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Learning Active Basis Models
by EM-Type Algorithms
Zhangzhang Si, Haifeng Gong, Song-Chun Zhu and Ying Nian Wu

Abstract. EM algorithm is a convenient tool for maximum likelihood model
fitting when the data are incomplete or when there are latent variables or
hidden states. In this review article we explain that EM algorithm is a nat-
ural computational scheme for learning image templates of object categories
where the learning is not fully supervised. We represent an image template
by an active basis model, which is a linear composition of a selected set of lo-
calized, elongated and oriented wavelet elements that are allowed to slightly
perturb their locations and orientations to account for the deformations of
object shapes. The model can be easily learned when the objects in the train-
ing images are of the same pose, and appear at the same location and scale.
This is often called supervised learning. In the situation where the objects
may appear at different unknown locations, orientations and scales in the
training images, we have to incorporate the unknown locations, orientations
and scales as latent variables into the image generation process, and learn the
template by EM-type algorithms. The E-step imputes the unknown locations,
orientations and scales based on the currently learned template. This step can
be considered self-supervision, which involves using the current template to
recognize the objects in the training images. The M-step then relearns the
template based on the imputed locations, orientations and scales, and this is
essentially the same as supervised learning. So the EM learning process iter-
ates between recognition and supervised learning. We illustrate this scheme
by several experiments.

Key words and phrases: Generative models, object recognition, wavelet
sparse coding.

1. INTRODUCTION: EM LEARNING SCHEME

The EM algorithm [7] and its variations [14] have
been widely used for maximum likelihood estimation
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of statistical models when the data are incompletely
observed or when there are latent variables or hid-
den states. This algorithm is an iterative computational
scheme, where the E-step imputes the missing data
or the latent variables given the currently estimated
model, and the M-step re-estimates the model given
the imputed missing data or latent variables. Besides its
simplicity and stability, a key feature that distinguishes
the EM algorithm from other numerical methods is its
interpretability: both the E-step and the M-step readily
admit natural interpretations in a variety of contexts.
This makes the EM algorithm rich, meaningful and in-
spiring.

In this review article we shall focus on one important
context where the EM algorithm is useful and mean-
ingful, that is, learning patterns from signals in the set-
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tings that are not fully supervised. In this context, the
E-step can be interpreted as carrying out the recogni-
tion task using the currently learned model of the pat-
tern. The M-step can be interpreted as relearning the
pattern in the supervised setting, which can often be
easily accomplished.

This EM learning scheme has been used in both
speech and vision. In speech recognition, the training
of the hidden Markov model [16] involves the imputa-
tion of the hidden states in the E-step by the forward
and backward algorithms. The M-step computes the
transition and emission frequencies. In computer vi-
sion, we want to learn models for different categories
of objects, such as horses, birds, bikes, etc. The learn-
ing is often easy when the objects in the training im-
ages are aligned, in the sense that the objects appear
at the same pose, same location and same scale in the
training images, which are defined on a common im-
age lattice that is the bounding box of the objects. This
is often called supervised learning. However, it is often
the case that the objects appear at different unknown
locations, orientations and scales in the training im-
ages. In such a situation, we have to incorporate the un-
known locations, orientations and scales as latent vari-
ables in the image generation process, and use the EM
algorithm to learn the model for the objects. In the EM
learning process, the E-step imputes the unknown lo-
cation, orientation and scale of the object in each train-
ing image, based on the currently learned model. This
step uses the current model to recognize the object in
each training image, that is, where it is, at what orien-
tation and scale. The imputation of the latent variables
enables us to align the training images, so that the ob-
jects appear at the same location, orientation and scale.
The M-step then relearns the model from the aligned
images by carrying out supervised learning. So the EM
learning process iterates between recognition and su-
pervised learning. Recognition is the goal of learning
the model, and it serves as the self-supervision step
of the learning process. The EM algorithm has been
used by Fergus, Perona and Zisserman [9] in training
the constellation model for objects.

In this article we shall illustrate EM learning or EM-
like learning by training an active basis model [22, 23]
that we have recently developed for deformable tem-
plates [1, 24] of object shapes. In this model, a tem-
plate is represented by a linear composition of a set
of localized, elongated and oriented wavelet elements
at selected locations, scales and orientations, and these
wavelet elements are allowed to slightly perturb their
locations and orientations to account for the shape de-
formations of the objects. In the supervised setting, the

active basis model can be learned by a shared sketch
algorithm, which selects the wavelet elements sequen-
tially. When a wavelet element is selected, it is shared
by all the training images, in the sense that a perturbed
version of this element seeks to sketch a local edge seg-
ment in each training image. In the situations where
learning is not fully supervised, the learning of the ac-
tive basis model can be accomplished by the EM-type
algorithms. The E-step recognizes the object in each
training image by matching the image with the cur-
rently learned active basis template. This enables us to
align the images. The M-step then relearns the tem-
plate from the aligned images by the shared sketch al-
gorithm.

We would like to point out that the EM algorithm
for learning the active basis model is different than the
traditional EM algorithm, where the model structure is
fixed and only the parameters need to be estimated. In
our implementation of the EM algorithm, the M-step
needs to select the wavelet elements in addition to es-
timating the parameters associated with the selected
elements. Both the selection of the elements and the es-
timation of the parameters are accomplished by maxi-
mizing or increasing the complete-data log-likelihood.
So the EM algorithm is used for estimating both the
model structure and the associated parameters.

Readers who wish to learn more about the active ba-
sis model are referred to our recent paper [23], which is
written for the computer vision community. Compared
to that paper, this review paper is written for the statis-
tical community. In this paper we introduce the active
basis model from an algorithmic perspective, starting
from the familiar problem of variable selection in lin-
ear regression. This paper also provides more details
about the EM-type algorithms than [23]. We wish to
convey to the statistical audience that the problem of
vision in general and object recognition in particular is
essentially a statistical problem. We even hope that this
article may attract some statisticians to work on this in-
teresting but challenging problem.

Section 2 introduces the active basis model for repre-
senting deformable templates, and describes the shared
sketch algorithm for supervised learning. Section 3
presents the EM algorithm for learning the active ba-
sis model in the settings that are not fully supervised.
Section 4 concludes with a discussion.

2. ACTIVE BASIS MODEL: AN ALGORITHMIC
TOUR

The active basis model is a natural generalization of
the wavelet regression model. In this section we first
explain the background and motivation for the active
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basis model. Then we work through a series of variable
selection algorithms for wavelet regression, where the
active basis model emerges naturally.

2.1 From Wavelet Regression to Active Basis

2.1.1 p > n regression and variable section. Wave-
lets have proven to be immensely useful for signal
analysis and representation [8]. Various dictionaries of
wavelets have been designed for different types of sig-
nals or function spaces [4, 19]. Two key factors un-
derlying the successes of wavelets are the sparsity of
the representation and the efficiency of the analysis.
Specifically, a signal can typically be represented by
a linear superposition of a small number of wavelet
elements selected from an appropriate dictionary. The
selection can be accomplished by efficient algorithms
such as matching pursuit [13] and basis pursuit [5].

From a linear regression perspective, a signal can be
considered a response variable, and the wavelet ele-
ments in the dictionary can be considered the predic-
tor variables or regressors. The number of elements
in a dictionary can often be much greater than the
dimensionality of the signal, so this is the so-called
“p > n” problem. The selection of the wavelet ele-
ments is the variable selection problem in linear re-
gression. The matching pursuit algorithm [13] is the
forward selection method, and the basis pursuit [5] is
the lasso method [21].

