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Abstract This paper presents a new perspective for

3D scene understanding by reasoning object stability

and safety using intuitive mechanics. Our approach uti-

lizes a simple observation that, by human design, ob-

jects in static scenes should be stable in the gravity

field and be safe with respect to various physical dis-

turbances such as human activities. This assumption

is applicable to all scene categories and poses useful

constraints for the plausible interpretations (parses) in

scene understanding. Given a 3D point cloud captured

for a static scene by depth cameras, our method con-

sists of three steps: i) recovering solid 3D volumetric

primitives from voxels; ii) reasoning stability by group-

ing the unstable primitives to physically stable objects

by optimizing the stability and the scene prior; and

iii) reasoning safety by evaluating the physical risks for
objects under physical disturbances, such as human ac-

tivity, wind or earthquakes.

We adopt a novel intuitive physics model and rep-

resent the energy landscape of each primitive and ob-

ject in the scene by a disconnectivity graph (DG). We

construct a contact graph with nodes being 3D volu-

metric primitives and edges representing the support-

ing relations. Then we adopt a Swendson-Wang Cuts

Algorithm to group/partition the contact graph into

groups. Each group is a stable object. In order to de-

tect unsafe objects in a static scene, our method infers

hidden and situated causes (disturbances) of the scene,

and then introduces intuitive physical mechanics to pre-

B. Zheng and K. Ikeuchi
The University of Tokyo, Japan
E-mail: {zheng,ki}@cvl.iis.u-tokyo.ac.jp

Yibiao Zhao, Joey Yu and S.-C. Zhu
University of California, Los Angeles (UCLA), USA
E-mail: {ybzhao,chengchengyu}@ucla.edu
E-mail: sczhu@stat.ucla.edu

dict possible effects (e.g., falls) as consequences of the

disturbances.

In experiments, we demonstrate that the algorithm

achieves substantially better performance for i) object

segmentation, ii) 3D volumetric recovery, and iii) scene

understanding in comparison to state-of-the-art meth-

ods. We also compare the safety prediction from the

intuitive mechanics model with human ratings.

1 Introduction

1.1 Motivation and Objectives

Traditional approaches, e.g., (Shi and Fu 1983; Tu et al

2005), for scene understanding have been mostly fo-

cused on segmentation and object recognition from 2D/3D

images. Such representations lack important physical

information, such as the stability of the objects, po-

tential physical safety, and supporting relations which

are critical for scene understanding, situation awareness

and especially robot vision. The following scenarios il-

lustrate the importance of this information.

i) Stability and safety understanding. Our approach

utilizes a simple observation that, by human design, ob-

jects in static scenes should be stable in the gravity field

and be safe respect to various physical disturbances

such as human activities. This assumption poses use-

ful constraints for the plausible interpretations (parses)

in scene understanding.

ii) Human assistant robots. Objects have the poten-

tial to fall onto or hit people at workplaces, as the warn-

ing sign shows in Fig.1 (a). To prevent objects from

falling freely from one level to another, safety surveil-

lance ensures that objects be stored in safe places, es-

pecially for children, elders and people with disabilities.
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Fig. 1 A safety-aware robot can be used to detect poten-
tially physically unstable objects in a variety of situations: (a)
falling objects at a constructions site, (b) the human assis-
tant for baby proofing, and (c) the disaster rescue (from the
recent DARPA Robotics Challenge), where the Multi-Arm
robot needs to understand the physical relationships between
obstacles.

As the example shows in Fig.1 (b), we can predict a pos-

sible action of the child - he is reaching for something -

and then infer possible consequences of his action - he

might be struck by the falling teapot.

iii) Disaster rescue robots. Fig.1 (c) shows a demon-

stration of a HDR-IAI Multi-Arm robot rescuing peo-

ple during a mock disaster in the DARPA robot chal-

lenge (DARPA 2014). Before planning how to rescue

people, the robot needs to understand the physical in-

formation, such as which wood block is unsafe or un-

stable, and the support relations between them.

In this paper, we present an approach for reasoning

physical stability and safety of 3D volumetric objects

reconstructed from either a depth image captured by

a range camera, or a large scale point cloud scene re-

constructed by the SLAM technique(Newcombe et al

2011). We utilize a simple observation that, by human

design, objects in static scenes should be “stable” but

might not be “safe” with respect to gravity and vari-

ous physical disturbances caused by wind, a mild earth-

quake or human activities. For example, a parse graph

is said to be valid if the objects, according to its inter-

pretation, do not fall under gravity. If an object is not

stable on its own, it must be grouped with neighbors or

fixed to its supporting base. In addition, while objects

are stable physically, they might be potentially unsafe

if the places where they stay are prone to collisions

with human bodies during common activities. These

assumptions are applicable to all scene categories and

thus pose powerful constraints for the plausible inter-

pretations (parses) in scene understanding.

1.2 Overview

As Fig. 2 shows, given the input point cloud, our method

consists of two main steps: stability reasoning and safety

reasoning.

1) Stability reasoning: hierarchically pursuing a

physically stable scene understanding in two sub-steps:

– Geometric preprocessing: recovering solid 3D volu-

metric primitives from a defective point cloud. Firstly

we segment and fit the input 2 1
2D depth map or

point cloud to small simple (e.g., planar) surfaces;

secondly, we merge convexly connected segments into

shape primitives; and thirdly, we construct 3D vol-

umetric shape primitives by filling the missing (oc-

cluded) voxels, so that each shape primitive has

physical properties: volume, mass and supporting

areas to allow the computation of the potential en-

ergies in the scene.

– Reasoning maximum stability: grouping the primi-

tives to physically stable objects by optimizing the

stability and the scene prior. We build a contact

graph for the neighborhood relations of the primi-

tives. For example, as shown in Fig.2(c) in the sec-

ond row, the lamp on the desk originally was di-

vided into 3 primitives and would fall under gravity

(see result simulated using a physical simulation en-

gine in Fig. 2(d)), but becomes stable when they are

group into one object – the lamp. So is the computer

screen grouped with its base.

2) Safety reasoning – Given a static scene con-

sisting of stable objects, our method first infers hidden

and situated causes (disturbance field, red arrows in

Fig. 2(a)) of the scene, and then introduces intuitive

physical mechanics to predict the unsafety scores (e.g.,

falls) as the consequences of the causes. As shown in

Fig. 2(a) Output), since the cup is unsafe (falls off the

table) under the act of the disturbance field, it gets a

high unsafety score and a red label.

