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Abstract

Natural scenes contain a wide range of textured motion patterns which are characterized by the move-
ment of a large amount of particle and wave elements, such as falling snow, water waves, dancing grass,
etc. In this paper, we present a generative method for modeling these motion phenomena by integrating
statistical models and algorithms from both texture and motion analysis. This generative model consists
four components. (1). A photometric model which represents an image as a linear superposition of im-
age bases selected from a generic and over-complete dictionary. The dictionary contains Gabor bases for
point /particle-elements and Fourier bases for wave-elements. These bases compete to explain the input
images. The transform from a raw image to a base (token) representation leads to O(102)-fold dimension
reduction. (2). A geometric model which groups the bases and their motion trejectories into a number of
basic moving elements — called “motons”. A moton is a a deformable template in space-time representing
a moving element, such as a snow flake. (3). A unified dynamic model which characterize the motion of
particles, waves, and their interactions, e.g. balls/leaves floating on water. Given an input video sequence,
a statistical learning algorithm computes a set of motons with their trajectories as hidden variables. It also
learns the parameters that govern the geometric deformations and motion dynamics by maximum likelihood
estimate (MLE). Consequently, novel sequences are synthesized easily from the learning models. (4). A
sketch model which adopts the generative model above but replaces the dictionary of Gabor and Fourier
bases with symbolic sketches (token symbols). With the same generative model, it can render realistic and
stylish cartoon animation. In our view, cartoon sketch is a symbolic visualization of the inner representation
for visual perception. The success of the cartoon animation, in turn, suggests that the generative model

capture the essence of visual perception of textured motion.
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I. INTRODUCTION

Natural scenes contain a wide variety of stochastic motion patterns which are charac-
terized by the movement of a large amount of particles and wave elements, such as falling
snow, flock of birds, river waves, dancing grass, etc. It has been acknowledged [14] that
such motion patterns fall beyond the scope of conventional optical flow field model[10] and
new framework has yet to be developed. In recent years the study of such motion patterns
have stimulated growing interests in both the vision and the graphics communities, driven
by a number of applications for synthesis and analysis.

Graphics methods. Computer graphics methods are concerned with rendering
photorealistic video sequences or non-photorealistic and stylish cartoon animations. In the
graphics literature, both physics-based and image-based methods are reported. The former
use partial differential equations, for example, creating animations of fire and gaseous phe-
nomena with particles [19], [3]. The latter includes (1) video texture [21] which finds smooth
transition points in a video sequence from which the video could be replayed with minimum
discontinuity artifacts; (2) 3D wvolume texture [28] which generates motion through non-
parametric sampling from an observed video motivated by recent work on texture synthesis
[9], [31], [4]. Though some realistic animations can be rendered at fast speed, the video tex-
ture or volume texture do not explicitly account for the dynamic and geometric properties
of the moving elements. Consequently, the synthesized animations are less controllable.

Vision methods. In computer vision, the analysis of these motion patterns are im-
portant for video analysis, such as motion segmentation, annotation, recognition, retrieval,
detecting abnormal motion in a crowd. In the vision literature, as these motion patterns
lie in the domains of both motion analysis and texture modeling, statistical models are
proposed from both directions with a trend of merging the two. In the following, we briefly
review these work to set the background for our method.

Szummer and Picard [24] called the motion patterns temporal texture, and adopted a

spatial-temporal auto-regression (STAR) model from Cliff and Ord [2]. In the STAR model,
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a linear (or partial) order is imposed so that the intensity of each pixel only depends on
its spatial and temporal neighbors for fast synthesis. Such model can be considered as
an extension from a causal Gaussian Markov random field model (GMRF) used in texture
modeling by adding the time dimension. Bar-Joseph et. al. [1] extended 2D texture
synthesis work [9], [31] to a tree structured multi-resolution representation, in a similar
spirit to 3D volume texture method [28]. The dynamic texture work by Soatto et. al. [22]
studied the motion dynamics explicitly using models and tools from control theory [13]. By
a SVD analysis, they represent an image I(¢) by a number of principal component images.
The projections of I(¢) on these component images, denoted by z(t), is modeled by a linear
system model,

2(t+1) = Az(t) + Bu(t), I(t) = Cx(t) + n(?),

where v(t) is the noise driving the motion and n(t) is the image noise for the reconstruction
residues. The parameters A, B, C are learned by maximum likelihood estimation (MLE).
This model can generate impressive synthesis for a variety of motion patterns especially
when the moving objects can be represented well by PCA across the time sequence. The
model was also shown to be useful for recognition [20]. Fitzgibbon [6] further studied the
rigid camera motion in combination with the stochastic motion patterns, so that the motion
is registered properly.