2.1.2 Gabor wavelets and simple V1 cells. Interest-
ingly, wavelet sparse coding also appears to be em-
ployed by the biological visual system for represent-
ing natural images. By assuming the sparsity of the
linear representation, Olshausen and Field [15] were
able to learn from natural images a dictionary of lo-
calized, elongated, and oriented basis functions that re-
semble the Gabor wavelets. Similar wavelets were also
obtained by independent component analysis of natural
images [2]. From a linear regression perspective, Ol-
shausen and Field essentially asked the following ques-
tion: Given a sample of response vectors (i.e., natural
images), can we find a dictionary of predictor vectors
or regressors (i.e., basis functions or basis elements),
so that each response vector can be represented as a
linear combination of a small number of regressors se-
lected from the dictionary? Of course, for different re-
sponse vectors, different sets of regressors may be se-
lected from the dictionary.

Figure 1 displays a collection of Gabor wavelet el-
ements at different locations, orientations and scales.
These are sine and cosine waves multiplied by elon-
gated and oriented Gaussian functions, where the

FIG. 1. A collection of Gabor wavelets at different locations, ori-
entations and scales. Each Gabor wavelet element is a sine or co-
sine wave multiplied by an elongated and oriented Gaussian func-
tion. The wave propagates along the shorter axis of the Gaussian
function.

waves propagate along the shorter axes of the Gaussian
functions. Such Gabor wavelets have been proposed
as mathematical models for the receptive fields of the
simple cells of the primary visual cortex or V1 [6].

The dictionary of all the Gabor wavelet elements can
be very large, because at each pixel of the image do-
main, there can be many Gabor wavelet elements tuned
to different scales and orientations. According to Ol-
shausen and Field [15], the biological visual system
represents a natural image by a linear superposition of a
small number of Gabor wavelet elements selected from
such a dictionary.

2.1.3 From generic classes to specific categories.
Wavelets are designed for generic function classes or
learned from generic ensembles such as natural im-
ages, under the generic principle of sparsity. While
such generality offers enormous scope for the applica-
bility of wavelets, sparsity alone is clearly inadequate
for modeling specific patterns. Recently, we have de-
veloped an active basis model for images of various
object classes [22, 23]. The model is a natural conse-
quence of seeking a common wavelet representation
simultaneously for multiple training images from the
same object category.

Figure 2 illustrates the basic idea. In the first row
there are 8 images of deer. The images are of the same
size of 122 × 120 pixels. The deer appear at the same
location, scale and pose in these images. For these very
similar images, we want to seek a common wavelet
representation, instead of coding each image individ-
ually. Specifically, we want these images to be repre-
sented by similar sets of wavelet elements, with sim-
ilar coefficients. We can achieve this by selecting a
common set of wavelet elements, while allowing these
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FIG. 2. Active basis templates. Each Gabor wavelet element is illustrated by a bar of the same length and at the same location and
orientation as the corresponding element. The first row displays the training images. The second row displays the templates composed of 50
Gabor wavelet elements at a fixed scale, where the first template is the common deformable template, and the other templates are deformed
templates for coding the corresponding images. The third row displays the templates composed of 15 Gabor wavelet elements at a scale
about twice as large as those in the second row. In the last row, the template is composed of wavelet elements at multiple scales, where larger
Gabor elements are illustrated by bars of lighter shades. The rest of the images are reconstructed by linear superpositions of the wavelet
elements of the deformed templates.

wavelet elements to locally perturb their locations and
orientations before they are linearly combined to code
each individual image. The perturbations are intro-
duced to account for shape deformations in the deer.
The linear basis formed by such perturbable wavelet
elements is called an active basis.

This is illustrated by the second and third rows of
Figure 2. In each row the first plot displays the common
set of Gabor wavelet elements selected from a dictio-
nary. The dictionary consists of Gabor wavelets at all
the locations and orientations, but at a fixed scale. Each
Gabor wavelet element is symbolically illustrated by a
bar at the same location and orientation and with the
same length as the corresponding Gabor wavelet. So
the active basis formed by the selected Gabor wavelet
elements can be interpreted as a template, as if each el-
ement is a stroke for sketching the template. The tem-
plates in the second and third rows are learned using
dictionaries of Gabor wavelets at two different scales,
with the scale of the third row about twice as large
as the scale of the second row. The number of Gabor
wavelet elements of the template in the second row is
50, while the number of elements of the template in
the third row is 15. Currently, we treat this number as
a tuning parameter, although they can be determined in
a more principled way.

Within each of the second and third rows, and for
each training image, we plot the Gabor wavelet el-
ements that are actually used to represent the corre-
sponding image. These elements are perturbed versions

of the corresponding elements in the first column. So
the templates in the first column are deformable tem-
plates, and the templates in the remaining columns are
deformed templates. Thus, the goal of seeking a com-
mon wavelet representation for images from the same
object category leads us to formulate the active basis,
which is a deformable template for the images from the
object category.

In the last row of Figure 2, the common template
is learned by selecting from a dictionary that consists
of Gabor wavelet elements at multiple scales instead
of a fixed scale. In addition to Gabor wavelet ele-
ments, we also include the center-surround difference
of Gaussian wavelet elements in the dictionary. Such
isotropic wavelet elements are of large scales, and they
mainly capture the regional contrasts in the images. In
the template in the last row, the number of selected
wavelet elements is 50. Larger Gabor wavelet elements
are illustrated by bars of lighter shades. The difference
of Gaussian elements are illustrated by circles. The re-
maining images are reconstructed by such multi-scale
wavelet representations, where each image is a linear
superposition of the Gabor and difference of Gaussian
wavelet elements of the corresponding deformed tem-
plates.

The active basis can be learned by the shared sketch
algorithm that we have recently developed [22, 23].
This algorithm can be considered a paralleled version
of the matching pursuit algorithm [13]. It can also
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FIG. 3. Shared sketch process for learning the active basis templates at two different scales.

be considered a modification of the projection pur-
suit algorithm [10]. The algorithm selects the wavelet
elements sequentially from the dictionary. Each time
when an element is selected, it is shared by all the train-
ing images in the sense that a perturbed version of this
element is included in the linear representation of each
image. Figure 3 illustrates the shared sketch process
for obtaining the templates displayed in the second and
third rows of Figure 2.

While selecting the wavelet elements of the active
basis, we also estimate the distributions of their coeffi-
cients from the training images. This gives us a statis-
tical model for the images. After learning this model,
we can then use it to recognize the same type of ob-
jects in testing images. See Figure 4 for an example.
The image on the left is the observed testing image.
We scan the learned template of deer over this image,
and at each location, we match the template to the im-
age by deforming the learned template. The template
matching is scored by the log-likelihood of the statisti-
cal model. We also scan the template over multiple res-
olutions of the image to account for the unknown scale
of the object in the image. Then we choose the res-
olution and location of the image with the maximum
likelihood score, and superpose on the image the de-
formed template matched to the image, as shown by
the image on the right in Figure 4. This process can
be accomplished by a cortex-like architecture of sum

FIG. 4. Left: Testing image. Right: Object is detected and
sketched by the deformed template.

maps and max maps, to be described in Section 2.11.
In machine learning and computer vision literature, de-
tecting or classifying objects using the learned model
is often called inference. The inference algorithm is of-
ten a part of the learning algorithm. For the active basis
model, both learning and inference can be formulated
as maximum likelihood estimation problems.