Our method adopts a novel intuitive physics model

based on an energy landscape representation using dis-

connectivity graph (DG). Based on the energy land-

scape, it defines the physical stability function explic-

itly by studying the minimum energy (physical work)

needed to change the pose and position of an object

from one equilibrium to another, and thus release po-

tential energy. For optimizing the scene stabilities, we
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Fig. 2 Overview of our method. (a) Input: 3D scene reconstructed by SLAM technique and Output: parsed 3D scene as
stable objects with supporting relations. The number are unsafety scores for each object under the disturbance field (in red
arrows), (b) scene parsing graphs corresponding to 3 bottom-up processes: voxel based representation (bottom), geometric
preprocess including segmentation and volumetric completion (middle), and stability optimization (top). (c) result at each
step. (d) physical simulation result of each step.

propose to construct a contact graph and adopt the

cluster sampling method, Swendsen-Wang Cut, intro-

duced in image segmentation (Barbu and Zhu 2005).

The algorithm groups/partitions the contact graph into

groups, each being a stable object.

In order to detect unsafe objects in a static scene,

our method first infers the “cause” - disturbance field,

such as human activities or natural effects. To model

the field of human disturbance, we collect the motion

capture data of human actions, and apply it to the 3D

scene (walkable areas) to estimate the statistical dis-

tribution of human disturbance. In order to generate a

meaningful human action field, we first predict primary

motions on the 2D ground plane which recodes the vis-

iting frequency and walking direction for each walkable

position, and add detailed secondary body part motions

in 3D space. In addition, we explore two natural dis-

turbances: wind and earthquakes. We then reason the

”effects” (e.g., falling) of each possible disturbance by

our intuitive physics model. In this case, we calculate

the minimum kinetic energy to move an entity from

one stable point to a local maximum, i.e.knocking it

off equilibrium, and then we further evaluate the risk

by calculating the energy released in reaching a deeper

minimum. That is, the greater the energy it releases,

the higher the risk is.

In experiments, we demonstrate that the algorithms

achieve a substantially better performance for i) object

segmentation, ii) 3D volumetric recovery of the scene,

and iii) scene understanding in comparison to state-of-

the-art methods in both public datasets (Nathan Sil-

berman and Fergus 2012). We evaluate the accuracy

of potentially unsafe object detection by ranking the

falling risk w.r.t. human judgements.

1.3 Related Work

Our work is related to 6 research streams in the vision

and robotics literature.

1. Geometric segmentation and grouping. Our ap-

proach for geometric pre-processing is related to a set

of segmentation methods, e.g., (Felzenszwalb and Hut-

tenlocher 2004; Janoch et al 2011; Attene et al 2006;

Poppinga et al 2008). Most of the existing methods are

focused on classifying point clouds for object category

recognition, not for 3D volumetric completion. For work

in 3D geometric reasoning, Attene et al (2006) extracts

3D geometric primitives (planes or cylinders) from a
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3D mesh. In comparison, our method is more faithful

to the original geometric shape of object in the point

cloud data. There has also been interesting work in con-

structing 3D scene layouts from 2D images for indoor

scenes, such as (Zhao and Zhu 2011; Lee et al 2009,

2010; Hedau et al 2010). Furukawa et al (2009) also

performed volumetric reasoning with the Manhattan-

world assumption on the problem of multi-view stereo.

In comparison, our volumetric reasoning is based on

complex point cloud data and provides more accurate

3D physical properties, e.g., masses, gravity potentials,

contact area,etc.

2. Physical reasoning. The vision communities have

studied the physical properties based on a single image

for the ”block world” in the past three decades (Bie-

derman et al 1982; Gupta et al 2010, 2011; Zhao and

Zhu 2011; Lee et al 2009, 2010)). E.g. Biederman et

al.(Biederman et al 1982) studied human sensitivity of

objects that violate certain physical relations. Our goal

of inferring physical relations is most closely related to

Gupta et al (2010) who infer volumetric shapes, occlu-

sion, and support relations in outdoor scenes inspired

by physical reasoning from a 2D image, and Silberman

et al. (Nathan Silberman and Fergus 2012; Jiang et al

2013; Guo and Hoiem 2013) who infers the support rela-

tions between objects from a single depth image using

supervised learning with many prior features. In con-

trast, our work is the first that defines explicitly the

mathematical model for object stability. Without a su-

pervised learning process, our method is able to infer

the 3D objects with maximum stability.

3. Intuitive physics model. The intuitive physics model

is an important perspective for human-level complex

scene understanding. However, to our best knowledge,

there is little work that mathematically defines intuitive

physics models for real scene understanding. (Jia et al

2013) adopts an intuitive physics model in (McCloskey

1983), however this model lacks deep consideration on

complex physical relations. In our recent work (Zheng

et al 2013, 2014), we propose a novel intuitive physics

model based on gravity potential energy transfer. In

this paper, we extend this intuitive physics model by

combining specific physical disturbance fields. While

Physics engines in graphics can accurately simulate the

motion of objects under the influence of gravity, it is

computationally too expensive for the purpose of mea-

suring object stability.

4. Safe Motion Planning. As motion planning is a

classic problem in robotics, (Petti and Fraichard 2005;

Phillips and Likhachev 2011) tackled the problem of

safe motion planning in the presence of moving obsta-

cles. They consider the moving obstacles as a real-time

constraint inherent to the dynamic environment. We

first argue that a robot needs to be aware of potential

dangers even in a static environment due to possible

incoming disturbances.

5. Human in the loop. This stream of research em-

phasizes a human-centric representation, differing from

the classic feature-classifier paradigm of object recog-

nition. Some recent work utilized the notion of ”affor-

dance”. Grabner et al (2011) recognized chairs by hal-

lucinating a ”sitting” actor interacting with the scene.

Gupta et al (2011) predicted the ”workspace” of a hu-

man given an estimated 3D scene geometry. Fouhey

et al (2012) and Delaitre et al (2012) demonstrated

that observing people performing different actions can

significantly improve estimates of scene geometry and

scene semantics. Jiang et al (2013) and Jiang and Sax-

ena (2013) proposed scene labeling algorithms by con-

sidering humans as the hidden context.

