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Abstract This paper presents a data-driven cluster

sampling framework for parsing scene images into generic

regions (such as the sky, mountain and water) and ob-

jects (such as cows, horses and cars). We adopt gener-

ative models for both generic regions and objects, thus

their likelihood probabilities are comparable and are

learned under a common information projection prin-

ciple. The inference algorithm follows the data-driven

Markov Chain Monte Carlo (DDMCMC) paradigm where

the object and generic region models cooperate and

compete for an optimal interpretation of the scene in

a Bayesian framework. The algorithm has two phases:

(i) Bottom-up computation for generating data-driven

proposals. There are two types of proposals: proposals

for regular-shape objects using the active basis models

and proposals for both generic regions and irregular-

shape objects (such as crouching cows) by training a set

of discriminative models on the appearance. A candi-

dacy graph is constructed to summarize all the bottom-

up information by treating proposals as nodes and co-

operative/competitive contextual relations among pro-

posals as +/- edges. (ii) Top-down computation by clus-

ter sampling for seeking the optimal solution that max-

imizes the Bayesian posterior probability. The cluster

sampling algorithm consists of reversible jumps to ex-

plore the solution space effectively. At each step, it sam-

ples the +/- edge probabilities on the candidacy graph

and divides the candidacy graph into a set of compos-
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ite connected-components (CCCP’s) on which the re-

versible jumps are carried out. In experiments, our al-

gorithm outperforms the state-of-the-art methods on

the LHI 15-class dataset and obtains comparable re-

sults on the MSRC 21-class dataset (the LHI 15-class

dataset has more accurate annotations and we release

it with this publication).

Keywords Scene Parsing · Candidacy Graph · Cluster

Sampling · DDMCMC

1 Introduction

1.1 Motivation and overview

Real world scene images consist of two types of vi-

sual constituents: (i) objects with rigid or deformable

shapes, such as cows, horses and cars, and (ii) generic

regions which do not have pre-defined shapes, such as

the sky, mountains and water. To overcome the recog-

nition difficulties due to large geometric and appear-

ance variations, researchers have explored various con-

textual information in the recent literature. There are

two types of contextual relations: (i) Cooperative re-

lations expressing the co-occurrence and spatial layout

context. For example, cows and grass often appear to-

gether in an image, and the sky often appear on the top

half of an image. (ii) Competitive constraints encoding

either the exclusive relations (hard) among different in-

terpretations for the same entity or largely overlapped

entities (e.g., atomic regions or sliding windows), or the

inhibitive relations (soft) among the candidates for dif-

ferent neighbouring disjoint entities. For example, wa-

ter and the sky are not distinguishable in some atomic

regions and rhinoceros and cows are ambiguous in some

sliding windows.
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The objective of this paper is to present a unified

framework for scene parsing, which is addressed in three

parts: (i) Adopting generative models for both objects

and generic regions in a principled way; (ii) Studying a

candidacy graph representation integrating candidates

(as vertices) from various bottom-up computing pro-

cesses and cooperative/competitive contextual relations

(as +/- edges); (iii) Solving the inference on the candi-

dacy graph by a clustering sampling algorithm in the

process of maximizing a Bayesian posterior probability.

As illustrated in Fig.1, our framework consists of

three components and we introduce them from the bot-

tom to top as follows.

(i) A data-driven process generating bottom-up pro-

posals. Given an input image, it generates two types of

proposals (as illustrated in the second panel):

(a) Proposals for objects by the active basis models (Wu

et al, 2010). Each object category has 2 to 4 tem-

plates depending on the shape variations. We call

them the template-based proposals and represent

them by diamonds.

(b) Proposals for both generic regions and objects which

do not have regular shapes (e.g., the crouching cow)

by training a set of state-of-the-art discriminative

models on the appearance. We call them the appe-

arance-based proposals and represent them by cir-

cles. We used the Textonboost classifiers (Shotton

et al, 2009) in our experiments.

The data-driven process is to approximate the marginal

posterior probabilities. These proposals are selected as

candidate labels for the atomic regions after pruning

some weak proposals. The threshold is set so that false

negative rates (FNR) equal to zero in the validation

dataset.

(ii) A candidacy graph representation summarizing

bottom-up information. In the candidacy graph (as il-

lustrated in the third panel), each node represents a

candidate for a certain entity (atomic regions in our ex-

periments) according to the bottom-up proposals, and

then positive/negative edges are added to account for

the following cooperative and competitive relations:

(a) Due to local ambiguities, an atomic region may have

multiple competitive interpretations, so hard nega-

tive edges (represented by zigzag line segments) are

assigned between those candidates, so that only one

of them can be confirmed (turned “on”).

(b) An object often occupies multiple atomic regions,

so for atomic regions inside a template-based can-

didate (i.e. share a same detection bounding box),

hard positive edges (represented by solid line seg-

ments) are assigned between their template-based

candidates, so that those candidates will be con-

firmed (turned “on”) or rejected (turned “off”) to-

gether.

(c) Soft positive/negative edges (represented by dashed

line segments) are assigned for any two candidates

from adjacent atomic regions accounting for the co-

occurrence and spatial layout context (but no edges

between a template-based candidate and its adja-

cent appearance-based candidates inside the bound-

ing box of the template-based candidate).

(iii) A cluster sampling algorithm seeking globally

optimal solutions. Each node in the candidacy graph

is either turned “on” or turned “off” such that a con-

sistent solution is achieved to maximize the Bayesian

posterior probability. In the posterior probability, gen-

erative image models are adopted for both objects and

generic regions under a common framework and these

models are learned using the information projection

principle (Wu et al, 2010; Si et al, 2009). Our clus-

ter sampling algorithm takes advantage of the coupling

strength encoded by the positive/negative edges to con-

struct the scene parsing results on-the-fly (as illustrated

in the top panel), and has the ability of traversing any

two states in the solution space through the reversible

jumps. Each reversible jump is designed in three steps:

(a) A set of connected components (CCP’s) is obtained

by sampling the positive edges and each CCP rep-

resents a local coherent interpretation. Nodes in a

CCP will be turned “on” or “off” together.

(b) A set of composite CCP’s (CCCP’s) is obtained by

sampling the negative edges and each CCCP repre-

sents some conflicting interpretations of CCP’s. So,

any two linked CCP’s in a CCCP must have differ-

ent “on”/ “off” states.
(c) A CCCP is selected probabilistically and its state

configuration is proposed to change to a new valid

one. Whether the new solution is accepted or not is

based on the Metropolis-Hastings method. So, the

reversible jump observes detailed balance.

In addition, because we adopt the generative image

models, our scene parsing results can be synthesized

(e.g., the synthesized image shown in the top panel) in

the spirit of analysis-by-synthesis.

We evaluate our scene parsing framework in terms

of the pixel-level accuracy of the labeling and segmen-

tation on two datasets. Our algorithm outperforms the

state-of-the-art methods on the LHI 15-class dataset (8

objects and 7 generic regions) and obtains comparable

and competitive results on the MSRC 21-class dataset

(14 objects and 7 generic regions) (Shotton et al, 2009;

L.Zhu et al, 2008). We will release the LHI 15-class

dataset with this publication which consists of similar

scenes but has more accurate annotations.
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Fig. 1 Illustration of scene parsing by data-driven cluster sampling. It consists of three components: (a) A data-driven process
generating bottom-up proposals. (b) A candidacy graph representation summarizing bottom-up information and then activating top-

down inference. (c) A cluster sampling algorithm seeking the globally optimal solution. (Best viewed in color)

1.2 Literature review and our contributions

In the literature, there are two streams of research for

scene parsing:

(i) Discriminative methods. Conditional random fields

(CRF) (Lafferty et al, 2001) have been widely used in

recent years with two components formulated in an en-

ergy function: (a) A local data term encoding pixel-

based or atomic region based classification results (i.e.

labels). There are two types of cues used in classifi-

cation: one is purely based on bottom-up local image

features (Shotton et al, 2009; Kumar and Hebert, 2005;

Wojek et al, 2008; Kumar and Hebert, 2006) and the

other combines bottom-up cues and top-down class-
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specific features (but often limited to one class at a

time) (Borenstein and Ullman, 2008; Leibe et al, 2004;

Levin and Weiss, 2009; He et al, 2006; Gould et al,

2009b; Ladicky et al, 2010b; Yang et al, 2010). (b) Some

pairwise relation terms expressing local or long-range

context between labels such as co-occurrence (Choi et al,

2010; Rabinovich et al, 2007; Galleguillos et al, 2008;

Gould et al, 2008; Tu and Bai, 2010; Desai et al, 2009;

Verbeek and Triggs, 2007; Torralb et al, 2004) and ge-

ometric context (Hoiem et al, 2005, 2008) and global

scene template (He et al, 2004). There are also some

work using the Graph Cuts (Boykov et al, 2001; Ladicky

et al, 2010a) to do the inference for the CRF mod-

els. Despite their success, these CRF-based methods

only represent objects implicitly through the context

defined by the label co-occurrence statistics of neigh-

bouring pixels. When the appearance of objects has

large variations or exhibits large inter-class similarities,

the context terms are inefficient in expressing shape in-

formation.