2.1.4 Local maximum pooling and complex V1 cells.
Besides wavelet sparse coding theory for V1 simple
cells, another inspiration to the active basis model
also comes from neuroscience. Riesenhuber and Pog-
gio [17] observed that the complex cells of the primary
visual cortex or V1 appear to perform local maximum
pooling of the responses from simple cells. From the
perspective of the active basis model, this corresponds
to estimating the perturbations of the wavelet elements
of the active basis template, so that the template is de-
formed to match the observed image. Therefore, if we
are to believe Olshausen and Field’s theory on wavelet
sparse coding [15] and Riesenhuber and Poggio’s the-
ory on local maximum pooling, then the active basis
model seems to be a very natural logical consequence.

In the following subsections we shall describe in de-
tail wavelet sparse coding, the active basis model, and
the learning and inference algorithms.

2.2 An Overcomplete Dictionary of Gabor Wavelets

The Gabor wavelets are translated, rotated and di-
lated versions of the following function:

G(x1, x2) ∝ exp{−[(x1/σ1)
2 + (x2/σ2)

2]/2}eix1,

which is sine–cosine wave multiplied by a Gaussian
function. The Gaussian function is elongated along the
x2-axis, with σ2 > σ1, and the sine–cosine wave prop-
agates along the shorter x1-axis. We truncate the func-
tion to make it locally supported on a finite rectangular
domain, so that it has a well defined length and width.
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We then translate, rotate and dilate G(x1, x2) to ob-
tain a general form of the Gabor wavelets:

Bx1,x2,s,α(x′
1, x

′
2) = G(x̃1/s, x̃2/s)/s

2,

where

x̃1 = (x′
1 − x1) cosα + (x′

2 − x2) sinα,

x̃2 = −(x′
1 − x1) sinα + (x′

2 − x2) cosα.

Writing x = (x1, x2), each Bx,s,α is a localized func-
tion, where x = (x1, x2) is the central location, s is
the scale parameter, and α is the orientation. The fre-
quency of the wave propagation in Bx,s,α is ω = 1/s.
Bx,s,α = (Bx,s,α,0, Bx,s,α,1), where Bx,s,α,0 is the even-
symmetric Gabor cosine component, and Bx,s,α,1 is the
odd-symmetric Gabor sine component. We always use
Gabor wavelets as pairs of cosine and sine components.
We normalize both the Gabor sine and cosine compo-
nents to have zero mean and unit �2 norm. For each
Bx,s,α , the pair Bx,s,α,0 and Bx,s,α,1 are orthogonal to
each other.

The dictionary of Gabor wavelets is

� = {Bx,s,α,∀(x, s, α)}.
We can discretize the orientation so that α ∈ {oπ/O,

o = 0, . . . ,O − 1}, that is, O equally spaced orienta-
tions (the default value of O is 15 in our experiments).
In this article we mostly learn the active basis template
at a fixed scale s. The dictionary � is called “overcom-
plete” because the number of wavelet elements in � is
larger than the number of pixels in the image domain,
since at each pixel, there can be many wavelet elements
tuned to different orientations and scales.

For an image I(x), with x ∈ D, where D is a set of
pixels, such as a rectangular grid, we can project it onto
a Gabor wavelet Bx,s,α,η, η = 0,1. The projection of I
onto Bx,s,α,η, or the Gabor filter response at (x, s, α),
is

〈I,Bx,s,α,η〉 = ∑
x′

I(x′)Bx,s,α,η(x
′).

The summation is over the finite support of Bx,s,α,η.
We write 〈I,Bx,s,α〉 = (〈I,Bx,s,α,0〉, 〈I,Bx,s,α,1〉). The
local energy is

|〈I,Bx,s,α〉|2 = 〈I,Bx,s,α,0〉2 + 〈I,Bx,s,α,1〉2.

|〈I,Bx,s,α〉|2 is the local spectrum or the magnitude of
the local wave in image I at (x, s, α).

Let

σ 2
s = 1

|D|O
∑
α

∑
x∈D

|〈I,Bx,s,α〉|2,

where |D| is the number of pixels in I, and O is the
total number of orientations. For each image I, we nor-
malize it to I ← I/σs , so that different images are com-
parable.

2.3 Matching Pursuit Algorithm

For an image I(x) where x ∈ D, we seek to represent
it by

I =
n∑

i=1

ciBxi,s,αi
+ U,(1)

where (Bxi,s,αi
, i = 1, . . . , n) ⊂ � is a set of Ga-

bor wavelet elements selected from the dictionary
�, ci is the coefficient, and U is the unexplained
residual image. Recall that each Bxi,s,αi

is a pair
of Gabor cosine and sine components. So Bxi,s,αi

=
(Bxi,s,αi ,0,Bxi,s,αi ,1), ci = (ci,0, ci,1), and ciBxi,s,αi

=
ci,0Bxi,s,αi ,0 + ci,1Bxi,s,αi ,1. We fix the scale parame-
ter s.

In the representation (1), n is often assumed to be
small, for example, n = 50. So the representation (1)
is called sparse representation or sparse coding. This
representation translates a raw intensity image with a
huge number of pixels into a sketch with only a small
number of strokes represented by B = (Bxi,s,αi

, i =
1, . . . , n). Because of the sparsity, B captures the most
visually meaningful elements in the image. The set
of wavelet elements B = (Bxi,s,αi

, i = 1, . . . , n) can
be selected from � by the matching pursuit algorithm
[13], which seeks to minimize ‖I − ∑n

i=1 ciBxi,s,αi
‖2

by a greedy scheme.

ALGORITHM 0 (Matching pursuit algorithm).

0. Initialize i ← 0, U ← I.
1. Let i ← i + 1. Let (xi, αi) = arg maxx,α |〈U,

Bx,s,α〉|2.
2. Let ci = 〈U,Bxi,s,αi

〉. Update U ← U − ci ×
Bxi,s,αi

.
3. Stop if i = n, else go back to 1.

In the above algorithm, it is possible that a wavelet
element is selected more than once, but this is ex-
tremely rare for real images. As to the choice of n or
the stopping criterion, we can stop the algorithm if |ci |
is below a threshold.

Readers who are familiar with the so-called “large
p and small n” problem in linear regression may have
recognized that wavelet sparse coding is a special case
of this problem, where I is the response vector, and
each Bx,s,α ∈ � is a predictor vector. The matching
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pursuit algorithm is actually the forward selection pro-
cedure for variable selection.

The forward selection algorithm in general can be
too greedy. But for image representation, each Gabor
wavelet element only explains away a small part of the
image data, and we usually pursue the elements at a
fixed scale, so such a forward selection procedure is
not very greedy in this context.

2.4 Matching Pursuit for Multiple Images

Let {Im,m = 1, . . . ,M} be a set of training images
defined on a common rectangle lattice D, and let us
suppose that these images come from the same object
category, where the objects appear at the same pose,
location and scale in these images. We can model these
images by a common set of Gabor wavelet elements,

Im =
n∑

i=1

cm,iBxi,s,αi
+ Um, m = 1, . . . ,M.(2)

B = (Bxi,s,αi
, i = 1, . . . , n) can be considered a com-

mon template for these training images. Model (2) is
an extension of model (1).

We can select these elements by applying the match-
ing pursuit algorithm on these multiple images simulta-
neously. The algorithm seeks to minimize

∑M
m=1 ‖Im −∑n

i=1 cm,iBxi,s,αi
‖2 by a greedy scheme.

ALGORITHM 1 (Matching pursuit on multiple im-
ages).

0. Initialize i ← 0. For m = 1, . . . ,M , initialize
Um ← Im.

1. i ← i + 1. Select

(xi, αi) = arg max
x,α

M∑
m=1

|〈Um,Bx,s,α〉|2.