6. Cognitive studies. Recent psychology studies sug-

gested that approximate Newtonian principles underlie

human judgements about dynamics and stability (Flem-

ing et al 2010; Hamrick et al 2011) Hamrick et al.(Hamrick

et al 2011) showed that knowledge of Newtonian prin-

ciples and probabilistic representations are generally

applied for human physical reasoning. These intuitive

models are studied for understanding human behaviors,

not for vision robotics.

7. Semantic Labeling. Recently many semantic la-

beling methods for 3D point clouds play an important

role in robotics: Koppula et al (2011); Anand et al

(2012); Wu et al (2014), etc; in graphics: e.g., Nan et al

(2012); Shao et al (2012, 2014); Savva et al (2014), etc;

in 3D shape recognition: Karpathy et al (2013), etc. In

this paper, however we only focus on the stability and

safety reasoning and show its influence on scene under-

standing.

1.4 Contributions

This paper makes the following contributions.

1. It defines the physical stability function explicitly

by studying minimum forces and thus physical work

needed to change the pose and position of an primitive

(or object) from one equilibrium to another, and thus

to release potential energy.

2. It introduces a novel disconnectivity graph (DG)

from physics (Wales 2004) to represent the energy land-

scapes of objects.

3. It solves the complex optimization problem by

applying the cluster sampling method Swendsen-Wang

cut used in image segmentation (Barbu and Zhu 2005)

to physical reasoning.

4. It proposes an intuitive physics model for safety

prediction.
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5. It collects a new dataset for large scenes using

depth sensors for scene understanding and the data and

annotations will be released to the public.

Over the well-defined intuitive physics model in our

previous work (Zheng et al 2013), we extend it to a

safety model by introducing various disturbance fields.

The rest of this paper is organized as: Section 2

presents our geometric preprocessing method that first

forms solid object primitives from raw point clouds;

then the method for reasoning the maximal stability

for a static scene is described in Section 3; and reason-

ing the safety for each object in the scene is presented

in Section 4 followed by experimental results and dis-

cussions in Sections 5 and 6 respectively.

2 Preprocessing: Computing Solid Volumes

from Point Clouds

In order to infer the physical properties (e.g., mass,

gravity potential energy, supporting area) of objects

from point clouds, we first compute a 3D volumetric

representation for each object part. We proceed in two

steps: 1) point cloud segmentation, and 2) volumetric

completion.

2.1 Segmentation with Implicit Algebraic Models

We adopt a segmentation method using implicit alge-

braic models (IAMs) (Blane et al 2000) which fits IAMs

to point clouds with simple geometry.

fi(p) ≈ 0, (1)

where p = {x, y, z} is a 3D point and fi is defined by

an n-degree polynomial:

fi(p) =
∑

0≤i,j,k;i+j+k≤n

aijkx
iyjzk, (2)

where aijk are the unknown coefficients of the polyno-

mial. The main advantage of IAM is that it is conve-

nient for accessing the “inside” (fi < 0) or “outside”

(fi > 0) of a surface fitted by an IAM.

Our method is in 2 steps as Fig.3 (a) and (b) il-

lustrated: 1) splitting step: over-segmenting the point

cloud into simple regions approximated by IAMs, and

then 2) merging step: merging them together with re-

spect to their convexly connected relations.

2.1.1 Splitting Step

The objective in this step can be considered to be find-

ing the maximal 3D regions, each of them well fitted by

an IAM.

The IAM fitting for each region is formulated in

least squares optimization using the 3-Layer method

proposed by (Blane et al 2000) As shown in Figure 3(a),

it first generates two extra point layers along the surface

normals. Then, the IAM can be fitted to the point set

constrained by 3 layers with linear least squared fitting.

We adopt a region growing scheme (Poppinga et al

2008) in our segmentation. Thus our method can be

described as: starting from several given seeds, the re-

gions grow until there is no point that can be merged

into the region fitted by an IAM. We adopt the IAM

of 1 or 2 degree, i.e., planes or second order algebraic

surfaces and use the IAM fitting algorithm proposed by

Zheng et al., (Zheng et al 2010) to select the models in

a degree-increasing manner.

2.1.2 Merging Step

The above segmentation method over-segments the ob-

jects into pieces. This is still a poor representation for

objects, since only the segments viewed as faces of ob-

jects are obtained. According to a common observation

that an object should be composed of several convex

hulls (primitives) whose faces are convexly connected,

we propose a merging step that merges the convexly

connected segments together to approach the represen-

tation of object primitives.

To detect the convex connection, as shown in Fig. 3

(b), we first sample the points on a line which connects

two adjacent regions (the circle lines in Fig. 3 (b)) as:

{pl|pl ∈ L}, where L denotes a line segment whose

ends are on the two connected regions respectively. To

detect the convexly connected relationship, we take a

condition as the judgment:

#{p|pl ∈ L ∧ fi(pl) < 0 ∧ fj(pl) < 0}
#{p|pl ∈ L}

> δ2, (3)

where the ratio threshold δ2 is set as 0.6. As illustrated

in Fig 3 (b), since the circular points drawn between

f2 and f3 are negative, the segments should be merged.

Fig. 4 (a) and (b) shows the difference before and after

merging the convexly connected regions.

2.2 Volumetric Space Completion

The primitives output from the above method are still

insufficient to reason the physical properties, e.g., in

Fig. 4 (b), the wall and table have hollow surfaces with

holes and the cup has missing volume. To overcome

this, we first generate a voxel-based representation for

the point cloud such that each voxel can be viewed as

a small mass unit with its own volume, gravity and

contact region (contact faces of the cube). Secondly, we
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Fig. 3 (a)Splitting. Two 1-degree IAMs f1, f2 and f3 (in red, green and blue lines respectively) are fitted to the 3-Layer point
cloud. Points in green and blue are the extra layer points generated from original points in black. (b)Merging. the segments
fitted by f2 and f3 are merged together, because they are convexly connected. The convexity can be detected by drawing a
line (in circular points) between any two connected segments and checking if their function values are negative. (c) Volumetric
completion. Four types of voxels are estimated in volumetric space: invisible voxels (light green), empty voxels (white), surface
voxels (red and blue dots), and the voxels filled in the invisible space (colored square in light red or blue).

(a) over segmentation (b) convexly merging

 

(c) volumetric completion

 
data missing

Fig. 4 (a) Over-segmentation result obtained by splitting with IAMs. (b) Result after merging the convexly connected faces.
(see the difference on “mouse” object). (c) Result after volumetric completion. (see the difference on “cup” object and hole on
the back wall).

fill out the hidden voxels for each incomplete volumetric

primitive obtained by the segmentation result above.