(ii) Generative methods. A typical work is the DDM-

CMC algorithm. DDMCMC integrates various bottom-

up computing processes to compute discriminative prob-

abilities which approximate the marginal posterior prob-

abilities and then drive a set of reversible jumps to ex-

plore the solution space in the process of maximizing

a Bayesian posterior probability. The DDMCMC al-

gorithms for segmentation (Tu and Zhu, 2002; Barbu

and Zhu, 2005) and for image parsing (Tu et al, 2005;

Corso et al, 2008) are limited in three aspects: (a) the

lack of the contextual models in labeling, especially the

competitive relations (i.e. the negative edges); (b) the

restricted expressive power of the shape models (they

only encode the boundary-based shape descriptors in

the prior probability); and (c) the speed of the sam-

pling algorithms slows down by the strongly coupled

local interpretations. There are also some work inte-

grating context into generative models (Chang et al,

2011; Jin and Geman, 2006). This paper extends DDM-

CMC in all the three aspects mentioned above: (a) We

exploit the candidacy graph to account for both pos-

itive and negative dependencies and contexts. (b) In

the posterior probability, we represent the shape infor-

mation of objects explicitly through generative image

models. (c) We design a cluster sampling algorithm to

advance the speed of the sampling which can traverse

any two different states in the solution space through re-

versible jumps by taking into account locally coherent

sub-solutions and conflicting sub-solutions in a larger

range simultaneously.

Contributions. This paper makes the following contri-

butions to the scene parsing problem.

– It adopts generative models for both objects and

generic regions, learned by a common information

projection principle.

– It constructs a candidacy graph which summarizes

all the bottom-up candidates as vertices and has

positive/negative edges for contextual relations be-

tween objects and generic regions.

– It designs an effective cluster sampling algrithm on

the candidacy graph consisting of a set of reversible

jumps to explore the solution space and seek the

globally optimal solutions that maximize the Bayesin

posterior probability.

– It introduces a new benchmark dataset, the LHI 15-

class dataset, for scene parsing with more accurate

annotations.

1.3 Paper organization

The remainder of this paper is organized as follows.

In Sec.2, we present a Bayesian formulation for scene

parsing and the contextual models. In Sec.3, we dis-

cuss a unified generative model for both objects and

generic regions, and the learning procedure using the

information projection principle. In Sec.4, we present

the cluster sampling algorithm on the candidacy graph.

In Sec.5, we show a series of experiments on the LHI

15-class dataset and the MSRC 21-class dataset. We

conclude this paper in Sec.6 with a discussion.

2 Problem Formulation

2.1 A Bayesian formulation for scene parsing

Let Λ be the image lattice (e.g. 320×210 pixels) and IΛ
an input image defined on Λ. Our objective is to parse

IΛ into objects and generic regions, represented by,

W = (K, {Λi, `i, ρi, θi}Ki=1) (1)

W represents a full generative interpretation includ-

ing the following elements.

(i) An unknown number (K = KObj+KRgn) of objects

(KObj) and generic regions (KRgn).

(ii) A K-partition of the image lattice Λ, denoted by

πK = (Λ1, · · · , ΛK), Λ = ∪Ki=1Λi, Λi ∩ Λj = ∅ (2)

Each Λi is occupied by an object or a generic region.

For fast computing, our scene parsing starts with

atomic regions from the mean-shift over-segmentation

(Comaniciu and Meer, 2002). For IΛ, suppose there

are M atomic regions denoted by Λ
(a)
1 , · · · , Λ(a)

M .



5

The number M depends on the granularity param-

eter in mean-shift algorithm and we estimate the

granularity parameter in training images such that

all atomic regions are pure (i.e. pixels inside an

atomic region have the same label). Often, M ∈
[30, 40] in our experiments. So, we have 1 ≤ K ≤M
and each Λi ∈ πK may be composed of one or more

atomic regions.

(iii) `i is a semantic label assigned to Λi. Let L = Obj ∪
Rgn be the set of semantic labels withObj = {‘cow′,
‘horse′, ‘car′, · · · } and Rgn = {‘sky′, ‘water′, · · · }
(|Obj| = 14 and |Rgn| = 7 in the MSRC 21-class

dataset and |Obj| = 8 and |Rgn| = 7 in the LHI

15-class dataset, see Sec.5.1 for the label list).

(iv) ρi is a model prototype which explains the image

data IΛi . There are two types of model prototypes,

active basis model and appearance model (to be

specified in Sec.2.2).

(v) A set of parameters θi = (λ`i , z`i) of a probabilistic

model p(I|ρi; θi) learned for the category `i given

the prototype ρi (to be defined in Sec.3).

Under the Bayesian framework, our objective is to

compute W ∗ that maximizes a posterior probability,

W ∗ = arg max
W∈Ω

p(W |IΛ) = arg max
W∈Ω

p(W )p(IΛ|W ) (3)

where Ω is the solution space for all possible W ’s.

In the following, we discuss the likelihood, prior

probability and solution space.

2.2 The likelihood p(IΛ|W )

2.2.1 Representation of objects and generic regions

As Fig.2 illustrates, we use two types of representations.

Appearance modelActive basis model

sky

tree

grass

Crouching animals, 

group of objects far way,...

Generic regionsObjects

…… …………

Roughly aligned

Fig. 2 Illustration of the two types of image representations.

(i) Active basis model (Wu et al, 2010) for objects

with certain shape configuration, denoted by T` for a

category ` ∈ Obj. T` is specified by a small number

n of Gabor wavelet elements at selected locations and

orientations,

T` = (B1, · · · , Bn) (4)

Let ∆ = {Bx,y,s,o} be the dictionary of Gabor wavelets

and then Bj ∈ ∆ with the index j = (x, y, s, o). We use

one scale s = 0.7 and 15 orientations in experiments.

The image domain Λi occupied by an object instance

in detection is decided by a segmentation mask of T`,

denoted by MskT` . The mask for T` is decided by the

annotations of training images.

T` defines a subspace of images through the sparse

coding model,

Ω(T`) = {Ii : Ii =

n∑
j=1

ci,jBi,j + Ui} (5)

where ci,j are coefficients, Bi,j is Bj with local defor-

mation in Ii and Ui the residual image. In experiments,

we learn multiple active basis models (2 to 4) to handle

viewpoint changes for each object category.

(ii) Appearance model for both generic regions and

objects which do not have regular shapes (e.g., crouch-

ing animals and group of objects at distance), denoted

by h` for a category ` ∈ L. h` is specified by a small

number m of histograms pooled from selected filter re-

sponses in a filter bank (denoted by F),

h` = (h1, · · · , hm) (6)

where hj ’s characterize the texture or color. In our ex-

periments, m = 18 and we pool (h1, · · · , h15) from the

responses of the 15 orientations of Gabor filters and

pool (h16, h17, h18) from the R-, G-, B-space in the RGB

color format.

h` also defines a subspace of images but through an

implicit function of images,

Ω(h`) = {Ii : Hj(Ii) = hj + εi; 1 ≤ j ≤ m} (7)

where εi is the residual. In our experiments, we use one

appearance model for each object and generic region

category.