Despite reasonable success, the above models need to be extended to address the following
problems.

Firstly, in the above models, the basic moving elements in the above models are either
pixels and points[19], [3], [24], [28], [1] or the entire image [21] and its principal compo-
nents[22], [6]. Such representations often do not identify the perceived moving elements in
the video, such as the individual bird or snowflake.

Secondly, these models do not fully characterize the dynamics of the moving elements.
For example, the trajectories, sources, sinks, and lifespan for the elements, They also do not

model the interactions between the elements, for example, simulating balls or leaves driven



by water waves. Thus they have less locality in analysis and controllability in synthesis.

Furthermore, following a suggestion by Mumford in 1996, we call these patterns as “tex-
tured motion” to emphasize the fact that the image sequences are fundamentally motion
phenomena characterized by the dynamics, in contrast to referring them as texture phe-
nomena, such as temporal texture [24], video texture [21], volume texture [28], dynamic
texture [22]. Textures correspond to status of systems with massive elements at thermody-
namic equilibrium [31]. But motion patterns like fire, toilet flash, and gaseous turbulence
are clearly not at equilibrium.

Summary of Our method. To address these problems, this paper presents a
generative representation for textured motion which includes the following four models.
1. A photometric model. An image is represented as a superposition of bases from an over-
complete dictionary [5], including Fourier bases, Gabor sin / cos bases at different scales,
orientations. Such bases are known to be generic and effective for representing natural
images including particle and wave patterns. This model transforms a raw image into
a number of bases in a token representation and thus achieves a O(10%) folds dimension
reduction (see Table I).
2. A geometric model. We group the bases and their motion trajectories into a number of
basic moving elements. We call the basic moving elements the “motons” in accordance with
the notion of “textons” — the atomic perceptual elements in static images[12], [?]. A moton
is a a deformable template in space-time representing a moving element. For instance, each
snowflake or bird is represented by a few Gabor bases moving together (see Figures 4, 3).
3. A dynamic model. We adopt a general motion equation which includes an auto-regression
(AR) component for the trajectory of each base, its source and sink maps, external driving
forces and the interactions with other bases. The interactions among motons are always
considered a challenge in both vision and graphics. In this paper, we assume that ”waves
have more influence on particles”. For example, e.g. a ball (Gabor bases) floating on a river

is driven by water waves (Fourier bases).



Models Parameters Stored in the Models Compression

Training Sequence 150 x 200(T) x 100(frame number) = 3 x 10° NA
Video Texture 150 x 200(I) x 100(frame number) = 3 x 10° 1:1
Dynamic Texture 150 x 200(T) + 150 x 200 x 20(PCA) + 20 x 1:5

20(dynamics) + 20(0) & 6.3 x 10°

Textured Motion 103 x 34+ 10% x 8 +20 x 8 ~ 10* 1:300

TABLE 1
COMPARISON OF THE COMPRESSION RATIOS OF 4 TYPICAL MODELS FOR A WAVY RIVER SEQUENCE.

THE COMPRESSION RATIO IS NUMBER OF PIXELS DIVIDED BY THE NUMBER OF PARAMETERS IN MODELS.

4. A sketch model. For cartoon animation, we replace the dictionary of Gabor and Fourier
bases with symbolic sketches. Together with the same motion model, we can render non-
photorealistic and stylish cartoon animation. In our view, cartoon and sketch are simplified
symbolic visualization of our inner representation and perception. The success of the cartoon
animation, in turn, suggests that our representation captures the essence of visual perception
of textured motion.

We adopt an EM-like stochastic gradient algorithm [8] for inference of the hidden variables
(bases, motons, and trajectories), and their parameters (source and sink maps, parameters
of the dynamics). This generative model offers more controllability in rendering both motion
sequences and cartoon animation. For example, in Figures 7 and 9, we can edit the number
of motons, and sources of of motons etc.