2.2.1 Voxel Generation and Gravity Direction

Our voxel based representation is generated by con-

structing the octree of the point cloud as proposed

by Sagawa et al. (Sagawa et al 2005), after which the

point cloud is regularized into the coordinate system

under the Manhattan world assumption (Furukawa et al

2009), supposing many visible surfaces orient along one

of three orthogonal directions. To detect gravity direc-

tion, 1) we first calculate the distributions of the prin-

cipal orientations of the 3D scene by clustering the sur-

face normals into K (K > 3) clusters; 2) Then we ex-

tract three biggest clusters and take their corresponding

normals as three main orientations; 3) After the orthog-

onalization of these three orientations, we choose the

one with smallest angle to the Y-axis of camera plane

as the gravity direction.

2.2.2 Invisible Space Estimation

As light travels in straight lines, the space behind the

point clouds and beyond the view angles is not visi-

ble from the camera’s perspective. However this invis-

ible space is very helpful for completing the missing

voxels from occlusions. Inspired by Furukawa’s method

in (Furukawa et al 2009), the Manhattan space is carved

by the point cloud into three parts, as shown in Fig-

ure 3(c): Object surface S (colored-dots voxels), Invis-

ible space U (light green voxels) and Visible space E
(white voxels).

2.2.3 Voxels Filling

After obtaining labels by the above point cloud segmen-

tation, first each voxel on surface S inherits the labels

from the points that it enclosed. Then the completion

of the missing parts for the volumetric primitives can

be considered as guessing the label for each voxel which
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are invisible but should be belong to the object. As Fig-

ure 3 (b) illustrates, the algorithm can be described as:

Loop: for each invisible voxel vi ∈ U, i = 1, 2, . . .

1. Starting from vi to search the voxels, along 6 direc-

tions, until reach a voxel vj , j = 1 . . . , 6 that vj ∈ S.

or vj belongs to boundary of the whole space.

2. Checking the labels of vjs, if there are more than two

same labels exist, then assign this label to current

voxel.

Fig. 4 (c) shows an example of volumetrically com-

pleting the primitives from (b). With the voxel repre-

sentation, the primitives’ mass, center of gravity (CoG)

can be efficiently calculated.

3 Modeling Physical Stability and Safety

3.1 Energy Landscapes

Since any object (or primitive) has potential energy de-

termined by its mass and height to the ground, we can

generate its potential energy landscape according to the

environment where it stays.

The object is said to be in equilibrium when its cur-

rent state is a local minimum (stable) or non-local min-

imum (unstable) of this potential function (See Fig 5

for illustration). This equilibrium can be broken after

the object has absorbed external energy, and then the

object moves to a new equilibrium and releases energy.

Note that if too much uncontrolled energy is released,

the object is perceived to be ”unsafe”, which we will

discuss later. Without loss of generality, we divide the

change into two cases.

Case I: pose change. In Fig. 5 (a), the box on a desk

is in a stable equilibrium and its pose is changed with

external work to raise its center of mass. We define the

energy change needed for the state change x0 → x1 by

Er(x → x) = (Rc− t) ·mg, (4)

where · denotes inner product, R is rotation matrix;

c is the center of mass, g = (0, 0, 1)T is the gravity

direction, t1 is the lowest contact point on the support

region (its corners). Suppose the support region is flat,

only the rotations of roll and pitch change the object

CoM. Thus we can visualize the energy landscape in a

spherical coordinate system (φ, θ): S2 → R with two

pose angles {φ ∈ [−π π], θ ∈ [−π/2, π/2]}. In Fig. 5

(b), the blue color means lower energy and red means

high energy. Such energy can be computed for any rigid

objects by bounding the object with a convex hull. We

refer to the early work of Kriegman (Kriegman 1995)

for further details.

Case II: position change. We consider the position

change when object is viewed as a mass point and can

move to different position in its environment. For ex-

ample, as shown in Fig. 5 (c), the box on desk at stable

equilibrium state x0, one can push it to the edge of the

desk. Then it falls to the ground and releases energy

to reach a deeper minimum state x2. The total energy

change need to consider the gravity potentials and the

frictions which is overcome by a work absorbed.

Et(x → x) = −(c− t) ·mg +Wf , (5)

where t ∈ R3 is the translation parameter (shortest

path to the final position x2), and Wf is the absorbed

energy for overcoming the frictions:

Wf = fc · mg
√

(t1 − c1)2 + (t2 − c2)2 given the fric-

tion coefficient fc. Note for common indoor scenes, we

choose fc as 0.3 as common material such as wood.

Therefore the energy landscape can be viewed as a map

from 3D space R3 → R.

3.2 Disconnectivity Graph Representation

The energy map is continuously defined over the object

position and pose. For our purpose, we are only inter-

ested in how deep its energy basin is at the current state

(according to the current interpretation of the scene).

As the interpretation changes during optimization pro-

cess, the energy landscape for each object will be up-

dated. Therefore, we represent the energy landscape by

a so-called disconnectivity graph (DG) which has been

used in studying spin-glass models in physics (Wales

2004). As Fig. 6 illustrates that, in the DG, the vertical

lines represent the depth of the energy basins and the

horizontal lines connect adjacent basins. The DG can

be constructed by an algorithm scanning energy lev-

els from low to high and checking the connectivity of

components at each level (Wales 2004).

From the disconnectivity graph, we can conveniently

calculate two quantities: Energy absorption and Energy

release during the state changes.

Definition 1 The energy absorption ∆E(x → x̃) is the

energy absorbed from the perturbations, which moves

the object from the current state x0 to an unstable equi-

librium x̃ (say a local maximum or an energy barrier).

For the box on the desk in Fig.5, its energy absorp-

tion is the work needed to push it in one direction to

an unstable state x1. For the state x2, its energy bar-

rier is the work needed (to overcome friction) to push

it to the edge. In both cases, the energy depends on the

direction and path of movement.
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Fig. 5 An example of potential energy map determined by pose and position changes: (a) the box on desk changes pose
from state x0 to x1. Mass center trajectory is shown as black arrow. (b) the energy map of changing box poses in arbitrary
directions. State x0 is at local minimum on the map. (c) the box on desk changes position from state x0 to x2; (d) the energy
map of changing box position. Due to friction is considered, State x0 is at local minimum on the map.