So, for the model prototype ρi in Eqn.1, we have,

ρi =

{
h`i or T`i if `i ∈ Obj
h`i if `i ∈ Rgn

(8)

2.2.2 Factorizing the likelihood

Due to the non-overlapping Λi’s, the image models

p(IΛi |ρi; θi) are assumed to be independent condition-

ing on W and for IΛi described by the appearance
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model (i.e. ρi = h`i), the likelihoods are further fac-

torized onto atomic regions (Λ
(a)
j ⊆ Λi). So, we have,

p(IΛ|W ) =
∏

i:ρi=T`i

p(IΛi |T`i ; θi)×∏
i:ρi=h`i

[
∏

Λ
(a)
j ⊆Λi

p(I
Λ

(a)
j
|h`i ; θi)] (9)

We will discuss the learning of p(IΛi |T`i , θi) and

p(I
Λ

(a)
j
|h`i , θi) using the information projection prin-

ciple (Pietra et al, 1997; Wu et al, 2010; Si et al, 2009)

in Sec.3.

2.3 The prior probability p(W )

The prior probability p(W ) encodes the preference and

compatibilities among the elements inW , including four

aspects.

(i) An exponential model for KObj and KRgn,

p(KObj ,KRgn) ∝ exp{−βObjKObj − βRgnKRgn} (10)

where βObj and βRgn are the parameters (βObj = βRgn =

1 in our experiments).

(ii) A Gaussian model for the preferred locations

of objects. Let (xi, yi) be the center of the bounding

box of (Λi|`i ∈ Obj, ρi = T`i), and (w, h) as the width

and height of the image lattice Λ. Let xi = xi/w and

yi = yi/h representing the relative location. We have,

p(xi,yi) = N (xi,yi;µ`i , Σ`i) (11)

where N () represents the Gaussian distribution, µ`i is
mean of the relative location of objects `i, and Σ`i the

covariance matrix. We estimate µ` and Σ` (∀` ∈ Obj)
based on the annotations in the training dataset.

(iii) A contextual model for the pairwise co-occurrence

between two semantic labels `i and `j of adjacent atomic

regions Λ
(a)
i and Λ

(b)
j ,

p(`i, `j) =
h(`i)h(`j |`i) + h(`j)h(`i|`j)

2
(12)

where h(`i) and h(`j) are the frequencies of `i and `j
appearing in the images respectively and h(`j |`i) is the

frequency of `j appearing as an adjacent neighbour of

`i (and vice verse for h(`i|`j)). The four terms are esti-

mated in the training dataset based on the atomic re-

gions and the annotations. Fig.3 illustrates the learned

co-occurrence.

(iv) A contextual model for the spatial layout sur-

rounding an object. As illustrated in left-top panel in

Fig.4, for `i ∈ Obj, we use the center (xi, yi) of the

bounding box of Λi as the origin point and then divide
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Fig. 3 Illustration of the learned pairwise co-occurrence on the

LHI 15-class dataset. The probabilities are scaled to color-levels
from blue (low probability) to red (high probability).

the image lattice Λ into ten sectors equally (denoted

by Qo, 1 ≤ o ≤ 10 and represented by Roman num-

bers I, · · · , X). In each quadrant Qo, we measure the

co-occurrence between `i and `j individually and inde-

pendently (where Λj ∈ Qo and `j ∈ L) as illustrated in

the right-top panel in Fig.4 and we have

p(`i|Q10
o=1) =

10∏
o=1

∏
Λj∈Qo

h(`j |`i, Qo) (13)

where h(`j |`i, Qo) is estimated in the similar way for

h(`j |`i) in Eqn.12. The bottom panel in Fig. 4 shows the

learned spatial layout context models for the 8 objects

in LHI 15-class dataset.

In summary, we have the prior probability,

p(W ) ∝ p(KObj ,KRgn)×∏
i:ρi=T`i

[p(xi,yi)︸ ︷︷ ︸
Rel-Loc

× p(`i|Q10
1 )︸ ︷︷ ︸

SpatialLayout

]×

∏
<i,j>

p(`i, `j)︸ ︷︷ ︸
Co-occ

(14)

2.4 Anatomy of the solution space Ω

The solution space Ω for W ’s (Eqn.1) is a mixture of

many subspaces depending on the partition of image

lattice Λ. Each subspace in turn is a product space of

image models describing all the sub-lattice Λi’s.

Partition space. Denote byΩπK 3 πK theK-partition

space of all possible K partitions (Eqn.2). Let Ωπ be

the partition space, we have,

Ωπ = ∪MK=1ΩπK (15)
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Fig. 4 The top panel illustrates the spatial layout context. The

bottom panels shows the learned spatial layout context for the 8
objects in LHI 15-class dataset.

Model space. For a given K-partition πK , each el-

ement Λi is characterized by ωi = (`i, ρi, θi). Denote

by Ωω 3 ωi the model space. We have |L| appearance

models and about 2|Obj| to 4|Obj| active basis models.

Now, the solution space Ω is specified based on the

partition space and the model space,

Ω = ∪MK=1{ΩπK ×Ωω × · · · ×Ωω︸ ︷︷ ︸
K

} (16)

Designing Markov chain to traverse Ω. The poste-

rior probability p(W |IΛ) not only has possibly enor-

mous number of local maxima but is distributed over

subspaces of varying dimensions. To seek globally opti-

mal solutions, we design the Markov chain to traverse

Ω by a number of reversible jumps which observe three

properties: (i) irreducibility to ensure any two states in

the solution space are reachable in finite steps, (ii) ape-

riodicity ensured by using the jumps at random, and

(iii) detailed balanced ensuring p(W |IΛ) is the station-

ary probability. The solution space Ω is too huge to

allow exhaustive search using MCMC. So, we need to

use the bottom-up data-driven information to activate

and guide the search as it was in DDMCMC.

3 Learning the image models

In this section, we learn the likelihood models in Sec.2.2

by the information projection principle (Wu et al, 2010).

The active basis model p(IΛi |ρi = T`i ; θi) and appear-

ance model p(I
Λ

(a)
j
|ρi = h`i ; θi) follow the same learning

procedure. So, for notation simplicity, we use p(I|ρ; θ)

in the following.

Training data. For a given category ` ∈ L, let D+ =

{I1, · · · , IN} be a set of positive images which are sam-

ples from a underlying probability f(I|ρ).

(i) In learning the active basis model T` (` ∈ Obj)

for objects, positive images Ii’s are image patches

cropped from the annotated images, and are aligned

roughly by similarity transformations. The segmen-

tation mask MskT` is computed from the annotated

label maps.

(ii) In learning the appearance model h` (` ∈ Obj∪Rgn)

for both generic regions and objects, the histograms

hj ’s are pooled based on atomic regions belonging

to the category ` according to the annotated im-

ages. So, each positive image Ii refers to an atomic

region obtained from the over-segmentation for each

category in the annotated label map.

Let D− be a collection of images used to represent a

reference model q(I) (which only need to be specified

implicitly in our learning procedure), and we use the

whole training dataset as the reference in experiments.

Our learning procedure will proceed as follows: (i)

we first specify the distance metrics for a basis proto-

type Bj ∈ ∆ in the image space Ω(T`) (Eqn.5) and a

histogram prototype hj according to the filter bank F
in the image space Ω(h`) (Eqn.7) respectively, and then

(ii) derive a log-linear form model of p(I|ρ; θ) starting

from the reference model q(I) in term of information

projection and (iii) estimate the parameters θ using

maximum likelihood estimation (MLE).

(i) For Bj ∈ ∆ and Ii ∈ Ω(T`). Let Λ(j) be the domain

of Bj and Λ(i,j) be the domain of the deformed Bi,j
in Ii, the distance is measured in the image space,

dexj (IΛ(i,j)
) = ||IΛ(i,j)

− ci,jBi,j ||2 (17)
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Fig. 5 The left-top panel show some learned active basis models (T`) and their associated binary segmentation masks (MskT` ) for
objects. The right-top and the bottom panel show some learned appearance models (h`, the first 15 histogram prototypes for describing

texture and the last 3 ones for color) for both objects and generic regions.