2. For m = 1, . . . ,M , let cm,i = 〈Um,Bxi,s,αi
〉, and

update Um ← Um − cm,iBxi,s,αi
.

3. Stop if i = n, else go back to 1.

Algorithm 1 is similar to Algorithm 0. The differ-
ence is that, in Step 1, (xi, αi) is selected by maximiz-
ing the sum of the squared responses.

2.5 Active Basis and Local Maximum Pooling

The objects in the training images share similar
shapes, but there can still be considerable variations in
their shapes. In order to account for the shape defor-
mations, we introduce the perturbations to the common
template, and the model becomes

Im =
n∑

i=1

cm,iBxi+	xm,i ,s,αi+	αm,i
+ Um,

(3)
m = 1, . . . ,M.

Again, B = (Bxi,s,αi
, i = 1, . . . , n) can be considered

a common template for the training images, but this
time, this template is deformable. Specifically, for
each image Im, the wavelet element Bxi,s,αi

is per-
turbed to Bxi+	xm,i ,s,αi+	αm,i

, where 	xm,i is the
perturbation in location, and 	αm,i is the perturba-
tion in orientation. Bm = (Bxi+	xm,i ,s,αi+	αm,i

, i =
1, . . . , n) can be considered the deformed template
for coding image Im. We call the basis formed by
B = (Bxi,s,αi

, i = 1, . . . , n) the active basis, and we call
(	xm,i,	αm,i, i = 1, . . . , n) the activities or perturba-
tions of the basis elements for image m. Model (3) is
an extension of model (2).

Figure 2 illustrates three examples of active basis
templates. In the second and third rows the templates
in the first column are B = (Bxi,s,αi

, i = 1, . . . , n).
The scale parameter s in the second row is smaller
than the s in the third row. For each row, the tem-
plates in the remain columns are the deformed tem-
plates Bm = (Bxi+	xm,i ,s,αi+	αm,i

, i = 1, . . . , n), for
m = 1, . . . ,8. The template in the last row should
be more precisely represented by B = (Bxi,si ,αi

, i =
1, . . . , n), where each element has its own si automat-
ically selected together with (xi, αi). In this article we
focus on the situation where we fix s (default length of
the wavelet element is 17 pixels).

For the activity or perturbation of a wavelet ele-
ment Bx,s,α , we assume that 	x = (d cosα,d sinα),
with d ∈ [−b1, b1]. That is, we allow Bx,s,α to shift
its location along its normal direction. We also assume
	α ∈ [−b2, b2]. b1 and b2 are the bounds for the al-
lowed displacements in location and orientation (de-
fault values: b1 = 6 pixels, and b2 = π/15). We define

A(α) = {(
	x = (d cosα,d sinα),	α

)
:

d ∈ [−b1, b1],	α ∈ [−b2, b2]}
the set of all possible activities for a basis element
tuned to orientation α.

We can continue to apply the matching pursuit algo-
rithm to the multiple training images, the only differ-
ence is that we add a local maximum pooling operation
in Steps 1 and 2. The following algorithm is a greedy
procedure to minimize the least squares criterion:

M∑
m=1

∥∥∥∥∥Im −
n∑

i=1

cm,iBxi+	xm,i ,s,αi+	αm,i

∥∥∥∥∥
2

.(4)

ALGORITHM 2 (Matching pursuit with local maxi-
mum pooling).

0. Initialize i ← 0. For m = 1, . . . ,M , initialize
Um ← Im.
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1. i ← i + 1. Select

(xi, αi)

= arg max
x,α

M∑
m=1

max
(	x,	α)∈A(α)

|〈Um,Bx+	x,s,α+	α〉|2.

2. For m = 1, . . . ,M , retrieve

(	xm,i,	αm,i)

= arg max
(	x,	α)∈A(αi)

|〈Um,Bxi+	x,s,αi+	α〉|2.
Let cm,i ← 〈Um,Bxi+	xm,i ,s,αi+	αm,i

〉, and update
Um ← Um − cm,iBxi+	xm,i ,s,αi+	αm,i

.
3. Stop if i = n, else go back to 1.

Algorithm 2 is similar to Algorithm 1. The difference
is that we add an extra local maximization operation in
Step 1: max(	x,	α)∈A(α) |〈Um,Bx+	x,s,α+	α〉|2. With
(xi, αi) selected in Step 1, Step 2 retrieves the corre-
sponding maximal (	x,	α) for each image.

We can rewrite Algorithm 2 by defining Rm(x,α) =
〈Um,Bx,s,α〉. Then instead of updating the residual
image Um in Step 2, we can update the responses
Rm(x,α).

ALGORITHM 2.1 (Matching pursuit with local max-
imum pooling).

0. Initialize i ← 0. For m = 1, . . . ,M , initalize
Rm(x,α) ← 〈Im,Bx,s,α〉 for all (x,α).

1. i ← i + 1. Select

(xi, αi)

= arg max
x,α

M∑
m=1

max
(	x,	α)∈A(α)

|Rm(x + 	x,

α + 	α)|2.
2. For m = 1, . . . ,M , retrieve

(	xm,i,	αm,i)

= arg max
(	x,	α)∈A(αi)

|Rm(xi + 	x,αi + 	α)|2.
Let cm,i ← Rm(xi + 	xm,i, αi + 	αm,i), and update

Rm(x,α)

← Rm(x,α) − cm,i〈Bx,s,α,Bxi+	xm,i ,s,αi+	αm,i
〉.

3. Stop if i = n, else go back to 1.

2.6 Shared Sketch Algorithm

Finally, we come to the shared sketch algorithm that
we actually used in the experiments in this paper. The
algorithm involves two modifications to Algorithm 2.1.

ALGORITHM 3 (Shared sketch algorithm).

0. Initialize i ← 0. For m = 1, . . . ,M , initialize
Rm(x,α) ← 〈Im,Bx,s,α〉 for all (x,α).

1. i ← i + 1. Select

(xi, αi)

= arg max
x,α

M∑
m=1

max
(	x,	α)∈A(α)

h
(|Rm(x + 	x,

α + 	α)|2)
.

2. For m = 1, . . . ,M , retrieve

(	xm,i,	αm,i)

= arg max
(	x,	α)∈A(αi)

|Rm(xi + 	x,αi + 	α)|2.
Let cm,i ← Rm(xi + 	xm,i, αi + 	αm,i), and update
Rm(x,α) ← 0 if

corr(Bx,s,α,Bxi+	xm,i ,s,αi+	αm,i
) > 0.

3. Stop if i = n, else go back to 1.

The two modifications are as follows:

(1) In Step 1, we change |Rm(x + 	x,α + 	α)|2
to h(|Rm(x + 	x,α + 	α)|2) where h(·) is a sigmoid
function, which increases from 0 to a saturation level ξ

(default: ξ = 6),

h(r) = ξ

[
2

1 + e−2r/ξ
− 1

]
.(5)

Intuitively,
∑M

m=1 max(	x,	α)∈A(α) h(|Rm(x + 	x,

α + 	α)|2) can be considered the sum of the votes
from all the images for the location and orienta-
tion (x,α), where each image contributes
max(	x,	α)∈A(α) h(|Rm(x + 	x,α + 	α)|2). The sig-
moid transformation prevents a small number of im-
ages from contributing very large values. As a result,
the selection of (x,α) is a more “democratic” choice
than in Algorithm 2, and the selected element seeks to
sketch as many edges in the training images as possi-
ble. In the next section we shall formally justify the use
of sigmoid transformation by a statistical model.