Definition 2 Energy release ∆E(x̃ → x′) is the po-

tential energy released when an object moves from its

unstable equilibrium x̃ to a minimum x′0 which is lower

but connected by the energy barrier.

For example, when the box falls off from the edge of

the table to the ground, energy is released. The higher

the table, the larger the released energy.

3.3 Definition of Stability

With DG, we define object stability in 3D space.

Definition 3 The instability S(a,x0,W ) of an object a

at state x0 in the presence of a disturbance work W is

the maximum energy that it can release when it moves

out of the energy barrier by the external work W .

S(a,x0,W )

= max
x′0
4E(x̃→ x′)δ([min

x̃
4E(x → x̃)] ≤W ), (6)

where δ() is an indicator function and δ(z) = 1 if con-

dition z is satisfied, otherwise δ(z) = 0. 4E(x → x̃)

is the energy absorbed, if it is overcome by W , then

δ() = 1, and thus the energy 4E(x̃ → x′) is released.

We find the easiest direction x̃ to minimize the energy

barrier and the worst direction x′0 to maximize the en-

ergy release. Intuitively, if S(a,x0,W ) > 0, then the

object is said to be unstable at level W disturbance.

3.4 Definition of Safety

We measure the safety by supposing a specific distur-

bance field as potentially existing in the scene, such hu-

man activities, winds or earthquakes. This specific dis-

turbance field should have nonuniform and directional

energy distribution.

Definition 4 The risk R(a,x0) of an entity a at po-

sition x0 in the presence of a disturbance field p(W,x)

energy barrier

unstable equilibrium

local minimum

stable equilibrium

(a) Energy funtion (b) Disconnectivity graph

current state

x0

x
~

x0' x0'

x0

x
~

Fig. 6 (a) Energy landscapes and its corresponding discon-
nectivity graph (b).

is the expected risk with respect to the disturbance dis-

tribution.

R(a,x0) =

∫
p(W,x0)S(a,x0,W )dW, (7)

For example, it is more unsafe if there exist a dis-

turbance that makes the box in Fig. 5 fall off from the

desk than just fall down on the desk.

With the definition of the instability and risk, we

first present the algorithm for static scene understand-

ing by reasoning the stability in Sec.4, and then we in-

troduce the inference of the disturbance field in Sect.5.1

and the calculation of potential energy and initial ki-

netic energy given a disturbance in Sect.5.2

4 Reasoning Stability

4.1 Stability Optimization

Given a list of 3D volumetric primitives obtained by

our geometric reasoning step, we first construct the con-

tact graph, and then the task of physical reasoning can

be posed as a well-known graph labelling or partition

problem, through which the unstable primitives can be

grouped together and assigned the same label to achieve
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Fig. 7 Example of illustrating the Swendsen-Wang cut sampling process. (a) Initial state with corresponding contact graph.
(b) shows the grouping proposals accepted by SWC at different iterations. (c) convergence under increasingly (from left to
right) larger disturbance W and consequently the table is fixed to the ground. (d) shows two curves of Energy released v.s.
number of iteration in SWC sampling corresponding to (b) and (c).

global stability of the whole scene at a certain distur-

bance level W .

4.2 Contact Graph and Group Labeling

The contact graph is an adjacency graph G =< V,E >,

where V = {v1, v2, ..., vk} is a set of nodes representing

the 3D primitives, and E is a set of edges denoting the

contact relation between the primitives. An example is

shown in Fig.7 (a) top where each node corresponds

to a primitive in Fig. 7 (a) bottom. If a set of nodes

{vj} share a same label, that means these primitives

are fixed to a single rigid object, denoted by Oi, and

their instability is re-calculated according to Oi.

The optimal labeling L∗ can be determined by min-

imizing a global energy function, for a disturbance level

W

E(L|G;W ) =
∑
Oi∈L

(S(Oi,x(Oi),W )−F(Oi)), (8)

where x(Oi) is the current state of grouped object Oi.

The new term F represents a penalty function express-

ing the scene prior and can be decomposed into three

terms.

F(Oi) = λf(Oi) + λf(Oi) + λf(Oi), (9)

where f1 is the total number of voxels in object Oi; f2
is the geometric complexity of Oi, which can be simply

computed as the summation of the difference of normals

for any two connected voxels on its surface; and f3 is

the freedom of object movement on its support area.

f3 can be calculated as the ratio between the support

plane and the contact area #S
#CA of each pair of primi-

tives {vj , vk ∈ Oi}, where one of them is supported by

the other. After they are regularized to the scale of ob-

jects, the parameters λ1, λ2 and λ3 are set as 0.1, 0.1,

and 0.7 in our experiment. Note, the third penalty is

designed from the observation that, e.g., a cup should

have freedom of movement supported by a desk, and

therefore the penalty arises if the cup is assigned the

same label as the desk, as shown in Fig. 2. Therefore

under the stable conditions, objects should have maxi-

mal freedom of movement.

4.3 Inference of Maximum Stability

As the labels of primitives are coupled with each other,

we adopt the graph partition algorithm Swendsen-Wang

Cut (SWC) (Barbu and Zhu 2005) for efficient MCMC

inference. To obtain the globally optimal L∗ by the

SWC, the next 3 main steps work iteratively until con-

vergence.

Algorithm 1: SWC Inference

Input: G =< V,E >, discriminative probabilities qe,
e ∈ E and generative posterior probability
p(L|G;W )

Output: Samples L∗ ∼ p(L∗|G;W )
1 Initialize a graph partition π : G = ∪n

l=1Gl

2 for current state L = π do
3 for subgraph Gl =< Vl, El >, l = 1, 2, . . . , n in L

do
4 for e ∈ El turn e =“on” with probability qe in

Eq. (10) do
5 Partition Gl into nl connected

components: gli =< Vli,Eli
>

6 end
7 Collect all the connected components in

CPP= {Πli : l = 1, . . . , n, i = 1, . . . , nl}.
8 end
9 Select a connected component Π ∈ CPP randomly

10 Propose to reassign Π to a subgraph Gl′

11 Accept the move with probability α(L→ L′) in
Eq.(11)

12 end

(i) Edge turn-on probability. Each edge e ∈ E is as-

sociated with a Bernoulli random variable µe ∈ {on, off}
indicating whether the edge is turned on or off, and

a weight reflecting the possibility of doing so. In this

work, for each edge e =< vi, vj >, we define its turn-on
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(a) (b)

Fig. 8 (a) The input point cloud; (b) Hallucinated human action field and detected potential falling objects with red tags.

probability as:

qe = p(µe = on|vi, vj) = exp (−(F (vi, vj)/T ), (10)

where T is temperature factor and F (·, ·) denotes the

feature between two connected primitives. Here we adopt

a feature using the ratio between contact area (plane)

and object planes as: F = #CA
max(#Ai,#Aj)

, where CA is

the contact area, Ai and Aj are the areas of vi and vj
on the same plane of CA.