(ii) For hj and Ii ∈ Ω(h`), the distance is measured

in the projected histogram space and we use the

histogram intersection kernel,

dimj (Ii) =

b∑
b=1

min(Hj(Ii)[b], hj [b]) (18)

where b is the number of bins of the histogram.

In learning, we need to take into account the statisti-

cal fluctuations of dexj and dimj in the training datasets

D+ and D−. So, we use a sigmoid function (denoted by

Sigmoid(·)) to do the soft transformation of the mea-

sured distance (we use dj for simplicity),

rj(I) = Sigmoid(dj(I)) (19)

and the sigmoid function is defined as,

Sigmoid(x) = τ(
2

1 + e−2(η−x)/τ
− 1) (20)

where τ is the saturation parameter and η the transla-

tion parameter.

Learning by information projection. Our objective

of learning the model p(I|ρ; θ) from D+ is to minimize

the Kullback-Leibler divergence (KL) between the un-

derlying probability f(I|ρ) and our model p(I|ρ; θ) in

the model space Ωp. The learning starts from the refer-

ence model p0(I|ρ; θ) = q(I). This procedure is equal to

maximize the KL divergence between p(I|ρ; θ) and the

reference model q(I). The model space Ωp is defined as,

Ωp = {p(I|ρ; θ) : Ep[rj(I)] = Ef [rj(I)],∀j} (21)

Then, as addressed in (Zhu et al, 2010; Si et al, 2009),

we have,

p∗(I|ρ; θ) = arg min
p∈Ωp

KL(f ||p)

= arg max
p∈Ωp

KL(f ||q)−KL(f ||p)

= arg max
p∈Ωp

KL(p||q) (22)

By solving the optimization problem, we have the

following log-linear form model for both shape and ap-

pearance,

p(I|ρ; θ) = q(I)
1

Z
exp{

J∑
j=1

λ`,jrj(I)} (23)

where J = n for the active basis model or J = m for

the appearance model and Z is the partition function

which is not easy to calculate in general.

To simplify the model, we apply the conditional in-

dependence assumption among rj(I)’s in that (i) for

learning the active basis model T`, the selected ba-

sis prototypes Bj ’s are approximately spatially disjoint

(i.e. independent) by applying the local inhibition at

each step in learning, and (ii) for learning a histogram

prototype hj in the appearance model h`, we already

use the disjoint atomic regions (but different hj ’s can

share some atomic regions). So, we have a factorized

log-linear form,

p(I|ρ; θ) = q(I)

J∏
j=1

[
1

z`,j
exp{λ`,jrj(I)}] (24)

Then, the total information gain for a model is,

IG(I|ρ; θ) = log
p(I|ρ; θ)

q(I)
=

J∑
j=1

[λ`,jrj(I)− z`,j ] (25)

Parameter estimation of θ = (λ, z). Given D+ and

D−, for Bj or hj , we can obtain a set of positive re-

sponses r+j = {rj(I1), · · · , rj(IN )} from D+ and a set

of reference responses r− from D−. Firstly, the refer-

ence mode q(rj) is estimated by pooling a histogram

from r−. Then, we estimate (λj , zj) by fitting the den-

sity p(rj) to r+ based on MLE. More details are referred

to (Si et al, 2009).

In Fig.5, the left panel shows some learned active

basis models and its associated binary segmentation

masks and the right panel shows the histogram pro-

totypes.
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4 Inference by cluster sampling

4.1 Generating bottom-up proposals for atomic regions

In DDMCMC (Tu et al, 2005; Tu and Zhu, 2002), data-

driven processes approximate the marginal posterior

probabilities in various model spaces Ωω. In our frame-

work, we generate proposals for each atomic region Λ
(a)
j ,

p(`, ρ|I
Λ

(a)
j

) = p(ρ|I
Λ

(a)
j

)p(`|I
Λ

(a)
j
, ρ) (26)

where p(ρ|I
Λ

(a)
j

) follows the uniform distribution over

the set {h`; ` ∈ L}∪ {T`; ` ∈ Obj}. So, we approximate

p(`|I
Λ

(a)
j
,h`) for both objects and generic regions (` ∈

L) and p(`|I
Λ

(a)
j
, T`) for objects only (` ∈ Obj).

(i) To approximate p(`|I
Λ

(a)
j
,h`), we train the Tex-

tonboost classifiers (Shotton et al, 2009), which directly

estimate p(`|I(x,y),h`) for each pixel (x, y) through the

joint boosting based on the image features extracted in

the local image patch and we have
∑
`∈L p(`|I(x,y),h`) =

1. In order to prune weak proposals, we need to esti-

mate a threshold (denoted by τ
(`)
app) for each category

`. By using the annotated label maps in a validation

dataset, we obtain a positive validation dataset for cat-

egory `, denoted by D+
` , and then we set the threshold

τ
(`)
app such that the FNR equals to zero,

τ (l)app = min
I(x,y)∈D+

`

p(`|I(x,y),h`)

In Tabel.1, the second column shows the estimated thresh-

olds for the LHI 15 categories. We call the outputs from

Textonboost classifiers the appearance-based proposal

maps (or saliency maps), denoted by S
(`)
app,

S(`)
app(x, y) = p(`|I(x,y),h`)1(p(`|I(x,y),h`) ≥ τ (`)app) (27)

where 1(·) is the boolean function which equals to 1 if

the condition is satisfied and 0 otherwise. So, for Λ
(a)
j ,

we have the average score from appearance,

S̄(`)
app(Λ

(a)
j ) =

1

|Λ(a)
j |

∑
(x,y)∈Λ(a)

j

S(`)
app(x, y) (28)

(ii) To approximate p(`|I
Λ

(a)
j
, T`), we use the active

basis models, which output the so-called SUM2 map for

each object category by calculating the total informa-

tion gain of the template centered at each pixel (x, y),

SUM2(`)(x, y) = IG(I(x,y)|T`; θ) (see Eqn.25)

We normalize SUM2(`) to estimate p(`|I(x,y), T`) indi-

vidually for each object category. Similarly, by using

a validation dataset and the ground-truth bounding

boxes of object instances, we estimate the thresholds

Table 1 The estimated thresholds on the LHI 15-class dataset

Class Textonboost (τ
(`)
app) Active basis (τ

(`)
obj)

building 0.24 -

grass 0.13 -

tree 0.27 -
sky 0.21 -

mountain 0.18 -

water 0.10 -
road 0.14 -

car 0.17 0.75
cow 0.19 0.54

sheep 0.12 0.57

horse 0.18 0.51
rhinoceros 0.25 0.67

airplane 0.14 0.73

motorbike 0.12 0.71
elephant 0.14 0.64

for each object category, denoted by τ
(`)
obj (see the third

column in Table.1, note that τ
(`)
app is relatively smaller

than τ
(`)
obj for ` ∈ Obj because of their different normal-

izations). Denote by S
(`)
obj the template-based proposal

map, which is generated based the normalized SUM2

maps and the segmentation mask MskT` iteratively. For

each object category, we first obtain a current best lo-

cation (x∗, y∗) = arg max p(`|I(x,y), T`). Then, by cen-

tering the mask MskT` at (x∗, y∗), we do the inhibition

setting p(`|I(x,y), T`) = 0 if MskT`(x, y|x∗, y∗) = 1. So,

we obtain the template-based proposal map,

S
(`)
obj(x, y) =p(`|I(x∗,y∗), T`)1(p(`|I(x∗,y∗) ≥ τ

(`)
obj)×

1(MskT`(x, y|x∗, y∗) = 1) (29)

Similarly, we have the average score from template,

S̄
(`)
obj(Λ

(a)
j ) =

1

|Λ(a)
j |

∑
(x,y)∈Λ(a)

j

S
(`)
obj(x, y) (30)