(2) In Step 2, we update Rm(x,α) ← 0 if Bx,s,α

is not orthogonal to Bxi+	xm,i ,s,αi+	αm,i
. That is,

we enforce the orthogonality of the basis Bm =
(Bxi+	xm,i ,s,αi+	αm,i

, i = 1, . . . , n) for each training
image m. Our experience with matching pursuit is
that it usually selects elements that have little over-
lap with each other. So for computational convenience,
we simply enforce that the selected elements are or-
thogonal to each other. For two Gabor wavelets B1
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and B2, we define their correlation as corr(B1,B2) =∑1
η1=0

∑1
η2=0〈B1,η1,B2,η2〉2, that is, the sum of

squared inner products between the sine and co-
sine components of B1 and B2. In practical imple-
mentation, we allow small correlations between se-
lected elements, that is, we update Rm(x,α) ← 0
if corr(Bx,s,α,Bxi+	xm,i ,s,αi+	αm,i

) > ε (the default
value of ε = 0.1).

2.7 Statistical Modeling of Images

In this subsection we develop a statistical model for
Im. A statistical model is not only important for justify-
ing Algorithm 3 for learning the active basis template,
it also enables us to use the learned template to recog-
nize the objects in testing images, because we can use
the log-likelihood to score the matching between the
learned template and the image data.

The statistical model is based on the decomposi-
tion Im = ∑m

i=1 cm,iBxi+	xm,i ,s,αi+	αm,i
+ Um, where

Bm = (Bxi+	xm,i ,s,αi+	αm,i
, i = 1, . . . , n) is orthogo-

nal, and cm,i = 〈Im,Bxi+	xm,i ,s,αi+	αm,i
〉, so Um lives

in the subspace that is orthogonal to Bm. In order to
specify a statistical model for Im given Bm, we only
need to specify the distribution of (cm,i, i = 1, . . . , n)

and the conditional distribution of Um given (cm,i, i =
1, . . . , n).

The least squares criterion (4) that drives Algo-
rithm 2 implicitly assumes that Um is white noise, and
cm,i follows a flat prior distribution. These assumptions
are wrong. There can be occasional strong edges in the
background, but a white noise Um cannot account for
strong edges. The distribution of cm,i should be esti-
mated from the training images, instead of being as-
sumed to be a flat distribution.

In this work we choose to estimate the distribution
of cm,i from the training images by fitting an exponen-
tial family model to the sample {cm,i,m = 1, . . . ,M}
obtained from the training images, and we assume
that the conditional distribution of Um given (cm,i, i =
1, . . . , n) is the same as the corresponding conditional
distribution in the natural images. Such a conditional
distribution can account for occasional strong edges
in the background, and it is the use of such a con-
ditional distribution of Um as well as the exponential
family model for cm,i that leads to the sigmoid trans-
formation in Algorithm 3. Intuitively, a large response
|Rm(x + 	x,α + 	α)|2 indicates that there can be an
edge at (x + 	x,α + 	α). Because an edge can also
be accounted for by the distribution of Um in the nat-
ural images, a large response should not be taken at its
face value for selecting the basis elements. Instead, it

should be discounted by a transformation such as h(·)
in Algorithm 3.

2.8 Density Substitution and Projection Pursuit

More specifically, we adopt the density substitution
scheme of projection pursuit [10] to construct a sta-
tistical model. We start from a reference distribution
q(I). In this article we assume that q(I) is the dis-
tribution of all the natural images. We do not need
to know q(I) explicitly beyond the marginal distribu-
tion q(c) of c = 〈I,Bx,s,α〉 under q(I). Because q(I)
is stationary and isotropic, q(c) is the same for differ-
ent (x,α). q(c) is a heavy tailed distribution because
there are edges in the natural images. q(c) can be esti-
mated from the natural images by pooling a histogram
of {〈I,Bx,s,α〉,∀I,∀(x,α)} where {I} is a sample of the
natural images.

Given Bm = (Bxi+	xm,i ,s,αi+	αm,i
, i = 1, . . . , n), we

modify the reference distribution q(Im) to a new distri-
bution p(Im) by changing the distributions of cm,i . Let
pi(c) be the distribution of cm,i pooled from {cm,i,m =
1, . . . ,M}, which are obtained from the training im-
ages {Im,m = 1, . . . ,M}. Then we change the distrib-
ution of cm,i from q(c) to pi(c), for each i = 1, . . . , n,
while keeping the conditional distribution of Um given
(cm,i, i = 1, . . . , n) unchanged. This leads us to

p
(
Im|Bm = (Bxi+	xm,i ,s,αi+	αm,i

, i = 1, . . . , n)
)

(6)

= q(Im)

n∏
i=1

pi(cm,i)

q(cm,i)
,

where we assume that (cm,i, i = 1, . . . , n) are inde-
pendent under both q(Im) and p(Im|Bm), for orthog-
onal Bm. The conditional distributions of Um given
(cm,i, i = 1, . . . , n) under p(Im|Bm) and q(Im) are
canceled out in p(Im|Bm)/q(Im) because they are the
same. The Jacobians are also the same and are canceled
out. So p(Im|Bm)/q(Im) = ∏n

i=1 pi(cm,i)/q(cm,i).
The following are three perspectives to view mod-

el (6):

(1) Classification: we may consider q(I) as rep-
resenting the negative examples, and {Im} are pos-
itive examples. We want to find the basis elements
(Bxi,s,αi

, i = 1, . . . , n) so that the projections cm,i =
〈Im,Bxi+	xm,i ,s,αi+	αm,i

〉 for i = 1, . . . , n distinguish
the positive examples from the negative examples.

(2) Hypothesis testing: we may consider q(I) as rep-
resenting the null hypothesis, and the observed his-
tograms of cm,i, i = 1, . . . , n are the test statistics that
are used to reject the null hypothesis.
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(3) Coding: we choose to code cm,i by pi(c) instead
of q(c), while continuing to code Um by the condi-
tional distribution of Um given (cm,i, i = 1, . . . , n) un-
der q(I).

For all the three perspectives, we need to choose
Bxi,s,αi

so that there is big contrast between pi(c) and
q(c). The shared sketch process can be considered as
sequentially flipping dimensions of q(Im) from q(c)

to pi(c) to fit the observed images. It is essentially a
projection pursuit procedure, with an additional local
maximization step for estimating the activities of the
basis elements.

2.9 Exponential Tilting and Saturation
Transformation

While pi(c) can be estimated from {cm,i,m =
1, . . . ,M} by pooling a histogram, we choose to para-
metrize pi(c) with a single parameter so that it can be
estimated from even a single image.

We assume pi(c) to be the following exponential
family model:

p(c;λ) = 1

Z(λ)
exp{λh(r)}q(c),(7)

where λ > 0 is the parameter. For c = (c0, c1), r =
|c|2 = c2

0 + c2
1,

Z(λ) =
∫

exp{λh(r)}q(c) dc = Eq[exp{λh(r)}]
is the normalizing constant. h(r) is a monotone in-
creasing function. We assume pi(c) = p(c;λi),
which accounts for the fact that the squared responses
{|cm,i |2 = |〈Im,Bxi+	xm,i ,s,αi+	αm,i

〉|2,m = 1, . . . ,M}
in the positive examples are in general larger than those
in the natural images, because Bxi+	xm,i ,s,αi+	αm,i

tends to sketch a local edge segment in each Im. As
mentioned before, q(c) is estimated by pooling a his-
togram from the natural images.