(ii) Graph Clustering. Given the current label map,

it removes all edges between nodes with different la-

bels. Then all the remaining edges are turned on inde-

pendently with probability qe. Thus, we have a set of

connected components (CCPs) Π’s, in which all nodes

have the same category label.

(iii) Graph Flipping. It randomly selects a CCP Π

from the set formed in step (ii) with a uniform proba-

bility, and then flips the labels of all nodes in Π to a

label l′ ∈ {1, 2, ..., L}. The flip is accepted with proba-

bility (Barbu and Zhu 2005):

α(L→ L′) =

min (1,

∏
e∈C(V,VL′�V)

(1− qe)∏
e∈C(V,VL−V)

(1− qe)
· p(L

′|G;W )

p(L|G;W )
), (11)

where p = 1
z exp (−E). Fig. 7 illustrates the process of

labeling a number of primitives of a table into a single

object. SWC starts with an initial graph in (a), and

some of the sampling proposals are accepted by the

probability (11) shown in (b) and (c), resulting in the

energy v.s. iterations in (d). It is worth noticing that

i) in case of Fig. 7 (b), the little chair is not grouped

to floor, since the penalty term A3 penalizes the legs

grouping with the floor; and ii) with increased distur-

bance W , the chair is fixed to the floor.

We summarize the main three steps above in Al-

gorithm 1. Here we adopt an annealing scheme in the

MCMC sampling process, when the temperature is low,

the algorithm will converge to a global optimal solution,

i.e. partition, with very high probability. Fortunately,

the solution space in our algorithm is quite small af-

ter geometric processing. For example, there are only

12 geometric entities as graph nodes in the table scene

in Fig. 4 (c), and the algorithm converges in several

seconds.

5 Reasoning Safety

While the objects are stable in the gravity field of a

static scene after reasoning the stability, they might be

unsafe under a potential specific physical disturbance,

such as human activities. For example, all the objects

shown in Fig.8 (a) can be parsed correctly to be stable

in the scene, but if the physical disturbance generated

from human common activities is applied, the objects

show different safety levels.

Our method infers the disturbance field caused by

an earthquake or wind, as well as the human action dis-

turbance field. Given the scene geometry and walkable

area, we detect the potential falling objects by calcu-

lating its expected falling risk given a disturbance field

in Fig.8 (b).

5.1 Safety Under Different Disturbances

5.1.1 Natural Disturbance Field

Aside from the gravity applying a constant downward

force to all the voxels, other natural disturbances such
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(a) (b)

Fig. 9 Primary motion field: (a) The hallucinated human
trajectories (white lines); (b) The distribution of the primary
motion space. The red represents high probability to be vis-
ited.

as earthquakes and winds are also present in a natural

scene.

1) Earthquake transmits energy by forces of inter-

actions between contacting surfaces, typically by the

frictions in our scenes. Here, we estimate the distur-

bance field by generating random horizontal forces to

the voxels along the contacting surfaces. We use a cer-

tain constant to simulate the strength of the earthquake

and the work W it generates.

2) Wind applies fluid forces to exposed voxels in the

space. A precise simulation needs to simulate the fluid

flow in the space. Here, we simplify it as a uniformly

distributed field over the space.

5.1.2 Human Action Disturbance Field

In order to generate a meaningful disturbance field of

human actions, we decompose the human actions into

the primary motions i.e.the center of mass movements

in Fig.9 and the secondary motions i.e.the body parts’

movements in Fig.10 We first predict a human primary

motion field on the 2D ground plan, and add detailed

secondary motions in 3D space on top. The disturbance

field is characterized by the moving frequency and mov-

ing velocity for each quantized voxel.

The primary motion field captures the move-

ment of human body as a particle. We estimate the

distribution of primary human motion space by synthe-

sizing human motion trajectories following two simple

observations:

1) A rational agent mostly walks along a shortest

path with minimal effort;

2) An agent has a basic need to travel between any

two walkable positions in the scene.

Therefore, we randomly pick 500 pairs of positions

in the walkable space, we calculate the shortest path

connecting these two positions as shown in Fig.9 (a),

(a) (b)

Fig. 10 Secondary motion field: (a) Secondary motion tra-
jectories from motion capture data; (b) Distribution of the
secondary motion field. Long vectors represent large velocity
of body movement.

and we calculate the walking frequency as well as walk-

ing directions based on the synthesized trajectories. Fig.9

(b) demonstrates a distribution of walkable space; the

red color means the position has high probability to be

visited, and the length of the small arrows shows the

probability of moving directions.

In Fig.9 (b), we can see that convex corners, e.g.

table corners, are more likely to be visited, and objects

in these busy area may have higher risk than the ones

in concave corners. A hallway connecting two walka-

ble area is also frequently visited, and objects in the

hallway are less safe too. Note the distribution of mov-

ing directions is also very distinctive. It helps to locate

human body movement in the right direction for gen-

erating the human disturbance field.

The secondary motion field is the movement
that is not part of the main action, for example, arms

swinging while walking. The secondary motion is im-

portant to capture the random disturbance; for exam-

ple, people may push objects off the edge of the table

by hand or kick objects on the ground by foot. We

also the Kinect camera to collect human motion cap-

ture data Fig.10 (a), and then calculate the distribution

of moving velocities as shown in Fig.10 (b).

The primary motion field further convolves with sec-

ondary motion field, thus generating a dense distur-

bance field that captures the distribution of motion ve-

locity for each voxel in the space. The disturbance field

is then represented by a probability distribution over

the entire space for the velocities along different direc-

tions and frequencies that they occur. For example, a

box in the middle of a large table will not be reachable

by a walking person and thus the distribution of veloc-

ity above the table center, or any unreachable points, is

zero. Five typical cases in the integrated field is demon-

strated in Fig.11



12 Bo Zheng et al.
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Fig. 11 The integrated human action field by convolving primary motions with secondary motions. The objects a-e are five
typical cases in the disturbance field: the object b on edge of table and the object c along the passway exhibit more disturbances
(accidental collisions) than other objects such as a in the center of the table, e below the table and d in a concave corner of
space.

