(s)ds}.

φ() is a quadratic function with flat tails to account for sharp L-shaped turns in boundaries.

We choose the second one as the smoothness prior.

4. Prior for canonical corners

On each vertex Vn we impose a prior model p(Vn), n = 1, 2, · · · , N adopted from the line-

drawing work in [25]. It assumes that the angles at a corner should be more or less equal.

To summarize, the Bayesian framework provides a convenient way for integrating multiple

generative models, for coupling two cues, and for introducing prior models. This enables us

to deal with complex natural scenes.

IV. Exploring the solution space by jump-diffusion

As we illustrated in the 1D case, the posterior probability is distributed over a countable

number of subspaces of varying dimensions. In the range segmentation literature, some meth-

ods, such as edge detection [24], region growing [19], [5], clustering [20], [12], and generalized

Hough transforms can produce useful information, but none of these methods are capable of
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exploring such complex spaces thoroughly.

Our algorithm extends the 1D range examples in Section II. It consists of six types of

Markov chain jumps and a boundary diffusion processes. To speed up the MCMC search,

we use data clustering in each model space and an edge detection/partition on the lattice Λ.

These are discussed in the following three subsections.

A. Six dynamics with jumps and diffusion

This subsection briefly presents the six types of moves/dynamics which form a Markov chain

that can traverse the solution space.

Dynamics 1: diffusion of region boundary – stochastic region competition.

Within a subspace of fixed dimension (i.e. the number of surfaces and their models are

given), the boundaries evolve according to a stochastic version of the region competition

equations [39]. Let Γij(s) = (x(s), y(s)), s ∈ (a, b) denote the boundary between two regions

Ri and Rj, and let (`D
i , ΘD

i , `I
i , Θ

I
i ) and (`D

j , ΘD
j , `I

j , Θ
I
j ) be the models of the two regions

respectively. The motion of curve Γij(s) follows the following equation [39].

dΓij(s)

dt
= −δ log p(W |D, I)

δΓij(s)
+

√
2T (t)dwt~n(s), dwt ∼ N(0, (dt)2). (14)

The Brownian motion is always along the curve normal direction ~n(s) = (−ẏ(s),ẋ(s))√
ẋ2(s)+ẏ2(s)

.

To couple with the continuous representation of curves Γij, we assume the lattice Λ to be a

continuous 2D plane. The curve Γij(s) is involved in three terms in the posterior p(W |D, I):

the smoothness prior and the likelihood on two regions Ri and Rj.

By a Green’s theorem and an Euler-Lagrange equation, the gradient is

dΓij(s)

dt
= { −2µκ(s) + log

p(D(x(s), y(s)); (lDi , ΘD
i ))

p(D(x(s), y(s)); (lDj , ΘD
j ))

· δ(I(x(s), y(s)) ≥ τ)

+ log
p(I(x(s), y(s)); lIi , Θ

I
i )

p(I(x(s), y(s)); lIj , Θ
I
j )

+
√

2T (t)
dwt

dt
}~n(s).

In the above equations κ(s) is its curvature. At each point (x(s), y(s)) along the curve, two
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local loglikelihood ratio tests compare the fitness of the two region models: one for the surface

model and the other for the reflectance model. When the range data is less reliable, i.e.

δ(I(x(s), y(s)) ≥ τ) = 0, its loglikelihood ratio test is not used. For clarity, we omit another

energy term originated from the prior in eqn. (13) on the areas |Ri| and |Rj|.

Dynamics 2: diffusion of vertices.

A vertex V = (x, y) refers to an intersection of more than two regions. It involves some

prior model p(V ) for canonical corners in the previous section, and the curvature is ill-defined

at such a point. Its diffusion is implemented by the Gibbs sampler [13]. That is, we consider a

local lattice, say 3×3 pixels, and randomly select a position subject to the posterior probability.

Dynamics 3: diffusion of surface and reflectance models.

The diffusion of the parameters ((ΘD
n , ΘI

n)) for a region Rn, n = 1, 2, ..., K, with other

variables in W fixed, is:

d(ΘD
n , ΘI

n)

dt
=

d log p(DRn , IRn ; `D
n , ΘD

n , `I
n, ΘI

n)

d(ΘD
n , ΘI

n)

Robust statistics methods are used in calculating the gradient. Some range pixels do not

contribute to the surface fitting if the reflectance is low. In experiments, we found that the

Brownian motion does not amount to any noticeable improvement in the above equation in

the parameter space; hence we leave it out in practice.

Dynamics 4: switching a surface or reflectance model `D
n or `I

n.

This is similar to the 1D example, but we have more families of model to choose from.