We argue that h(r) should be a saturation transfor-
mation in the sense that as r → ∞, h(r) approaches
a finite number. The sigmoid transformation in (5) is
such a transformation. The reason for such a transfor-
mation is as follows. Let q(r) be the distribution of
r = |c|2 = |〈I,B〉|2 under q(c) where I ∼ q(I). We
may implicitly model q(r) as a mixture of pon(r) and
poff(r), where pon is the distribution of r when B is on
an edge in I, and poff is the distribution of r when B

is not on an edge in I. pon(r) has a much heavier tail
than poff(r). Let q(r) = (1 − ρ0)poff(r) + ρ0pon(r),
where ρ0 is the proportion of edges in the natural im-
ages. Similarly, let pi(r) be the distribution of r = |c|2

under pi(c). We can model pi(r) = (1 − ρi)poff(r) +
ρipon(r), where ρi > ρ0, that is, the proportion of
edges sketched by the selected basis element is higher
than the proportion of edges in the natural images.
Then, as r → ∞, pi(r)/q(r) → ρi/ρ0, which is a con-
stant. Therefore, h(r) should saturate as r → ∞.

2.10 Maximum Likelihood Learning and Pursuit
Index

Now we can justify the shared sketch algorithm as
a greedy scheme for maximizing the log-likelihood.
With parametrization (7) for the statistical model (6),
the log-likelihood is

M∑
m=1

n∑
i=1

log
pi(cm,i)

q(cm,i)

=
n∑

i=1

[
λi

M∑
m=1

h(|〈Im,Bxi+	xm,i ,s,αi+	αm,i
〉|2)(8)

− M logZ(λi)

]
.

We want to estimate the locations and orientations of
the elements of the active basis, (xi, αi, i = 1, . . . , n),
the activities of these elements, (	xm,i,	αm,i, i =
1, . . . , n), and the weights, (λi, i = 1, . . . , n), by maxi-
mizing the log-likelihood (8), subject to the constraints
that Bm = (Bxi+	xm,i ,s,αi+	αm,i

, i = 1, . . . , n) is or-
thogonal for each m.

First, we consider the problem of estimating the
weight λi given Bm. To maximize the log-likelihood
(8) over λi , we only need to maximize

li(λi) = λi

M∑
m=1

h(|〈Im,Bxi+	xm,i ,s,αi+	αm,i
〉|2)

− M logZ(λi).

By setting l′i (λi) = 0, we get the well-known form
of the estimating equation for the exponential family
model,

μ(λi)
(9)

= 1

M

M∑
m=1

h(|〈Im,Bxi+	xm,i ,s,αi+	αm,i
〉|2),

where the mean parameter μ(λ) of the exponential
family model is

μ(λ) = Eλ[h(r)]
(10)

= 1

Z(λ)

∫
h(r) exp{λh(r)}q(r) dr.
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The estimating equation (9) can be solved easily be-
cause μ(λ) is a one-dimensional function. We can sim-
ply store this monotone function over a one-dimension-
al grid. Then we solve this equation by looking up
the stored values, with the help of nearest neighbor
linear interpolation for the values between the grid
points. For each grid point of λ, μ(λ) can be computed
by one-dimensional integration as in (10). Thanks to
the independence assumption, we only need to deal
with such one-dimensional functions, which relieves us
from time consuming MCMC computations.

Next let us consider the problem of selecting (xi,

αi), and estimating the activity (	xm,i,	αm,i) for
each image Im. Let λ̂i be the solution to the estimat-
ing equation (9). li(λ̂i) is monotone in

∑M
m=1 h(|〈Im,

Bxi+	xm,i ,s,αi+	αm,i
〉|2). Therefore, we need to find

(xi, αi), and (	xm,i,	αm,i), by maximizing∑M
m=1 h(|〈Im,Bxi+	xm,i ,s,αi+	αm,i

〉|2). This justifies
Step 1 of Algorithm 3, where

∑M
m=1 h(|Rm(x + 	x,

α + 	α)|2) serves as the pursuit index.

2.11 SUM-MAX Maps for Template Matching

After learning the active basis model, in particu-
lar, the basis elements B = (Bxi,s,αi

, i = 1, . . . , n) and
the weights (λi, i = 1, . . . , n), we can use the learned
model to find the object in a testing image I, as illus-
trated by Figure 4. The testing image may not be de-
fined on the same lattice as the training images. For ex-
ample, the testing image may be larger than the train-
ing images. We assume that there is one object in the
testing image, but we do not know the location of the
object in the testing image. In order to detect the ob-
ject, we scan the template over the testing image, and at
each location x, we can deform the template and match
it to the image patch around x. This gives us a log-
likelihood score at each location x. Then we can find
the maximum likelihood location x̂ that achieves the
maximum of the log-likelihood score among all the x.
After computing x̂, we can then retrieve the activities
of the elements of the active basis template centered
at x̂.

ALGORITHM 4 (Object detection by template match-
ing).

1. For every x, compute

l(x)

=
n∑

i=1

[
λi max

(	x,	α)∈A(αi)
h(|〈I,Bx+xi+	x,s,αi+	α〉|2)

− logZ(λi)
]
.

2. Select x̂ = arg maxx l(x). For i = 1, . . . , n, re-
trieve

(	xi,	αi)

= arg max
(	x,	α)∈A(αi)

|〈I,Bx̂+xi+	x,s,αi+	α〉|2.

3. Return the location x̂, and the deformed template
(Bx̂+xi+	xi,s,αi+	αi

, i = 1, . . . , n).

Figure 4 displays the deformed template
(Bx̂+xi+	xi,s,αi+	αi

, i = 1, . . . , n), which is super-
posed on the image on the right.

Step 1 of the above algorithm can be realized by a
computational architecture called sum-max maps.

ALGORITHM 4.1 (sum-max maps).

1. For all (x,α), compute SUM1(x,α) = h(|〈I,
Bx,s,α〉|2).

2. For all (x,α), compute

MAX1(x,α) = max
(	x,	α)∈A(α)

SUM1(x +	x,α +	α).

3. For all x, compute SUM2(x) = ∑n
i=1[λi ×

MAX1(x + xi, αi) − logZ(λi)].
SUM2(x) is l(x) in Algorithm 4.

The local maximization operation in Step 2 of Algo-
rithm 4.1 has been hypothesized as the function of the
complex cells of the primary visual cortex [17]. In the
context of the active basis model, this operation can
be justified as the maximum likelihood estimation of
the activities. The shared sketch learning algorithm can
also be written in terms of sum-max maps.

The activities (	xm,i,	αm,i, i = 1, . . . , n) should
be treated as latent variables in the active basis model.
However, in both learning and inference algorithms,
we treat them as unknown parameters, and we max-
imize over them instead of integrating them out. Ac-
cording to Little and Rubin [12], maximizing the
complete-data likelihood over the latent variables may
not lead to valid inference in general. However, in nat-
ural images, there is little noise, and the uncertainty in
the activities is often very small. So maximizing over
the latent variables can be considered a good approxi-
mation to integrating out the latent variables.

3. LEARNING ACTIVE BASIS TEMPLATES BY
EM-TYPE ALGORITHMS

The shared sketch algorithm in the previous section
requires that the objects in the training images {Im} are
of the same pose, at the same location and scale, and
the lattice of Im is the bounding box of the object in
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Im. It is often the case that the objects may appear at
different unknown locations, orientations and scales in
{Im}. The unknown locations, orientations and scales
can be incorporated into the image generation process
as hidden variables. The template can still be learned
by the maximum likelihood method.