5.2 Calculating the Physical Energy

Given the disturbance field, in this section we present

a feasible way for calculating input work (energy) that

might lead to an object falling. However, building so-

phisticated physical engineering models is not feasible,

as it becomes intractable if we consider complex object

shapes and material properties, e.g., to detect a box

falling off from a table, a huge amount of actions need

to be simulated until meeting the case of the human

body acting on the box. The relation between intuitive

physical models and human psychology was discussed

by a recent cognitive study (Hamrick et al 2011)

In this paper, for simplicity, we make following as-

sumptions: 1) All the objects in the scene are rigid; 2)

All the objects are made from same material, such as

wood (friction coefficient: 0.3, uniform density: 700kg/m3);

and 3) A scene is a dissipative mechanical system such

that total mechanical energy along any trajectory is

always decreasing due to friction, while kinetic and po-

tential energy may be traded off at different states due

to elastic collision.

Given the human motion distribution with velocity

of each body part, we intuitively calculate the kinetic

energy of human motion, as the input work. Here, we

simplify the parts of body as mass points and at each

location in 3D space its kinetic energy can be calculated

given the mass of parts. For example, supposing the

mass of right hand with upper arm is about 700g, we

can simply calculate out the kinetic energy distribution

by multiplying half of the velocity squares.

Office Living room desk total

Scenes 5 4 4 13

Table 1 Summary of the Dataset. Some samples are shown
in Fig. 12

6 Experimental Result

We quantitatively evaluate our method in four crite-

ria: i) single depth image segmentation, ii) volumetric

completion evaluation, iii) physical inference accuracy

evaluation, and iv) safety ratings for objects in scene.

All these evaluations are based on three datasets:

– the NYU depth dataset V2 (Nathan Silberman and

Fergus 2012) including 1449 RGBD images with man-

ually labeled ground truth.

– synthesized depth map and volumetric images sim-

ulated from CAD scene data.

– 13 reconstructed 3D scene data captured by Kinect

Fusion (Fig. 12) gathered from office and residential

rooms with ground truth labeled by a dense mesh

coloring.

6.1 Evaluating Single Depth Image Segmentation

Two evaluation criteria: “Cut Discrepancy” and “Ham-

ming Distance” mentioned in Chen et al (2009) are

adopted. The former measures errors of segment bound-

aries to ground truth, and the latter measures the con-

sistency of segment interiors to ground truth. As shown

in Fig. 14, our segmentation by physical reasoning has

a lower error rate than the other two: region growing

segmentation Poppinga et al (2008), and our geometric

reasoning.
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Fig. 12 Samples of our dataset.

(a) (b) (c) 

Fig. 13 Segmentation result for single depth images. (a) RBG images for reference. (b) segmentation result by region grow-
ing Poppinga et al (2008). (c) stable volumetric objects by physical reasoning.

Fig. 13 shows some examples of comparing another

point cloud segmentation result Poppinga et al (2008)

and our result. However it is worth noticing that, be-

yond the segmentation task, our method can provide

richer information such as volumetric information, phys-

ical relations, stabilities, etc.

Fig. 15 shows a qualitative comparison with the

method proposed in Jia et al (2013, 2014). However we

would like to clarify that our method is not designed

for segmentation but for understanding the physical re-

lations such as unfixed support or fixed in the scene.

As shown in Fig. 13 (c), our method fixed a kitchen

cabinet onto the wall. From the view of segmentation,

this is viewed as a miss-merged segment, but it reflects

the truth of physics that kitchen cabinet seems to be
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(a) (b) (c) (d)

Fig. 15 Intuitive result comparison: (a) original RGB iamges for reference, (b) 3D point cloud and boxes calculated with the
method proposed by Jia et al (2013), (c) the corresponding segmentation result of (b), and (d) our result.
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Fig. 14 Segmentation accuracy comparison of three meth-
ods: Region growing method Poppinga et al (2008), result of
our geometric reasoning and physical reasoning by one “Cut
Discrepancy” and three “Hamming Distance”.

a part of the wall and it is difficult to move it on the

wall.

6.2 Evaluating Volumetric Completion

For evaluating the accuracy of volumetric completion,

we densely sample point clouds from a set of CAD data

including 3 indoor scenes. We simulate the volumetric

data (as ground truth) and depth images from a cer-

tain view (as test images). We calculate the precision

and recall which evaluates voxel overlapping between

ground truth and the volumetric completion of testing

data. Tab. 6.2 shows the result that our method has

much better accuracy than traditional Octree meth-

ods such as Sagawa et al (2005). Fig. 16 intuitively

illustrates the completed objects (bottom row) by our

method have more overlaps with ground truth planes

Octree Invisible space Vol. com.

Precision 98.5% 47.7% 94.1%
Recall 7.8% 95.1% 87.4%

Table 2 Precision and recall of Volumetric completion. Com-
parison of three method: 1) voxel-based representation gen-
erated by Octree algorithm (Sagawa et al 2005), 2) voxels in
surface and invisible space (sec. 2.2), and 3) our volumetric
completion.

Fig. 16 Examples of volumetric completion. Top row:
densely sampled point clouds (in blue) in a view direction
with missing parts referring to the original shape guide lines
(in red). Bottom row: volumetric completions of the objects
in top row.

(top row in red) than the original sample point clouds

(top row in blue).

6.3 Evaluating Physical Inference Accuracy

Because the physical relations are defined in terms of

our contact graph, we map the ground-truth labels to

the nodes of contact graphs obtained by geometric rea-

soning. Than we evaluate our physical reasoning against

two baselines: discriminative methods using 3D feature

priors similar to the method in Nathan Silberman and

Fergus (2012), and greedy inference methods such as
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relations Discriminative Greedy SWC

fixed joint 20.5% 66% 81.8%
support 42.2% 60.3% 78.1%

Table 3 Results of inferring the fixed joints and support
relations between primitives. Accuracy is measured by nodes
of the contact graph whose label is correctly inferred divided
by the total number of labeled nodes.

the marching pursuit algorithm for physical inference.

The result shown in Tab. 6.3 is evaluated by the average

over 13 scene data captured by Kinect Fusion.

Figure 17 (a)-(d) and (e)-(j) show two examples

from the results. Here we discuss some irregular cases

illustrated by close-ups of the figures.