Suppose, at a time instance, a region Rn is selected to switch to a model `D
n . Then we need

some heuristic information for the new model ΘD
n . The importance proposal probability is

calculated, like q(φ |m) in equation (3), based on a number of candidate surfaces precomputed

by a data clustering approach. As we shall discuss below, data clustering is a better method

than the Hough transform in high dimensional spaces.

Dynamics 5 and 6: splitting and merging of regions.
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Split and merge are a pair of reversible moves to realize the jump process between subspaces.

Suppose that a region Rk with model (ΘD
k , ΘI

k) is split into two regions Ri and Rj with models

(ΘD
i , ΘI

i ) and (ΘD
j , ΘI

j ) respectively; the present state W and the new state W ′ are

W = (K, Rk, (l
D
k , ΘD

k ), (lIk, Θ
I
k)), W−),

W ′ = (K + 1, Ri, Rj, (l
D
i , ΘD

i ), (lIi , Θ
I
i ), ((l

D
j , ΘD

j ), (lIj , Θ
I
j ), W−).

W− includes all other variables in W that remain unchanged during this jump. The split and

merge are proposed with probability G(W → W ′)dW ′ and G(W ′ → W )dW , while the split

move is accepted with probability

α(W → dW ′) = min(1,
G(W ′ → dW )p(W ′|I)dW ′

G(W → dW ′)p(W |I)dW
). (15)

The merge proposal probability is,

G(W ′ → dW ) = q(6)q(Ri, Rj)q(`
D
k , ΘD

k |Rk)dΘD
k q(`I

k, Θ
I
k |Rk)dΘI

k. (16)

q(6) is the probability for choosing the merge move, and q(Ri, Rj) is the probability for

choosing Ri, Rj. q(`D
k , ΘD

k |Rk) is the probability for a new surface model. We first compute

an excessive number of candidates by a data clustering method, like the Hough transform

for the 1D case. Then each candidate model is voted by the pixels inside the region Rk,

and thus a non-parametric proposal probability is constructed for q(`D
k , ΘD

k |Rk) with weights

proportional to the number of votes.

Similarly, the split proposal probability is G(W → dW ′) =,

q(5)q(Rk)q(Γij|Rk)q(`
D
i , ΘD

i |Ri)dΘD
i q(`I

i , Θ
I
i |Ri)dΘI

i q(`
D
j , ΘD

j |Rj)dΘD
j q(`I

j , Θ
I
j |Rj)dΘI

j .

Once Rk is chosen to split, Γij is a candidate splitting boundary. In the 1D example, this is

randomly chosen by an edge strength function. In 2D this is selected from a set of candidate

partitions precomputed by edge detection.
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In the following, we focus on the computation of two importance proposal probabilities used

above: 1). q(Γ |R) – splitting the boundary of a region R. 2). q(`, Θ |R) – the new model of

a region (surface or reflectance).

B. Coarse-to-fine edge detection and partition

a). range image of an office scene b). edge detection and partition scale 1.

c). edge detection and partition scale 2, d). edge detection and partition scale 3

Fig. 6. Computed edge maps at three scales for an office scene.

In this section, we detect potential surface boundaries based on local edge cues, and trace

the edges to form a partition of the lattice which will be used as candidate boundaries in the

split-merge jumps. Since natural scenes contain objects in a broad range of sizes, we organize

the edge maps in three scales according to an edge strength measure that we shall discuss

below. For example, Figure 6 displays one example for an office scene in which the edges are

based on both range and reflectance measures.

To overcome noise, we first estimate the surface normal at each point (x, y) ∈ Λ over a

small window ∆, say 5 × 5 pixels. Let {pi = (xi, yi, zi) : (m,n) ∈ ∆(x, y), i = 1, 2, ..., |∆|} be

a set of 3D points in a local patch ∆ centered at (x, y), and p̄ be their mass center. One can

estimate the local surface normal by minimizing the quadratic error function [12]

n∗ = arg min
n

n′Sn, with S =
∑

i

(pi − p̄)(pi − p̄)′,
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where n∗ is the eigenvector of the scatter matrix S that corresponds to the smallest eigenvalue.

With the normal n, we fit a local plane ax + by + cz = d (c =
√

1− a2 − b2) to the patch,

and obtain a vector representation s = (a, b, d) for each point (x, y). An edge strength is

computed on this vector field using a technique from [30]. We compute a 2× 2 matrix at each

point (x, y),

Σ(x, y) =
∫ ∫

∆(x,y)

(∇xs
2, ∇xs∇ys

∇xs∇ys, ∇xs2

)
ρ(u− x, v − y) dudv, (17)

where ρ(u− x, v − y) is a Parzen window centered at (x, y). Let λ1 and λ2 (λ2 ≤ λ1) be the

two eigenvalues of the matrix, and v1 and v2 be the corresponding eigenvectors. Then the

edge strength, orientation and cornerness are measured by e, θ, and c respectively,

e(x, y) =
√

λ1 + λ2, θ(x, y) = arg(v1), c(x, y) = λ2.