Let S =
∑
`∈L

S̄
(`)
app(Λ

(a)
j ) +

∑
`∈Obj

S̄
(`)
obj(Λ

(a)
j ), we esti-

mate the marginal posterior probabilities

p(`|I
Λ

(a)
j
,h`) =

S̄
(`)
app(Λ

(a)
j )

S
(31)

and

p(`|I
Λ

(a)
j
, T`) =

S̄
(`)
obj(Λ

(a)
j )

S
(32)

4.2 Candidacy graph construction

A candidacy graph is constructed to summarize all the

bottom-up proposals and the contextual relations, and

is built up on the adjacency graph.
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Fig. 6 Illustration of the adjacency graph of atomic regions, the candidacy graph (only a portion is shown for clarity), CCP and

CCCP, and the reversible jumps between two states WA and WB . See texts for details. (Best viewed in color)

Adjacency graph. Let V = {Λ(a)
1 , · · · , Λ(a)

M } be the set

of atomic regions for the image IΛ. As illustrated in the

bottom panel in Fig.6, the adjacency graph of atomic

regions is defined as,

Gadj =< V, Eadj > (33)

where Eadj = {e(adj)j,k =< Λ
(a)
j , Λ

(a)
k >} is the set of

undirected edges linking adjacent atomic regions.

Candidates of atomic regions. Denoted by Cj the set of

candidates for the atomic region Λ
(a)
j and C = ∪Mj=1Cj

all the candidates from all the atomic regions. Each Cj
consists of a number t of template-based candidates (de-

noted by Cobjj , represented by diamonds, see Fig.6) from

the template-based proposal map S
(`)
obj ’s and a number

h of distinct appearance-based candidates (denoted by

Cappj , represented by circles) from the appearance-based

proposal map S
(`)
app’s,

Cj = Cobjj ∪ Cappj (34)

= {Oj,s = (`j,s, pj,s, fj,s, bj,s); 1 ≤ s ≤ t}∪
{Rj,g = (`j,t+g, pj,t+g, fj,t+g); 1 ≤ g ≤ h}

where 0 ≤ t ≤ |Obj| and 0 ≤ h ≤ |L|, and the weight

pj,s = p(`j,s|IΛ(a)
j
, T`j,s) (Eqn.32) and pj,t+g = p(`j,t+g|

I
Λ

(a)
j
,h`j,t+g ) (Eqn.31) (illustrated by the sizes of the

circles and diamonds, see Fig.6), and fj,c ∈ {0, 1} is a

binary flag (i.e. “off” and “on”) for the candidate label

`j,c which will be assigned during the cluster sampling

algorithm, and bj,s is the index of the bounding box

which cover the atomic region Λ
(a)
j .

Candidacy graph. As illustrated in the top panel in

Fig.6, the candidacy graph is defined as,

Gcand =< C, E >, E = E+ ∪ E− (35)

where E+ is the positive edge set indicating the cooper-

ative contextual relations and E− is the negative edge

set representing the competitive constraints. The can-

didates in C inherit the adjacency relations based on

the adjacency graph.

On each edge e ∈ E, we define an edge probability

q(e) accounting for the coupling strength, and an aux-

iliary binary variable µe ∈ {0, 1} (i.e. “off” and “on”).

The edge probabilities play the computational role for

generating CCP’s and CCCP’s later on (against the

modeling role of context models in the prior model).

(i) The positive edge set (E+ = E+
hrd ∪ E

+
sft ).

E+
hrd is a set of hard positive edges (represented by

solid line segments, see Fig.6) between any two adjacent

template-based candidates for atomic regions inside the

same bounding box from the active basis detection,

E+
hrd = {< Oj,s, Ok,s′ >; ∃ e(adj)j,k ∈ Eadj} (36)

where `j,s = `k,s′ and bj,s = bk,s′ are also satisfied. The

edge probability is,

q(e ∈ E+
hrd) = 1 (37)

which means that the nodes Oj,s and Ok,s′ are coupled

and always turn on or off together.

E+
sft = E+

sft,1∪E
+
sft,2∪E

+
sft,3 is a set of soft positive

edges (represented by dashed line segments, see Fig.6)

which further consists of three cases:
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(a) E+
sft,1 is the set of soft positive edges between any

two adjacent appearance-based candidates whose co-

occurrence probability is greater than a threshold

τocc (τocc = 0.15 in our experiments),

E+
sft,1 = {< Rj,g, Rk,g′ >; ∃ e(adj)j,k ∈ Eadj} (38)

where p(`j,g, `k,g′) > τocc (Eqn.12).

(b) E+
sft,2 is the set of soft positive edges between any

two adjacent template-based candidates which do

not share a same bounding box and whose co-occur-

rence probability is greater than the threshold τocc,

E+
sft,2 = {< Oj,s, Ok,s′ >; ∃ e(adj)j,k , bj,s 6= bj,s′} (39)

where p(`j,s, `k,s′) > τocc (Eqn.12).

(c) E+
sft,3 is the set of soft positive edges between one

template-based candidate and one adjacent but not

inside its bounding box appearance-based candidate

whose quadrant co-occurrence probability is greater

than the threshold τocc (from the bounding box in-

dex bj,s of the template-based candidate we obtain

the quadrant number o of the appearance-based can-

didate),

E+
sft,3 = {< Oj,s, Rk,g >; ∃ e(adj)j,k ∈ Eadj} (40)

where p(`k,g|`j,s, Qo) > τocc (Eqn.13).

The edge probability is,

q(e ∈ E+
sft) (41)

=


p(`j,g, `k,g′), if e =< Rj,g, Rk,g′ >∈ E+

sft,1

p(`j,s, `k,s′), if e =< Oj,s, Ok,s′ >∈ E+
sft,2

p(`k,g|`j,s, Qo), if e =< Oj,s, Rk,g >∈ E+
sft,3

which account for the cooperative contextual relations.

(ii) The negative edge set (E− = E−hrd ∪ E
−
sft).

E−hrd is a set of hard negative edges (represented

by zigzag line segments, see Fig.6) between any two

candidates from the same atomic region,

E−hrd = { < Oj,s, Oj,s′ >,< Oj,s, Rj,h >, (42)

< Rj,h, Rj,h′ >; 1 ≤ j ≤M}

The edge probability is,

q(e ∈ E−hrd) = 1 (43)

which means that only one candidate for a certain atomic

region can turn “on” at each time.

E−sft = E−sft,1 ∪ E
−
sft,2 ∪ E

−
sft,3 is a set of soft neg-

ative edges (represented by dashed line segments, see

Fig.6) complementary to the soft positive edge set E+
sft

in terms of the threshold τocc. We have,

E−sft,1 = {< Rj,g, Rk,g′ >; ∃ e(adj)j,k ∈ Eadj} (44)

where p(`j,g, `k,g′) ≤ τocc.

E−sft,2 = {< Oj,s, Ok,s′ >; ∃ e(adj)j,k , bj,s 6= bj,s′} (45)

where p(`j,s, `k,s′) ≤ τocc.

E−sft,3 = {< Oj,s, Rk,g >; ∃ e(adj)j,k ∈ Eadj} (46)

where p(`k,g|`j,s, Qo) ≤ τocc.
And, the edge probability is,

q(e ∈ E−sft) (47)

=


1− p(`j,g, `k,g′), if e =< Rj,g, Rk,g′ >∈ E−sft,1
1− p(`j,s, `k,s′), if e =< Oj,s, Ok,s′ >∈ E−sft,2
1− p(`k,g|`j,s, Qo), if e =< Oj,s, Rk,g >∈ E−sft,3

which account for the competitive contextual constraints.

4.3 Clustering candidates by sampling edge

probabilities q(e)

The candidacy graph summarizes data-driven informa-

tion about the solution space Ω (i.e. the partition space

and the model space). Intuitively, according to posi-

tive edges (i.e. cooperative relations), some local co-

herent solutions can be generated (e.g., for some ad-

jacent atomic regions in a local range), which corre-

spond to connected components (CCP’s) of candidates

in the candidacy graph (see the three CCP’s shown in

Fig.6). At the same time, based on negative edges (i.e.

competitive relations), Some CCP’s conflict each other

(e.g., the CCP’s compete for the interpretation of the

same image domain or some largely overlapping image

domains). These competitive CCPs are represented by
composite CCPs (CCCP’s, see one example in Fig.6).