3.1 Learning with Unknown Orientations

We start from a simple example of learning a horse
template at the side view, where the horses can face
either to the left or to the right. Figure 5 displays the
results of EM learning. The three templates in the first
row are the learned templates in the first three itera-
tions of the EM algorithm. The rest of the figure dis-

plays the training images, and for each training image,
a deformed template is displayed to the right of it. The
EM algorithm correctly estimates the direction for each
horse, as can be seen by how the algorithm flips the
template to sketch each training image.

Let B = (Bi = Bxi,s,αi
, i = 1, . . . , n) be the

deformable template of the horse, and Bm =
(Bm,i = Bxi+	xm,i ,s,αi+	αm,i

, i = 1, . . . , n) be the de-
formed template for Im. Then Im can either be gen-
erated by Bm or the mirror reflection of Bm, that
is, (BR(xi+	xm,i ),s,−(αi+	αm,i), i = 1, . . . , n), where
for x = (x1, x2), R(x) = (−x1, x2) (we assume that
the template is centered at origin). We can intro-
duce a hidden variable zm to account for this uncer-

FIG. 5. Template learned from images of horses facing two different directions. The first row displays the templates learned in the first 3
iterations of the EM algorithm. For each training image, the deformed template is plotted to the right of it. The number of training images is
57. The image size is 120 × 100 (width × height). The number of elements is 40. The number of EM iterations is 3.
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tainty, so that zm = 1 if Im is generated by Bm, and
zm = 0 if Im is generated by the mirror reflection of
Bm. More formally, we can define Bm(zm), so that
Bm(1) = Bm, and Bm(0) is the mirror reflection of
Bm. Then we can assume the following mixture model:
zm ∼ Bernoulli(ρ), where ρ is the prior probability
that zm = 1, and [Im|zm] ∼ p(Im|Bm(zm),�), where
� = (λi, i = 1, . . . , n). We need to learn B, and esti-
mate � and ρ.

A simple observation is that p(Im|Bm(zm)) =
p(Im(zm)|Bm), where Im(1) = Im and Im(0) is the
mirror reflection of Im. In other words, in the case of
zm = 1, we do not need to make any change to Im or
Bm. In the case of zm = 0, we can either flip the tem-
plate or flip the image, and these two alternatives will
produce the same value for the likehood function.

In the EM algorithm, the E-step imputes zm for m =
1, . . . ,M using the current template B. This means
recognizing the orientation of the object in Im. Given
zm, we can change Im to Im(zm), so that {Im(zm)} be-
come aligned with each other, if zm are imputed cor-
rectly. Then in the M-step, we can learn the template
from the aligned images {Im(zm)} by the shared sketch
algorithm.

The complete data log-likelihood for the mth obser-
vation is

logp(Im, zm|Bm)

= zm logp(Im|Bm,�)

+ (1 − zm) logp
(
Im(0)|Bm,�

)
+ zm logρ + (1 − zm) log(1 − ρ),

which is linear in zm. So in the E-step, we only need to
compute the predictive expectation of zm,

ẑm = Pr(zm = 1|Bm,�,ρ)

= ρp(Im|Bm,�)

ρp(Im|Bm,�) + (1 − ρ)p(Im(0)|Bm,�)
.

Both logp(Im|Bm,�) and logp(Im(0)|Bm,�) are
readily available in the M-step.

The M-step seeks to maximize the expectation of the
complete-data log-likelihood,

n∑
i=1

[
λi

M∑
m=1

(
ẑmh(|〈Im,Bm,i〉|2)

+ (1 − ẑm)h(|〈Im(0),Bm,i〉|2))(11)

− M logZ(λi)

]

+
[

logρ

M∑
m=1

ẑm

(12)

+ log(1 − ρ)

(
M −

M∑
m=1

ẑm

)]
.

The maximization of (12) leads to ρ̂ = ∑M
m=1 ẑm/M .

The maximization of (11) can be accomplished by the
shared sketch algorithm, that is, Algorithm 3, with the
following minor modifications:

(1) The training images become {Im, Im(0),m =
1, . . . ,M}, that is, there are 2M training images instead
of M images. Each Im contributes two copies, the orig-
inal copy Im or Im(1), and the mirror reflection Im(0).
This reflects the uncertainty in zm. For each image Im,
we attach a weight ẑm to Im, and a weight 1 − ẑm to
Im(0). Intuitively, a fraction of the horse in Im is at the
same orientation as the current template, and a frac-
tion of it is at the opposite orientation—a “Schrodinger
horse” so to speak. We use (Jk,wk, k = 1, . . . ,2M) to
represent these 2M images and their weights.

(2) In Step 1 of the shared sketch algorithm, we se-
lect (xi, αi) by

(xi, αi)

= arg max
x,α

2M∑
k=1

wk max
(	x,	α)∈A(α)

h
(|Rk(x + 	x,

α + 	α)|2)
.

(3) The maximum likelihood estimating equation
for λi is

μ(λi)

= 1

M

2M∑
k=1

wk max
(	x,	α)∈A(αi)

h
(|Rk(xi + 	x,

αi + 	α)|2)
,

where the right-hand side is the weighted average ob-
tained from the 2M training images.

(4) Along with the selection of Bxi,s,αi
and the esti-

mation of λi , we should calculate the template match-
ing scores

logp(Jk|Bk,�)

=
n∑

i=1

[
λ̂i max

(	x,	α)∈A(αi)
h
(|Rk(xi + 	x,

αi + 	α)|2)
− logZ(λ̂i)

]
,
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FIG. 6. Template learned from 11 images of pigeons facing different directions. The image size is 150 × 150. The number of elements is
50. The number of iterations is 3.

for k = 1, . . . ,2M . This gives us logp(Im|Bm,�) and
logp(Im(0)|Bm,�), which can then be used in the E-
step.

We initialize the algorithm by randomly generating
ẑm ∼ Unif[0,1], and then iterate between the M-step
and the E-step. We stop the algorithm after a few itera-
tions. Then we estimate zm = 1 if ẑm > 1/2 and zm = 0
otherwise.

In Figure 5 the results are obtained after 3 iterations
of the EM algorithm. Initially, the learned template is
quite symmetric, reflecting the confusion of the algo-
rithm regarding the directions of the horses. Then the
EM algorithm begins a process of “symmetry break-
ing” or “polarization.” The slight asymmetry in the ini-
tial template will push the algorithm toward favoring
for each image the direction that is consistent with the
majority direction. This process quickly leads to all the
images aligned to one common direction.

Figure 6 shows another example where a template of
a pigeon is learned from examples with mixed direc-
tions.

We can also learn a common template when the ob-
jects are at more than two different orientations in the
training images. The algorithm is essentially the same
as described above. Figure 7 displays the learning of
the template of a baseball cap from examples where

the caps turn to different orientations. The E-step in-
volves rotating the images by matching to the current
template, and the M-step learns the template from the
rotated images.

3.2 Learning From Nonaligned Images

When the objects appear at different locations in the
training images, we need to infer the unknown loca-
tions while learning the template. Figure 8 displays the
template of a bike learned from the 7 training images
where the objects appear at different locations and are
not aligned. It also displays the deformed templates su-
perposed on the objects in the training images.

In order to incorporate the unknown locations into
the image generation process, let us assume that both
the learned template B = (Bxi,s,αi

, i = 1, . . . , n) and
the training images {Im} are centered at origin. Then
let us assume that the location of the object in im-
age Im is x(m), which is assumed to be uniformly dis-
tributed within the image lattice of Im. Let us define
Bm(x(m)) = (Bx(m)+xi+	xm,i ,s,αi+	αm,i

, i = 1, . . . , n)

to be the deformed template obtained by translat-
ing the template B from the origin to x(m) and then
deforming it. Then the generative model for Im is
p(Im|Bm(x(m)),�).