In addition to computing the edge maps from range images, we also apply standard edge

detection to the reflectance image and obtain edge maps on three scales. We threshold the

edge strength e(x, y) at three levels to generate the edge maps shown in Figure 6 after tracing

them with heuristic local information to form closed partitions [10].

Choosing a region R to split, we superimpose R with one of the three edge maps depending

on the size of R (large regions will use coarse edge partitions in general). Then the edge

partitions within R are candidate subregions. Thus the splitting boundaries Γ are chosen

at random from a set of candidates. It is worth mentioning that these partitions are only

heuristics for proposal probabilities. Some mistakes on the boundary can still be corrected by

the boundary diffusion steps. As an alternative, we can always use the original lattice as the

partition at scale 4, which only slows down the algorithm. We refer to our previous work [36]

for a detailed formulation, and a more rigorous treatment is recently developed in [4] which

transfers the split-merge jumps into a graph partition problem and designs the split-merge by

a Swendsen-Wang cut method.
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C. Coarse-to-fine surface clustering

We compute importance proposal probabilities on the parameter spaces ΩD
1 , ΩD

2 , ΩD
3 , ΩD

4

and ΩD
5 respectively. These probabilities are expressed by a set of candidate surface models

in non-parametric forms. But, unlike the 1D example presented in Section II, we shall use

data clustering instead of Hough transforms for two reasons: 1). Hough transforms become

impractical in high dimensional space (say more than three dimensions), 2). Hough trans-

forms assume a 2-category detection and thus the peaks (candidates) in the space can be

contaminated by each other. In contrast, data clustering is more general.

In the edge detection step, we have fitted each small patch ∆ to a local plane (a, b, d) with

mass center p̄ and the smallest eigenvalue λmin of the scatter matrix S. Therefore, we collect

a set of patches by subsampling the lattice Λ by a factor of δ for computational efficiency,

Q = {(∆j, aj, bj, dj, p̄j, λmin,j : j = 1, 2, ..., J = |Λ|/δ2},

We can discard patches which have relatively large λmin, i.e. patches that are likely on the

boundary.

The patches in set Q are clustered into a set of C candidate surfaces in all five model spaces

C = {Θi : Θi ∈ ΩD
1 ∪ ΩD

2 ∪ ΩD
3 ∪ ΩD

4 ∪ ΩD
5 , i = 1, ..., C.}

where C is chosen to be excessive. We use the EM-clustering algorithm to compute the

candidate surfaces. Alternatively, one may use the mean-shift clustering method [8], [9].

For example, Figure 7 shows six selected clusters (among many) for a polyhedra scene.

Each cluster is associated with a “saliency map” where the brightness at a patch displays the

probability that it fits to the cluster (or candidate model). Such probability comes automat-

ically from the EM-clustering. It is very informative in such simple scenes where the models

are sufficient to describe the surfaces and objects have similar sizes.
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Fig. 7. A polyhedra range image with six saliency maps for six clustered surfaces.

In natural scenes, the results are less impressive. Very often small objects, like books on

the top of a desk, are relatively too small to form a separate cluster in the presence of other

large objects (clusters) like wall and ceiling. To resolve this problem, we compute the clusters

in a coarse-to-fine strategy. For example, Fig. 8 shows eight chosen saliency maps for the

most prominent clusters in the office scene, which correspond to the floor, desktop, furnace,

windows, walls, and ceiling respectively. The total sum of the probability over the lattice is

a measure of how prominent a cluster is. Then, for patches in Q that do not fit very well to

these prominent clusters, we refine the range data by subpixel interpolation, and conduct the

clustering on such areas. For example, the lower panel in Figure 8 displays six of the clusters

for a subarea (on the left, indicated by windows in the big scene above), such as, people,

chairbacks, small box, etc.

These candidate models are used to form the importance proposal probabilities as in the 1D

example. Given a region R, each pixel inside R votes for the candidate models by a continuous

probability. Then the proposed model is selected from the candidates proportional to their

votes and some random perturbations.
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a). range image b). reflectance image

Eight coarse clusters of the office scene

A patch of the scene and six refined clusters

Fig. 8. Saliency maps for office scene at two scales. See text for explanation.