In comparison with other models, our representation is much more parsimonious. Table. I
compares the compression rates for a wavy river sequence. The training sequence is 100-
frame long and each frame has 150 x 200-pixels. The video/volume texture method [21],
[28] store the entire sequence, and synthesizes a new sequence by re-ordering the training

frames or cut-and-paste. Dynamic texture model [22] remembers 1 mean image, 20 principal
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components of the frames, a dynamics matrix A and 20 noise terms. The model achieves a
compression rate of about 1 : 5. Our model represent an image about 1000 Fourier bases
without noticeable loss, and the dynamics are fitted by a 20th order AR model on the
coefficients. See Section II-D case 2 for a detailed account. The compression rate is about
1 : 300, due to the use of a generic dictionary. For the snowing or bird sequences, our model
achieves even higher compression rates.

The paper is organized as follows. In Section II we present a two-level generative rep-
resentation with photometric, geometric, dynamic models, and illustrate the models with
experiments. Then in Section III, we present the learning and inference algorithm using
Markov chain Monte Carlo methods for computing the three models from video. Then in
Section IV we show how the generative model can be easily transfer into cartoon anima-
tion. A number of synthesized movies and cartoon animation are better evaluated from the

supplementary video clips.

II. TEXTURED MOTION REPRESENTATION

Let I[0, 7] denote an image sequence on a 2D lattice A in a discrete time interval [0, 7] =

{0,1,...,7}. For t € [0, 7], I(¢) is a frame and I(u,v,t) denotes a pixel.

A. Photometric model— particles and waves

The photometric model assumes that an image I is a superposition of N image bases

v, =1,2,..., N selected from a dictionary A plus an iid Gaussian noise image n.

N
L(u,v) = Y a;v;(u,v; ;) +n, ¥; €A, n~N(0,02). (1)

j=1
«; is the coefficient of base 1; and 3; is the transforms (translation, rotation and scaling)
on the base functions ¥ (u,v) which we shall specify shortly. The dictionary A is 100-fold
over-complete [5] and it includes a dictionary of “particle bases” Apg, such as LoG and

Gabor functions, and a dictionary of wave bases Ayay, such as Fourier functions. So

A=Apq U Ay, with [A] =O(100/A])
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Fig. 1. Coarse to fine image reconstruction with Gabor and LoG bases. Top row: three prototypes of
bases: LoG, Gabor cosine and Gabor sine. Mid-left: symbolic sketch maps for Gabor bases of the snow
image. Mid-right: symbolic sketches for the Gabor bases (bars) and LoG bases (circles) and the images
they reconstructed. Bottom row: combined images at three scales reconstructed by both the Gabor and
LoG bases. Number of bases increases from left to right with Ny = 800 at scale 3.

In the following, we briefly introduce A, and Ay,,, and discuss how the bases are selected
for reconstructing the image.

Particle bases A,  The dictionary of particle base is constructed from three standard

base functions: Laplacian of Gaussian, Gabor cosine and Gabor sine,
@, = {LoG(u,v), Geos(u,v), Gsin(u,v)},
through transformation denoted by variables 3. Thus,
Apa = {Gcos(u, v; ), Gsin(u,v; ), LoG(u,v;3) : VG}. (2)

For Gabor bases, f = (z,y,0,0) specify the centers, scales and orientations of the base

function. For LoG bases, the variable 8 = (z, y, o) specify the centers and scales of the base
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function. If we represent each base by an attributed point (or token) b; = (ay, 3;), then
the photometric model in eqn (1) transfers a raw image I into a token representation as a

layer of hidden variables — called the particle base map. We denote it by

chl - {b] = (ajaﬁj)a .7 = 1: 2’ ""NPCI}' (3)

Figure 1 shows an example of representing a snow image by particle bases. The three
particle base functions LoG, Gcos, Gsin are shown on the top. In the middle of the figure,
we show the base maps at three scales in a coarse-to-fine order with increasing Npq. At
each scale, we divide the base map By into a Gabor map (left) and an LoG map (right).
A Gabor base is sketched symbolically by a bar with the same size and orientation as
the Gabor function and an LoG base is sketched by a circle with the size representing its
scale. The brightness of the bars and circles represent the coefficients with white meaning
positive coefficient. Each base map reconstructs a “sub-band” image. On the bottom
row, the subband images by the two base maps are summed as the final reconstruction.
Scale 3 has Ny = 800 bases and the reconstructed image is a very good approximation to
the input image. B,q is an effective representation with large dimension reduction. The
representation also introduces a coarse-to-fine strategy which is efficient for computation
and tracking in later section.