Case I: Figure 17 (c) the ball is fixed onto the handle

of sofa. The reason can be considered as: stability of the

“ball” is very low measured by Eq. (6). The unstable

state is calculated out as that it trends to release much

potential energy (draw from the sofa) by absorbing lit-

tle possible energy (e.g., the disturbance by human ac-

tivity).

Case II: Figure 17 (d) the “air pump” unstably

stands on floor but is an independent object, because

although its stability is very low, the penalty designed

in Eq.(7) penalized it to be fixed onto the floor. The

lamp is not affixed for the same reason, as shown in

Figure 17 (h).

Case III: Figure 17 (g) the “empty Kinect box” with

its base is fixed together with the shelf, because of the

mis-segmentation of the base, i.e., the lower part of base

is mis-merged to the top of the shelf.

Case IV: Figure 17 (i) voxels under the “chair” are

completed with respect to stability. The reasons are:

1) our algorithm reasons the hidden part occluded in

invisible space. 2) the inference of the hidden part is

not accurate geometrically, but it helps to form a stable

object physically. In contrast, the original point cloud

shown in Figure 17 (j) misses more data.

6.4 Running system and time

All the experiments were implemented in Matlab 2012a

with a modern PC having an Intel core i7 CPU, 3.4

GHz, and 16 GB memory. For dealing with one single

image, such as shown in Fig. 13, the running time is

around 2 minutes. For large scene data, such as the

cases shown in Fig. 17 and 12 , the running time is

around 7-12 minutes.

1

2

3

4 5
6

7

8

safe

unsafe

human scores

m
o
d
e
l 
s
c
o
re

s

3

5
7

6

8

 

1 105

1

5

10

1

2

4

(a) (b)

unsafe

Fig. 20 Scoring object unsafeness in a scene (a) with 8 ob-
jects. We show the correlation graph (b) with human score
against our measurement R(a,x) which is normalized from 1
to 10. Color/shape points show human vs. model scores cor-
responding to different persons. Circle points with numbers
inside show the average of human vs. model scores for each
object corresponding to (a).

6.5 Evaluating Safety Ratings

First we provide a selected qualitative result shown in

Fig. 18. We compare the potential falling objects under

three different disturbance fields: 1) The human action

field in Fig. 18 (b,e); 2) The wind field (a uniform direc-

tional field) in Fig. 18 (c,f) and 3) earthquake (random

forces on contacting object surface) in Fig. 18 (d,g).

As we can see the cups with red tags are detected as

potential falling objects, which is very close to human

judgments: (i) objects around the table corner are not

safe w.r.t human walking action; (ii) objects along the

edge of wind direction are not safe w.r.t wind distur-

bance; and (iii) object along all the edges are not safe

w.r.t earthquake disturbance.

Next we report selected results in different 3D scenes,

as shown in Fig. 19 top row: vending machine room

and bottom row: copy machine room. We can see that,

according to human motions, the cans on vending ma-

chine room at risky of being kicked off, while the can

near the window is considered stable, since people can

rarely reach there. In the copy room, the objects put

on the edges of table are at more risk than others.

6.6 Discussion

For evaluating safety ratings, we rank object unsafeness

in a scene in comparison with human subjects. Fig. 20

(a) shows a 3D scene (constructed in CAD design), from

which we pick 8 objects and ask 14 participants to rank

the unsafeness of these objects considering gravity, com-

mon life activity and the risk of falling. We compare the

human ranking with our unsafeness function R(a,x) in

Fig. 20 (b). We found that 1) humans got big variations
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(b)

(a)

(h)

(f)
(g)

(d)(c)
(i) (j)(e)

Fig. 17 Example result. (a) and (e): data input. (b) and (f): volumetric representation of stable objects. (c): the ball is fixed
onto the handle of sofa. (d): the “pump” is unstable (see text). (i): a irregular case of (g). (j): hidden voxels under chair
compared to (h).

(a) (b) (c) (d)

(e) (f) (g)

Fig. 18 The potential falling objects (with red tags) under the human action field (b,e), the wind field (c,f) and the earthquake
field (d,g) respectively. The results match with human perception: (i) objects around table corner are not safe w.r.t human
walking action; (ii) object along the edge of wind direction are not safe w.r.t wind disturbance; and (iii) object along all the
edges are not safe w.r.t earthquake disturbance.

while considering the safeness, due to deeper consider-

ation of information such as material; 2) however, the

model got similar ranking scores with the average of

human rankings. As shown in Fig. 20 (b), the average

of human vs. model scores for each object lies near to

the diagonal line.

7 Conclusion

We present a novel approach for scene understanding

by reasoning their instability and risk using intuitive

mechanics with the novel representations of the dis-

connectivity graph and disturbance fields. Our work is

based on a seemingly simple but powerful observation
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that objects, by human design, are created to be stable

and have maximum utility (such as freedom of move-

ment). We demonstrated its feasibility in experiments

and show that this provides a new method for object

grouping when it is hard to pre-define all possible object

shapes and appearance in an object category.

This paper also presents a novel approach for detect-

ing potential unsafe objects. We demonstrated that, by

applying various disturbance fields, our model achieves

a human level recognition rate of potential falling ob-

jects on a dataset of challenging and realistic indoor

scenes. Differing from the traditional object classifi-

cation paradigm, our approach goes beyond the esti-

mation of 3D scene geometry. The approach is imple-

mented by making use of “causal physics”. It first in-

fers hidden and situated “causes” (disturbance) of the

scene, and introduces intuitive mechanics to predict

possible “effects” (falls) as consequences of the causes.

Our approach revisits classic physics-based representa-

tion, and uses the state-of-the-art algorithms. Further

studies along this way, including friction, material prop-

erties, causal reasoning, can be very interesting dimen-

sions of vision research.

In future research, we plan to explore several di-

rections: i) Connecting our work to human psychology

models like the one in (Hamrick et al 2011), and to

compare our results with human experiments; ii) Study-

ing material properties in typical indoor scenes, and

thus to reason about the materials jointly with stabil-

ity, especially if we can see object movements in video;

iii) Combing the physical cues with other appearance

and geometric informations for scene parsing; and iv)

Studying other specific action distributions to reason

about whether a room is safe to children and infants.
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Fig. 19 (a) Input 3D scene point clouds; (b) Segmented volumetric objects in different colors and inferred disturbance fields
of human activity; (c) objects with risk scores. (d) Zoom-in details of detected potential risky objects.