29

V. Experiments

A. The datasets and preprocessing

We test the algorithm on three range datasets. The first two are the standard Perceptron

LADAR camera images and K2T structured light camera images in the USF dataset. The

third one is a dataset from Brown University, where images are collected with a long range

scanner LMS-Z210 by Riegl. The field of view is 800 vertically and 2590 horizontally. Each

image contains 444× 1440 measurements with an angular separation of 0.18 degree.

As range data are contaminated by heavy noise, some preprocessing algorithm is helpful

to deal with various errors present in the data, while preserving the discontinuities. In our

experiments, we adopt the least median of squares (LMedS) and anisotropic diffusion [37]

sequentially to remove noise. LMedS is related to the median filter used in image processing

to remove impulsive noise from images and can be used to remove strong outliers in range

data. The anisotropic diffusion removes small noise while preserving the discontinuities along

the surface boundaries.

B. Results and evaluation

We fix the parameters in the algorithm to be the same for all three datasets with only one

free parameter c in equation (13). This parameter controls the extent of the segmentation.

Even in human segmentation of the same scene, people may come up with coarse or very

detailed segmentations. The algorithm starts with arbitrary initializations: a 2 × 2 grid

partition or randomized initializations.

Figure 9 displays the segmentation results on four images in dataset 1. Figure 10 shows

two examples from dataset 2. For these two datasets, we only use range data and the segmen-

tations are superimposed on the reflectance images. For comparison, we also show a manual

segmentation used in [21] and [32]. We also show the 3D reconstructed scenes from a novel
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viewing angle using OpenGL based on our segmentation results and the fitted surface models.

This is a good way to examine the sufficiency of the models used. In these reconstructed 3D

scenes, the background and floor behind the occluding objects are completed using the simple

method discussed below. It is not surprising that the algorithm can parse such scenes very

well, because the image models are sufficient to account for the surfaces in these two datasets.

a. range data b. manual segment c. our result d). 3D reconstruction

Fig. 9. Segmentation results compared with the manual segments provided in [21]. We only use range data

and the segments are superimposed on the reflectance images in c. The reconstructions are shown in slightly

different views.

Six examples from the Brown dataset are shown in Figures 11 and 12. For lack of space,

we only show small part of each scene. The trees in these scenes are correctly segmented and

thus it seems that the clutter model does well for such cluttered regions.

Object surfaces in range images are often incomplete due to partial occlusion and poor
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a. range b. manual segment c. our result d. 3D reconstruction

Fig. 10. Segmentation on the second dataset compared with manual segmentations provided in [32]. We only

use range data and the segmentations are superimposed on the reflectance images in c. The reconstruction

are generated from novel views.

surface reflectance at various places. In the 3D scene reconstruction stage, it is important to

fill the missing data points and complete surfaces behind occlusions [11]. The completion of

depth information needs higher-level understanding of the 3D objects. In our experiments, we

use a simple method which proceeds in two steps. 1). Identify the types of boundaries, such

as creasing and occluding, based on the surface functions. 2). Compute the ownership of the

boundary. i.e. which surface is in the front. Once the surface order is computed, we complete

the occluded areas by extending the surface function fitted to that region. This works well

for the walls and the floor as we showed in the 3D reconstructed scenes in Figures 9 and 10.

But it is much more challenging to complete surfaces in the Brown dataset.

VI. Discussion

We adopt a Bayesian formulation to integrate two cues, many families of generative models,

and a number of prior models. We use a jump-diffusion process as a general tool for designing

Markov chains traversing the complex solution space so that the solution no longer depends

on initialization. The computational speed is largely expedited by bottom-up heuristics.
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a. range b. reflectance c. our result d. manual segment

Fig. 11. Segmentation results for parts of the four scenes in Fig. 1.

Some remaining problems that need to be resolved in future research include: 1). The

algorithm is still time consuming and takes about 1 hour on a Pentium IV PC to segment a

scene (usually having 300x300 pixels) with arbitrary initial conditions. Recent developments

using the Swendsen-Wang cut [4] suggest considerable improvements in speed. 2). The ex-

periments reveal that when the models are not sufficient, the segmentation is not good. For
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range reflectance our result

Fig. 12. Segmenting the most cluttered part of office B in Fig.1 and a scene with trees.

example, the cable in the air in Figure 11 is missing because of being a 1D structure, not

a region. 3). Better prior models for 3D objects are needed to group surfaces into objects,

and therefore to complete surfaces behind the occluding objects. 4). We acknowledge that

the manual segmentations used for evaluation may not correspond to the optimal solutions

given by the limited models, and it remains an open question for measuring the goodness of

a segmentation solution.
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