Wave bases A, The wave dictionary is constructed from a single Fourier function

FB(u,v) by transforms 8 = (£, 7, ¢) for its spatial frequency (£, 7) and phase ¢
Avay = {FB(u, v; ) = e=(€+m40) . gy @, = {FB(u,v)} (4)
Let o; be the Fourier coefficient, then the selected Fourier bases form a wave base map
Byaw = {b; = (2, 5;), 7=1,2, ..., Nyav } (5)

Both Fourier bases and Gabor bases are generic dictionaries, and it is well known that they
are effective for various patterns in natural images [5]. This observation is well reflected in

Figure 2 which compares the particle bases A, and the wave bases Ay, for reconstructing



Input image Reconstruction by Ay,, Reconstruction by Ape Coefficient plots

Fourier Coef
—+4— Gabor Coef

(b) Water waves 300 Fourier Bases 320 Gabor Bases

(c) Ball on water 400 Fourier Bases 291 Gabor Bases 80 Fouriers + 21 Gabors
Fig. 2. Comparison of image reconstructions by Fourier bases A,y and Gabor/LoG bases Ap respectively.
The curves plot the base coefficients obtained by projecting the images onto the image bases. The thick
curve is for Apq. The slopes of the curves reflect the coding efficiencies of the dictionary. (a) A typical
particle image - flying birds. (b) A typical wave image - wavy river. (c) A typical image with mixed objects

of particles and waves - floating ball.

different textured motion patterns. We select three typical images for illustration. From
each image, we obtain two reconstructions: one by wave (Fourier) bases from A,, and the
other by particle (Gabor and LoG) bases from A,q. For the third image, we select bases
from both dictionaries.

Bottom-up computation and comparison of bases. The selection of Fourier
bases from A,,, are easy, as they are orthonormal. We simply choose Ny,, Fourier bases
which have the highest coefficients. For the particle bases, we adopt a match pursuit pro-
cedure[16]. Given an input image I°®, it starts with a constant image I whose intensity is

equal to the mean of I°®®. At each step it selects a base ; which has the highest response.
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The response is the inner product between the base and the residue image.

P; = arg max < o, I —I> ;=<1 I —1>.

¢€Apc1

Once ; is added to the base map, the response of a remaining base vy, in Apy will be
adjusted if ¢4, is not orthogonal to v, i.e. ay < ay — a; < 1,9, >. The procedure stops
at step NV if the largest coefficient ay < e.

Figure 2.a is a flock of birds. The reconstruction with Ny,, = 300 Fourier bases (second
column) is very blurred, in contrast the reconstruction with N, = 216 particle bases capture
the birds accurately. Figure 2.b is a water wave image where the Fourier bases are found to
be better than the particle bases. Figure 2.c shows a ball floating on river. We can see that
neither type of bases alone is able to effectively represent this image well. However, using a
combination of 80 Fourier bases and 21 Gabor bases exhibits a better reconstruction.

For the bird and water images, we plot the coefficients o, (j = 1,2, ..., Npa or Nyay) of
the bases in the order they are selected from A,, and A respectively. A steep slope of the
curve implies that the bases are effective in reconstructing the image, whereas a flat curve
means the opposite. For the bird image, the curve plot shows that the first few Fourier
bases have large responses capturing the global lighting effects in the sky. Therefore, the
best representation for this image is a few Fourier bases for lighting plus the particle bases
for individual birds. For the water image, the dominance of Fourier bases is obvious.

The two sets of bases are combined in general case to yield a base map
B = chl U Bwav = {bj = (O{j,ﬁj), _] = ]_, 2, ...,N}, N = Npcl + Nwav- (6)

These bases compete in a match pursuit procedure. In general, as A is over-complete with
|A| = O(100|Al), B is a parsimonious token representation with N = O(|A|/100).