Our clustering sampling algorithm design a set of re-

versible jumps on CCCP’s to traverse the solution space

effectively.

In the candidacy graph, at a current state, we gen-

erate CCP’s and CCCP’s in two steps: (i) Determin-

istic cuts. We remove all the positive edges which link

two nodes with different “on”/ “off” states, and all the

negative edges which link two nodes with same “on”/

“off” states. (ii) Probabilistically cuts. By sampling the

remaining positive edge probabilities, we divide candi-

dates into a set of CCP’s, and then by sampling the

remaining negative edge probabilities, we obtain a set

CCCP’s. Formally, we have,

(i) On each positive edge e ∈ E+ with the current

states of the two linked node being fj,c and fk,d
(see Eqn.34), µe = 1 (i.e. “on”) follows a Bernoulli

probability,

µe ∼ Bern(q(e)1(fj,c = fk,d)), e ∈ E+ (48)
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Fig. 7 Illustration of the love triangle in candidacy graph and solving the love triangle by duplication. (Best viewed in color)

Let E+
on = {e; e ∈ E+, µe = 1} be the set of “on”

positive edges.

(ii) On each negative edge e ∈ E− (also suppose fj,c and

fk,d are the current states of the two linked nodes),

µe = 1 follows a Bernoulli probability,

µe ∼ Bern(q(e)1(fj,c 6= f,d)), e ∈ E− (49)

Let E−on = {e; e ∈ E−, µe = 1} be the set of “on”

negative edges.

Definition 1: (CCP) In the candidacy graph, a

CCP is defined as a set of nodes which are reachable

each other by positive edges in E+
on. All candidates in

a CCP will be turned “on” or “off” together.

Definition 2: (CCCP) A CCCP is defined as a

set of CCP’s which are reachable each other by nega-

tive edges in E−on (an isolated CCP is also treated as

a CCCP). All CCP’s in a CCCP with negative edges

should have different “on”/ “off” states.

Due to the randomness in sampling edge probabili-

ties, we may obtain some invalid CCP’s, so called “love

triangles” (see two examples in Fig.7) in the candidacy

graph (Porway and Zhu, 2010), to be resolved.

4.4 Resolving the “love triangles”

As Fig.7 illustrates, for a selected CCCP0 in current

state W , we want to assign new valid state configu-

ration for all CCP’s. Consider the two CCP’s (CCP1

and CCP2), the two negative edges (< F2, F3 > and

< A1, A3 > shown in red) have been cut in state W ,

but now we want to assign new states for CCP1 and

CCP2 (e.g., turned “on”), and we need to take into ac-

count the two negative edges. A “love triangle” occurs if

for a given three nodes (e.g. (E2, F2, F3) in the left-top

panel which is an invalid CCP), there are one nega-

tive edge < F2, F3 > (which requires the “on”/ “off”

states fF2 6= fF3) and two positive edges < E2, F2 >

and < E2, F3 > (which require fF2
= fF3

= fA3
and

lead to the conflict).

As proposed in (Porway and Zhu, 2010), a “love

triangle” can be resolved by duplicating the node with

two positive edges (e.g., E2) into two copies (E2 and

E
′

2, illustrated in the right-top panel), and then adding

a negative edge between the two copied nodes (e.g. <

E2, E
′

2 >). So, we convert an invalid CCP into a CCCP.

Furthermore, for the “love triangle” (A1, A3, B2), as

illustrated in the right-bottom panel in Fig.7, we need

check and resolve the “love triangles” iteratively. For

example, after adding B
′

2, we get a new “love triangle”

(B2, B
′

2, C2) to be resolved and so on.

4.5 The cluster sampling algorithm

Our cluster sampling algorithm on the candidacy graph

is in the same paradigm of the C4 algorithm (Porway

and Zhu, 2010). In each iteration, the candidacy graph

is divided into a set of CCP’s by sampling soft positive

edges and then forms a set of CCCP’s by sampling nega-

tive edges. A CCCP is selected probabilistically and the

labels of its CCP’s are reassigned such that all internal

negative edges (i.e. competitive relations) are satisfied.

The new state will be accepted or rejected based on the

Metropolis-Hastings mehod.

The algorithm starts by randomly initializing the

state fj,c for each node in the candidacy graph while we

assign the same state (randomly “on” or “off”) to the

template-based candidates which share a same bound-

ing box. We first summarize our clustering sampling
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Fig. 8 Some example images and the corresponding ground truth annotations in the LHI 15-class dataset (the left panel) and MSRC
21-class dataset (the right panel). Note that there are pixels indicated as “void” class in the MSRC dataset.

Algorithm 1: The cluster sampling algorithm
Input: An input image IΛ, a adjacency graph

Gadj = (A,Eadj), a candidacy graph
Gcand = (C, E), the edge probabilities q(e ∈ E)

and posterior probability p(W |IΛ)

Output: optimal solution W ∗ = arg max p(W |I)
Initializing the states (fj,c) of nodes in C.1

repeat2

Denote the current state as WA.3

Step I: Divide the candidacy graph into a set of4

CCP’s denoted by {CCP} and then form a set of
CCCP’s denoted by {CCCP} (see Sec.4.3).

Step II: Selecting a CCCP (denoted by cccp0 and5

denote by l(cccp0) = LA the labels of cccp0 under
WA) from {CCCP} based on the probability

q(cccp0|WA) and then assigning new valid states

denoted by LB to the CCP’s in cccp0 and we have
l(cccp0) = LB . Denote the new state as WB .

Step III: Calculating the acceptance probability6

α(WA →WB) = min(1,
q(WB→WA)
q(WA→WB)

· p(WB |IΛ)
p(WA|IΛ)

)

until the posterior probability does not increase any more7

during a predefined number of iterations;

algorithm in the Algorithm.1 and then elaborate the

details below.

The detailed balance equation. For each move be-

tween two different states WA and WB , the acceptance

probability in our algorithm is based on the Metropolis-

Hasting design,

α(WA→WB) = min(1,
q(WB→WA)

q(WA→WB)
· p(WB |IΛ)

p(WA|IΛ)
) (50)

where q(WA →WB) is the probability for proposing the

state WB from the state WA to be designed to ensure

the detailed balance.

Provided the proposal probability q(WA → WB),

let K(WA → WB) = q(WA → WB)α(WA → WB)

be the Markov chain kernel and then we can see that

in our cluster sampling algorithm the detailed balance

equation is observed,

p(WA|IΛ)K(WA →WB) = p(WB |IΛ)K(WB →WA)

The proposal probability. To design the proposal prob-

ability, we adopt the same idea proposed in the C4 algo-

rithm (Porway and Zhu, 2010) and the SWC algorithm

(Barbu and Zhu, 2005) and we have,

q(WB →WA)

q(WA →WB)
=

q(cccp0|WB)

q(cccp0|WA)
· q(l(cccp0) = LA|cccp0,WB)

q(l(cccp0) = LB |cccp0,WA)

(51)

q(cccp0|WB) and q(cccp0|WA) are the probabilities

for choosing cccp0 at states WB and WA respectively,

which depend on two aspects: (a) the probabilities of

generating cccp0 under the two states WA and WB

by sampling the edge probabilities q(e)’s (addressed in

Sec.4.3), and then (b) the probabilities of select cccp0
from the set of CCCP’s {CCCP} under the two states

WA and WB , which are based on the weights pj,c of

candidates in the cccp0 to take into account the data-

driven proposals. It turns out that,

q(cccp0|WB)

q(cccp0|WA)
=

∏
e∈Cut(cccp0|WB)(1− q(e))∏
e∈Cut(cccp0|WA)(1− q(e))

(52)

where Cut(cccp0|WA) is the cut of cccp0 under the state

WA and is defined as the set of all negative (or positive)

edges connecting nodes in cccp0 and their neighbouring

nodes with different labels (or same labels). More de-

tails are referred to (Porway and Zhu, 2010) and (Barbu

and Zhu, 2005).
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Table 2 Overall pixel-wise accuracy on the LHI 15-class and MSRC 21-class datasets using 5-fold cross validations.