Just like the example of learning the horse tem-
plate, we can transfer the transformation of the tem-
plate to the transformation of the image data, and

FIG. 7. Template learned from 15 images of baseball caps facing different orientations. The image size is 100 × 100. The number of
elements is 40. The number of iterations is 5.
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FIG. 8. The first row shows the sequence of templates learned in the first 3 iterations. The first one is the starting template, which is learned
from the first training image. The second row shows the bikes detected by the learned template, where a deformed template is superposed on
each training image. The size of the template is 225 × 169. The number of elements is 50. The number of iterations is 3.

the latter transformation leads to the alignment of the
images. Let us define Im(x(m)) to be the image ob-
tained by translating the image Im so that the cen-
ter of Im(x(m)) is −x(m). Then p(Im|Bm(x(m)),�) =
p(Im(x(m))|Bm,�). If we know x(m) for m = 1, . . . ,M ,
then the images {Im(x(m))} are all aligned, so that we
can learn a template from these aligned images by the
shared sketch algorithm. On the other hand, if we know
the template, we can use the template to recognize and
locate the object in each Im by the inference algorithm,
that is, Algorithm 4, using the sum-max maps, and
identify x(m). Such considerations naturally lead to the
iterative EM-type scheme.

The complete-data log-likelihood is

n∑
i=1

[
λi

M∑
m=1

h
(∣∣〈Im(x(m)),

Bxi+	xm,i ,s,αi+	αm,i

〉∣∣2)
(13)

− M logZ(λi)

]
.

In the E-step we perform the recognition task by cal-
culating

pm(x) = Pr
(
x(m) = x|B,�

) ∝ p
(
Im(x)|Bm,�

)
, ∀x.

That is, we scan the template over the whole image
Im, and at each location x, we evaluate the template
matching between the image Im and the translated
and deformed template Bm(x). logp(Im(x)|Bm,�) is
the SUM2(x) output by the sum-max maps in Algo-
rithm 4.1. This gives us pm(x), which is the posterior
or predictive distribution of the unknown location x(m)

within the image lattice of Im. We can then use pm(x)

to compute the expectation of the complete-data log-
likelihood (13) in the E-step.

Our experience suggests that pm(x) is always highly
peaked at a particular position. So instead of com-
puting the average of (13), we simply impute x(m) =
arg maxx pm(x).

Then in the M-step, we maximize the complete data
log-likelihood (13) by the shared sketch algorithm, that
is, we learn the template B from {Im(x(m))}. This step
performs supervised learning from the aligned images.

In our current experiment we initialize the algorithm
by learning (B,�) from the first image. In learning
from this single image, we set b1 = b2 = 0, that is,
we do not allow the elements (Bxi,s,αi

, i = 1, . . . , n) to
perturb. After that, we reset b1 and b2 to their default
values, and iterate the recognition step and the super-
vised learning step.

In addition to the unknown locations, we also allow
the uncertainty in scales. In the recognition step, for
each Im, we search over a number of different resolu-
tions of Im. We take Im(x(m)) to be the optimal reso-
lution that contains the maximum template matching
score across all the resolutions.

In Figure 8 the first row displays the templates
learned over the EM iterations. The first template is
learned from the first training image. Figures 9–12 dis-
play more examples.

4. DISCUSSION

This paper experiments with EM-type algorithms
for learning active basis models from training images
where the objects may appear at unknown locations,
orientations and scales. For more details on implement-
ing the shared sketch algorithm, the reader is referred
to [23] and the source code posted on the reproducibil-
ity page.

We would like to emphasize two aspects of the algo-
rithms that are different from the usual EM algorithm.
The first aspect is that the M-step involves the selec-
tion of the basis elements, in addition to the estimation
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FIG. 9. The first row shows the sequence of templates learned in iterations 0, 1, 3, 5. The second and third rows show the camel images
with superposed deformed templates. The size of the template is 192 × 145. The number of elements is 60. The number of iterations is 5.

FIG. 10. The first row shows the sequence of templates learned in iterations 0, 1, 3, 5. The other rows show the crane images with
superposed deformed templates. The size of the template is 285 × 190. The number of elements is 50. The number of iterations is 5.

FIG. 11. The first row shows the sequence of templates learned in iterations 0, 2, 4, 6, 8, 10. The other rows show the horse images with
superposed deformed templates. We use the first 20 images of the Weizmann horse data set [3], which are resized to half the original sizes.
The size of the template is 158 × 116. The number of elements is 60. The number of iterations is 10. The detection results on the rest of the
images in this data set can be found in the reproducibility page.
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FIG. 12. The size of the template is 240 × 180. The number of elements is 60. The number of iterations is 3.

of the associated parameters. The second aspect is that
the performance of the algorithms can rely heavily on
the initializations. In learning from nonaligned images,
the algorithm is initialized by training the active basis
model on a single image. Because of the simplicity of
the model, it is possible to learn the model from a sin-
gle image. In addition, the learning algorithm seems to
converge within a few iterations.

4.1 Limitations

The active basis model is a simple extension of the
wavelet representation. It is still very limited in the fol-
lowing aspects. The model cannot account for large de-
formations, articulate shapes, big changes in poses and
view points, and occlusions. The current form of the
model does not describe textures and lighting varia-
tions either. The current version of the learning algo-
rithm only deal with situations where there is one ob-
ject in each image. Also, we have tuned two parameters
in our implementation. One is the image resize factor
that we apply to the training images before the model is
learned. Of course, for each experiment, a single resize
factor is applied to all the training images. The other
parameter is the number of elements in the active ba-
sis.

4.2 Possible Extensions

It is possible to extend the active basis model to ad-
dress some of the above limitations. We shall discuss
two directions of extensions. One is to use active ba-
sis models as parts of the objects. The other is to train
active basis models by local learning.

Active basis models as part-templates: The active
basis model is a composition of a number of Ga-
bor wavelet elements. We can further compose mul-
tiple active basis models to represent more articulate

shapes or to account for large deformations by allow-
ing these active basis models to change their overall lo-
cations, scales and orientations within limited ranges.
These active basis models serve as part-templates of
the whole composite template. This is essentially a hi-
erarchical recursive compositional structure [11, 25].
The inference or template matching can be based on
a recursive structure of sum-max maps. Learning such
a structure should be possible by extending the learn-
ing algorithms studied in this article. See [23] for pre-
liminary results. See also [18, 20] for recent work on
part-based models.

Local learning of multiple prototype templates: In
each experiment we assume that all the training im-
ages share a common template. In reality, the training
images may contain different types of objects, or dif-
ferent poses of the same type of objects. It is there-
fore necessary to learn multiple prototype templates.
It is possible to do so by modifying the current learn-
ing algorithm. After initializing the algorithm by single
image training, in the M-step, we can relearn the tem-
plate only from the K images with the highest template
matching scores, that is, we relearn the template from
the K nearest neighbors of the current template. Such a
scheme is consistent with the EM-clustering algorithm
for fitting mixture models. We can start the algorithm
from every training image, so that we learn a local pro-
totype template around each training image. Then we
can trim and merge these prototypes. See [23] for pre-
liminary results.

REPRODUCIBILITY

All the experimental results reported in this paper
can be reproduced by the code that we have posted at
http://www.stat.ucla.edu/~ywu/ActiveBasis.html.

http://www.stat.ucla.edu/~ywu/ActiveBasis.html
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