The photometric model in eqn. (1) is rewritten as a conditional probability for image I,

p(I|BPCIanav;00):mexp{_ > (M(u,v) = Y- agthy(u,v;.8)))* /2051 (T)

(u,v)EA j=1
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Fig. 3. Motons as the fundamental moving elements. (a) 3 base functions: LoG, Gcos, Gsin, and their
symbolic sketches: circle, bar, edge. (b) Examples of learned motons — snowflake and bird. (c) A graphic

view of moton trajectory — the cable model.
B. Geometric model: identifying motons — the basic moving elements

The match pursuit procedure is only a bottom-up step in computing the base map B
from a static image. As we proceed, B will be adjusted for spatial and temporal coherence,
and tracked in the image sequence by an algorithm in Section (III). In this subsection, we
discuss the geometric model for spatial coherence, and we shall present the dynamic model
for temporal coherence afterwards.

The bases in B, often form spatially coherent groups and each group is a moving object

called “motons”. Thus B, is partitioned into disjoint subsets

chl = Sl U SQ y---u SMp with Mpcl <K Npcl-

cl?

Figure 3.b shows two examples. The image of a snowflake is the sum of three bases: 2 LoG
bases and 1 Gcos base with some space displacements. A bird consists of 7 bases: 3 LoG
bases, 2 Gcos bases 2 Gsin bases. These subset S;,7 = 1,2, ..., M,q are further clustered

into a few typical configurations, represented by a set of deformable templates
(DW - {Hg = 1,2, ceey k}

Each subset S; is an instance of one of the templates II,. For example, the snow sequence
has one (k = 1) moton template shown in Figure 4.a. Figure 11 shows three (k = 3)

templates for different gestures for the bird sequence. As Figure 4.a shows, each template
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Fig. 4. The computed motion elements: snowflakes and random examples. (a) A moton template in atomic
structure. (b) 120 instance of snowflakes as motons .
usually has a "heavy” base with relatively large coefficient «; surrounded by several ”light”
bases with relatively small coefficients o;. By analogy to physical model of atoms, we call
the heavy bases the "nucleus bases” as they have heavy weights like protons and neutrons,
and the light bases the "electron bases”. The atomic models are illustrated for the birds in
Figure 12.b.

The dictionary of motons are formed from the templates in ®, through transformations
T denoted by f = (z,y,6,0) and deformations D specified by variables . ¢ also includes

the binary variables for presence and absence of a base.

Avr:{W(E:ﬁaC):DCOTm,y,H,aOHE . 7vgaﬁa<‘}' (8)

Each moton instance is denoted by 7 (¢, 3,(). In a formal language, A, is the “orbit”
formed from &, through some group operations. Figure 4.b shows 120 moton instances for
the snowflakes and the deformable model captures the variations of snowflakes.

With dictionary A, we represent the base map B,y by a moton map M,y with each

subset S; denoted by a moton 7;,

Mpcl = {W](Ejaﬁ]aC])aj = 1a25 (XY Mpcl: 1 S E] S k}a

Thus we arrive at a more abstract and parsimonious representation.
The bases in Ayay, in theory [25], also travel in groups. For example, water flows are

traveling sinusoid waves caused by different sources of vibration, such as wind, boat, earth-
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quake, etc. But such motion can only be seen in images with large view scope. In our
experiments, we only see waves in a single group and thus we don’t need to group them.

For unification of notation, we use 7; to denote a wave base, thus
Mwav = {7Tj = bj;j = 1521 ---anav} = Bwav-

Thus the geometric model can be expressed as a conditional probability

Mpcl
p(B‘Ma (bpz) = p(chl|Mpcl; (I)w)p(Bwav|Mwav) = H H p(b]|7rla HZZ) '5(Bwav_Mwav)- (9)
i=1 jES;

In summary, we have a two-level generative model. The moton map M generates base

map B with dictionary A;, and the base map bB in turn generate image I with dictionary

A.

(<I) lvA I)U(CDW VvAW v)
pc pc & a

M = (M, Myay) 25" B = Byay U Bpa I (10)

In Section (III), we shall discuss the algorithm that infers B and M from I as hidden

variables and learn the moton templates ®, as parameters.