Methods LHI 15-class MSRC 21-class

Our DD cluster sampling 84.44%± 4.03% 79.5%± 4.27%

HIM (L.Zhu et al, 2008) - 81.2%

Auto-Context (Tu and Bai, 2010) - 77.7%
CRF + Rel.Loc. (Gould et al, 2008) - 76.5%

DecomposingScene (Gould et al, 2009a) 71.08%± 3.22% 76.4%

Bag of Keypoints (Yang et al, 2007) 68.73%± 4.56% 75.1%
Associative H-CRFs (Ladicky et al, 2009) 66.51%± 4.27% 74.6%

TextonBoost+MS 64.32%± 3.64% 73.5%

TextonBoost (Shotton et al, 2009) 62.70%± 3.15% 72.2%
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5 Experiments

5.1 The datasets

The LHI 15-class dataset1 consists of 375 images in-

cluding 7 types of generic regions (building, grass, tree,

sky, road, water and mountain) and 8 object categories

(airplane, cow, horse, sheep, car, elephant, rhinoceros

and motorbike). The MSRC 21-class dataset (Shotton

et al, 2009) consists of 591 images including 7 types of

generic regions (building, grass, tree, sky, water, book

and road) and 14 object categories (cow, sheep, aero-

1 www.imageparsing.com/LHI SceneParsing15Classes/index.html

Original image                   Ground-truth                   Parsing result                   Synthesized image

Fig. 10 Some synthesized images based on our parsing results.

See texts for details. (Best viewed in color)

plane, face, car, bike, bird, flower, sign, chair, cat, dog,

body and boat, and we did not learn the active basis

models for cat, dog and body due to their extreme large

variations in the dataset). Fig. 8 shows some example

images, where we can see that the LHI 15-class dataset

has finer annotations and the MSRC 21-class dataset

include the “void” pixels near the boundary. In addi-

tion, in the MSRC 21-class dataset, some objects nearly

occupy 70% area of the image in the center in most of

the collected images, which leave too much information

to the contextual models, especially the preferred loca-

tion prior (Gould et al, 2008).

In our experiments, the LHI 15-class dataset is ran-

domly split into roughly 40% for training, 10% for eval-
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Bu Gs Tr Sk Mt Wt Cr Rd Cw Sp Hr Rn Pl Mb Et

building 0.85678 0.015275 0.045349 0.025763 0.00064011 0.00010704 0.020551 0.030512 0.00037055 3.91E-06 0.0037994 0.00085099

grass 0.004031 0.92659 0.025728 0.0027853 0.0016919 0.00062109 0.00071657 0.021715 0.00186 0.0021823 0.0035808 0.0011303 0.0022423 0.0032119 0.0019153

tree 0.065897 0.05252 0.7855 0.057189 0.007801 0.0010428 0.0060764 0.0099507 0.00046618 6.16E-05 0.0019858 0.00022186 0.0038697 0.006203 0.001211

sky 0.012853 0.003258 0.015646 0.96628 0.0010623 3.88E-05 0.00017632 5.85E-06 1.46E-06 1.39E-05 0.00020925 0.00044886 6.58E-06

mountain 0.0039808 0.083406 0.013363 0.035647 0.8388 0.0057379 9.76E-06 0.012259 0.0038227 1.95E-06 0.00048223 0.0024931

water 0.023443 0.03435 0.067292 0.0956 0.0026731 0.6652 1.20E-05 0.076369 0.0086643 0.0087603 0.010623 0.0070142

car 0.042325 0.0052329 0.029666 9.04E-05 0.0050256 0.88188 0.029026 0.0067507

road 0.0089967 0.022284 0.0093855 0.00019735 0.00039443 0.001013 0.0109 0.93528 0.00060661 0.00020317 0.00041403 0.002103 0.0080772 0.00014675

cow 0.0048688 0.0931 0.014415 0.015582 0.0065357 0.0041174 0.010275 0.80056 0.0501 0.0035552

sheep 0.001888 0.04656 0.014407 0.017743 0.0080354 0.011293 0.04692 0.85112 0.0088268

horse 0.0083735 0.087718 0.043118 0.016397 0.00010687 0.0043649 0.011122 0.0053036 0.011432 0.81349

rhinoceros 0.13126 0.0051173 0.00082611 0.021594 0.8412

airplane 0.015147 0.067638 0.0020364 0.0041624 0.00011399 0.00012276 0.049505 0.86064

motorbike 0.045 0.040861 0.039181 0.012117 0.001883 0.006148 0.0063131 0.034353 0.81414

elephant 0.091936 0.048045 0.0065974 0.0068686 0.015417 0.83113

Fig. 12 Confusion matrix of our data-driven cluster sampling algorithm evaluated on the LHI 15-class dataset. The overall pixel-wise

accuracy is 84.44%.

uation and 50% for testing, and the MSRC 21-class

dataset uses the same split setting in (Shotton et al,

2009). We conduct 5-fold cross validations to generate

the quantitative results in the experiments.

5.2 Overall results

Table.2 shows the overall pixel-wise accuracy results on

the LHI 15-class and MSRC 21-class datasets by us-

ing our data-driven cluster sampling algorithm and the

state-of-the-art methods in the literature. On the LHI

15-class dataset, our algorithm outperforms the state-

of-the-art methods. On the MSRC 21-class dataset, our

algorithm obtains comparable results with the state-of-

the-art method. For visual comparisons, Fig.9 shows

the results of different methods for three example im-

ages in the MSRC 21-class dataset.

5.3 Results of synthesized images

Because we adopt generative models for both objects

and generic regions, we can synthesize the parsing re-

sults. For object instances explained by the active basis

models, the syntheses are based on the matching pur-

suit of the selected basis prototypes (i.e. Gabor wavelet

elements) and some difference of Gaussian filters (DoG)
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(a) TextonBoost (b) TextonBoost+MeanShift (c) Associative H-CRFs (d) Bag of features (e) Decomposing scene
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Fig. 13 Comparisons of the confusion matrices. From (a) to (e), the confusion matrix is evaluated by using Textonboost (Shotton
et al, 2009), Textonboost+Mean Shift, Associative CRF (Ladicky et al, 2009), Bag of features (Yang et al, 2007), Decomposing

scenes (Gould et al, 2009a) respectively.

(a) Input image (b) Mean-shift over-segmentation (c) Active basis detection (d) Object detection after inference

(e) Textonboost (f) adding generic regions models (h) adding contextual models(g) adding active basis models
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Fig. 14 Illustration of the effects of different terms in our generative model (see texts in Sec.5.5.1 for details).

as it was done in (Wu et al, 2010), and the inside ap-

pearances of the objects in synthesized results are not

good enough (which entail the HiT(Si et al, 2009) mod-

els for object categories in the future work). For generic

regions and object instances explained by appearance

models, we use the algorithm “Sampling the Julesz En-

semble” proposed in (Zhu et al, 2000) based on the

learned histogram prototypes (which defined the Julesz

ensemble based on Eqn.7). Fig.10 shows some exam-

ples of synthesized images for our scene parsing results.

Because we only learn one appearance model for each

generic region category and object category, the cor-

responding synthesized parts in the synthesize images

looks similar. Due to the fact that we used only one

appearance model for generic regions, the synthesized

results do not look good for categories such as buildings

in our experiments.

5.4 Detailed results on the LHI 15-class dataset

Fig. 11 shows some experimental results for images in

the LHI 15-class dataset. Our algorithm can handle

large variations of view-point and scale of objects(e.g.,

see “cars” and “elephants”) and large variations in the

appearance of generic regions (e.g., see “building” and
“road”, and “tree” and “grass” which have the very

similar appearance). On the last column, we show 3

examples in which the labeling are not good enough.