C. The moton trajectories and representation of the sequence

The generative model in eqn.(10) is for static image. For a sequence I[0, 7], the motons
and bases should be tracked from frame to frame. As Figure 3.c shows, each element is
represented by a trajectory in a time interval [t®,£¢]. Let 7(¢) be the state of an element at

time t, the trajectory of a moton is denoted by
CIt%, 1] = (=(t), 7(£*+), .., w(t9)), [t%,2] C [0, 7). (11)

For example, a snowflake enters our view at frame t* and leaves our view at frame ¢°.
Intuitively, the moton trajectory is like a cable. Its nucleus base forms the core of the cable,
and the trajectories of its ”electron bases” form the coil, due to self-rotation, surrounding
the cable’s core. In a coarse-to-fine computation, we can compute the trajectories of the

cores first, and then add the coils sequentially. In practice, the core of a moton is relatively
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consistent through its lifespan, and the number of coil bases may change over time, due to
self-occlusion etc. Thus we should use temporal coherence to regularize the coil trajectories.

We change the index from image frame ¢ to moving element i, and thus rewrite the
two level hidden representation B[0, 7] and M[0, 7| as a number of K trajectories C;,i =

1,2, ..., K, and denote it by

W10, 7] = (M[0, 7], B[0,7]) = (Byay, K, {Gi[t0,15],i = 1,2, ..., K}). (12)

1771

The K trajectories represent the K moving objects over time. The number of motons and
bases may change from frame to frame due to the birth and death of motons and bases over
time. This representation is not only low-dimensional and generic, but also captures the
essence of visual perception of textured motion. In Section IV, we use this generative model
to synthesize cartoon animation by replacing the bases B and motons 7 with symbolic

representation.

D. Dynamic model — sources, sinks and wave-particle interactions

In this subsection, we present the dynamic model for C;[t*,t°],i = 1,2, ..., K — the moving
elements. We are particularly interested in some interactions between the elements and
thus the coupling of the trajectories C;[t*,t¢],4 = 1,2,..., K. The first type of coupling is
the influence of waves on particles. For example, balls drifting in a river, grass waving
in the wind. This kind of effect cannot be simulated by previous models [21], [22]. The
second type of coupling is the interactions among wave components. Unlike particles such
as birds and snow flakes which move rather independently, the waves travels together with
complex interactions. The relative motion of different Fourier bases must be constrained
to keep certain phase alignments. Other interactions, such as particle-particle collision,
particle-wave collision (splash) are not considered in this paper.

The state of a moton at time ¢ is denoted by 7(t). For particles 7 = (¢, 5, () includes its
type £, transforms 5 = (z,y, o, 0), and deformation (. For waves m = (£, 7, ¢) is degenerated

to a Fourier base with its frequency and phase. The general motion equation for 7(¢) is a
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Fig. 5. Experlment on the falling snow sequence. (a) Observed sequence of falling snow. (b) Synthesized

sequence of falling snow by sampling the generative model.

Fig. 6. Experiment on the falling snow sequence. Left: Observed sequence. Middle: Graphic view of the
computed trajectories of the snowflakes (as hidden variables). Upper right: a probability map of the sources
for snowflakes to enter the scene. Lower right: probability map of the sinks for the snowflakes to leave the

view. Dark means high probability.

p-th order AR model with coefficients a = (ay, ..., a,), driven by three sources of forces: (1)
the influence from the other waves U(Byay(t)); (2) an external force f(w(t)) from objects
outside the system, such as gravity, wind field, and external constraints, which may variation

over space and time; (3). A Brownian motion n. So we have

r(t) = i a;7(t = §) + UBua(8) + (&) + 1, 1~ N(0,0%). (13)

In the following, we study three special cases that occur in our experiments.
Case 1: Dynamic model for free moving particles — snow, birds and fireworks.
We start with a case where we assume the particles move independently, such as snowing,

bird flying, fireworks etc. Though a few Fourier bases is used to model the global lighting
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Fig. 7. Experiment on a flying-bird sequence. (a) Observed sequence of flying birds. (b) Synthesized

sequence with fewer flying birds by editing the number of motons M when sampling the model.

Fig. 8. Experiment on the bird sequence. Left: Observed sequence. Middle: Graphic view of the computed
trajectories of the birds. Upper right: a probability map of the sources for birds to enter the scene. Lower
right: probability map of the sinks for birds to leave the view. Dark means high probability.

effects, they are static and do not affect the motons. The external force f(7) = ¢ is a

constant vector. Thus we obtain a simplified 2nd order Markov chain model,

7(t) = am(t—1)4a-7(t—=2)+c+n, n~N(00?) telt’+21]

(7 (1), %) ~ Pg(m,t), (m(t%),t° —t°) ~ Pp(m,1).