In the first two images, some instances of “horse” and

“sheep” are missed and merged to “grass”. Due to the

their extreme low resolutions, the active basis models

didn’t detect the object instances in bottom-up. In the

last image, an instance of “horse” is parsed as “sheep”

due to their intra-class similarities on both shape and

appearance.

Fig. 12 shows the confusion matrix on the LHI 15-

class dataset, in which accuracy values are computed

as the percentage of image pixels assigned to the cor-

rect class label. The overall pixel-wise labeling accu-

racy is 84.44%. The average pixel-wise labeling accu-

racy of objects is 83.7%. From the confusion matrix,

we can see that for generic regions, “sky” and “water”

exhibit large confusions (about 10% of “water” pixels

are labeled as “sky”) due to their intra-class appear-
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second row show results after inference. The improvement mainly come from the advantage the our framework can integrate generative
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Fig. 16 Precision-Recall (PR) curves of the object detections for the 8 structured objects in the LHI 15-class dataset by using different

aspects of our methods.

ance similarities, and for objects, “cow”, “sheep” and

“horse” exhibit relatively large confusions due to their

intra-class shape similarities. For comparisons, Fig.13

also shows the confusion matrices evaluated on the LHI
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15-class dataset by using some state-of-the-art methods

in the literature.

5.5 Analysis of our cluster sampling algorithm

5.5.1 The contributions of different components

Fig. 14 illustrates the contributions of different com-

ponents. (c) shows the object detections of the data-

driven component by using active basis models (bound-

ing boxes in different colors represent different cate-

gories) and (d) shows the object detection results af-

ter inference using our cluster sampling algorithm. (e)

shows the labeling results using bottom-up Textonboost

(Shotton et al, 2009). (f) shows the parsing result of

our algorithm by only incorporating models of generic

regions. (g) shows the result by further including mod-

els of structured objects. (h) shows the final result by

considering the contextual models. We can see the aver-

age pixel-wise accuracy (calculated on the whole testing

dataset, not for the single image in this figure) increases

with more aspects being added in our framework.

Furthermore, we evaluate the improvements on ob-

ject detections over the pure active basis models. Fig. 15

shows the comparisons of object detections on the LHI

15-class dataset. For example, the active basis detec-

tion results of the right-most image in the top panel

in Fig. 15 have some “car” instances, but the preferred

location prior has very low probability allowing a “car”

to appear around the right-top portion of the image lat-

tice. In more details, Fig. 16 shows the Precision-Recall

curves of object detections for the 8 structured objects

in the LHI 15-class dataset by using different aspects of

our framework (see the legends in the figure).

5.5.2 The effects of proposal generating models

In the data-driven component, we can replace the mod-

els by other methods to generate proposals. For exam-

ple, instead of using the active basis model to generate

template-based proposals, we can use the method pro-

posed in (Felzenszwalb et al, 2010). Fig.17 shows a

running example in which (e) shows the results of the

template-based proposals. Our inference framework is

flexible enough to still obtain good results as shown in

(f) compared with the Textonboost result in (c).

5.5.3 The effects of thresholds in selecting candidates

As we mentioned in Sec.4.1, when selecting proposals

as candidates for each atomic region, we use a set of

thresholds estimated by using a validation dataset (see

(a) Input image (b) Mean-shift over-segmentation (c) Textonboost result

(d) Annotations (e) Structure-based proposals using

 (Felzenszwalb et al, 2010)
(f) Our parsing result

water

cow
cow

grass

cow
cow

sky
void

cow

grass

grass

road
sheep

building skysky

cow

Fig. 17 Illustration of effects of proposal generating models. We

generate template-based proposals by using the object detection
methods proposed in (Felzenszwalb et al, 2010). The figure shows

the parsing result of a testing image in MSRC 21-class dataset.

Table.1). We study the effects of the threshold pruning

in terms of the accuracy and running time.

Table.3 shows the overall accuracy and the running

time per image without and with the threshold prun-

ing. Without pruning, there are often many false pos-

itives and false negatives incorporated into the candi-

dacy graph and the size of candidacy graph increases

largely (both the nodes and the edges). With pruning,

we obtain better overall accuracy and much less run-

ning time per image.

Fig.16 shows PR curves evaluated on the 8 object

categories in the LHI 15-class dataset. It shows the ef-

fects of the threshold pruning on the template-based

proposals by using the active basis model and we ob-

tain better results with pruning.

Fig. 18 shows PR curves evaluated on the LHI 15-

class (all treated as generic regions). It shows the effects

of the threshold pruning on the appearance-based pro-

posals by using the Textonboost classifier and we also

obtain better results with pruning.

5.5.4 The effects of granularity of over-segmentation

and the number of iterations in sampling

Another two factors affecting the accuracy and running

time are the granularity of over-segmentation (i.e. the

number of atomic regions) and the number of iterations

in sampling.

In our experiments, each testing image often has 30

to 40 atomic regions. The right panel in Fig.19 shows

the plots of accuracy v.s. atomic regions and running

time v.s. atomic regions based on 5-fold cross valida-

tions. We observe that after the number of atomic re-

gions increases greater than 30, the accuracy is not im-

proved much but the running time increases due to the

increasing size of the candidacy graph.

For the number of iterations, empirically, we use 150

iterations in our experiments. The left panel in Fig.19
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Table 3 The effects of the threshold pruning on the LHI 15-class dataset.

Method Overall accuracy (%) Inference time (min/per image)

With pruning 84.44 3
Without pruning 83.06 57
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Fig. 19 Effects of the granularity of over-segmentation and the number of iterations in sampling. The plots are based on the results
of the average of 5-fold cross validations.

shows the plot of accuracy v.s. iterations (with and

without pruning). By pruning the proposal numbers,

after 150 iterations, the accuracy is not improved much.
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Fig. 20 Comparisons of convergence speed between our cluster sampling algorithm with the classic Gibbs sampler and the SWC

algorithm (Barbu and Zhu, 2005).

Without pruning, we need about 300 iterations to get

the comparable accuracy.

5.5.5 Comparisons of convergence speed

We also compare our cluster sampling algorithm with

the classic Gibbs sampler (Geman and Geman, 1984)

and the SWC algorithm (Barbu and Zhu, 2005). Fig. 20

shows the energy curves of the three methods in 150

iterations. From the energy curves, we can see that our

algorithm can converge much faster than both Gibbs

sampler and SWC due to the fact our algorithm takes

advantage of both the positive edges and the negative

edges and can swap large components at each iteration.

6 Summary

In this paper, we presented a data-driven cluster sam-
pling framework for parsing scene images into objects

and generic regions. Our framework extends the DDM-

CMC algorithm in three aspects: (i) We take into ac-

count the cooperative and competitive contextual rela-

tions in labeling and integrate them with the bottom-up

proposals in a candidacy graph representation; (ii) We

used the active basis models explicitly expressing object

shapes; The two types of contextual relations and the

active basis models for object shape improve the perfor-

mance. (iii) We designed a cluster sampling algorithm

based on the CCCP’s in the candidacy graph to ad-

vance the speed of traversing the solution space. In ex-

periments, our framework is tested on two datasets: the

LHI 15-class dataset and the MSRC 21-class dataset.

We evaluate scene parsing in terms of the pixel-level

accuracy of the labeling and segmentation. Our algo-

rithm outperforms the state-of-the-art methods on the

LHI 15-class dataset and obtain comparable and com-

petitive results on the MSRC 21-class dataset with the

state-of-the-art methods (Shotton et al, 2009; L.Zhu

et al, 2008). We also analyse different aspects of our

framework in details.

In our on-going work, we are studying generative

models for scenes (such as street scenes and open coun-

try scenes, classroom, and bedroom) in addition to the

generative models for objects and generic regions. We

are also trying to use hierarchical active basis models

for objects in our algorithm to improve performance.

Under a similar framework, we are also exploring the

temporal context in video scene parsing.

Reproducibility

We have set up a project webpage

(www.stat.ucla.edu/∼tfwu/project/SceneParsing.htm)

where we release the LHI 15-class dataset for scene pars-

ing used in this paper and the code for the experiments.
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