The birth of a moton 7 and its timing #® follows a probability Pg(w,t). Pg specifies the
“sources” of the motons and its marginal on the location Pg(z,y) (summed over time
and other attributes) is called the source map or birth map. The timing is important for
controlling the fireworks. Similarly, the end of the trajectory 7(¢¢) and its life span t¢ — ¢
are governed by a probability Pp(m, ). Its marginal Pp(z,y) reveals the “sinks”, and is

called the death map. 7 is a long vector, Pg and Pp are high dimensional, we are most
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Fig. 9. Experiment on firework sequence. (a) Observed sequence with only one firework. (b) Synthesized

sequence of multiple fireworks after editing its birth (source) map.

Fig. 10. Experiment on the firework sequence. Left: observed sequence. Middle: graphic view of the

trajectories of the firework. Upper right: source map of the firework. Lower right: sink map of the firework.

interested in the location (z,y) in practice.
The probabilities Pg and Pp are represented in non-parametric form using Parzen win-

dows. During the learning process, suppose we have computed K cables C;[t?,t¢],i =

1771
1,2, ..., K from a sequence I[0, 7], we represent pp and pp as

K

1
pB(ﬂ',t) = §25(7T —ﬂ'i(t?),t—t?), pD , t =
i=1

S(m—m(th), t — (t¢ — 1))  (14)

HMN

where 0() is a Parzen window centered at 0. When we project pp and pp to the (z,y)
dimensions, we got the death and birth maps.

For example, Figure 6 (right size) displays birth map pg(z,y) and and death map Pp(z, y)
for the snow sequence. The dark means high probability. Thus the algorithm ”understands”
that the snowflakes enter mostly from the upper-right corner and disappear around the

lower-left corner.
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Fig. 11. Motons in a bird flying sequence. Left: input image. Right: three moton templates ®, = {Il;,i =

1,2, 3} learned in a clustering step for different poses. Two instances are shown for each template.
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Fig. 12. (a) Input image. (b) 3D graphic illustration for the “atomic” model of bird motons 7;,j = 1,2, ...,9.

(c) diagram of three states transitions for birds flying.

In summary, we can write the probability for a moton trajectory as
4
p(C[t*, 1) Tpar) = p(n(t))pp (n (1)), t* — °) t_l;[Hp(W(t)\?T(t —1),m(t—-2). (19
I' denotes all the parameters in the dynamic models.
Due to limit of space, we briefly remark on two details in experiments with case 1.
Remark 1: For the firework sequence in Figure 9, the death and birth of motons must be
synchronized in timing, as a large number of particles come and go together. This is coded
by the probabilities Pz and Pp. The death/birth maps can also be manipulated, so that
we edit the number of objects and the events happening at any time and places we expect.
For example, we only observe a single firework in the original sequence, but we can generate
several fireworks at different places and time intervals as shown in Figure 9. By reducing
the number of birds, we observe fewer birds in the synthesized sequence in Figure 7.
Remark 2: For the bird sequence, the moton 7(¢) comes from three possible templates
&, = {II, II,, [13} and may change states over time. Thus to have the birds flap wings, the
Markov chain model p(7(t)|7(t — 1), m;(t — 2)) includes a 1st order transition probability

p(£(t)|£(t — 1)) with £(t) € {1,2,3} being a variable in 7 (¢). It is represented by a 3 x 3
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Fig. 13. Experiment on a river sequence. (a) Observed sequence of wavy river. (b) Synthesized sequence

with 1000 Fourier bases.

Fig. 14. Experiment on a wavy pond sequence. (a) Observed sequence. (b) Synthesized sequence with

1200 Fourier bases.

matrix. This is not necessary in the snow and firework sequences.
Case 2: Dynamic model for waves — river, pond and plastics.
For pure wave sequences, for example, Figures 13,14,15, each image is represented by a

number of Fourier bases. The variables are
M =B =B,., = {(¢j,&,m;,8;), 5 =1,2,..., N}, N ~ O(10%).

N is fixed and there is no birth or death events. Furthermore, if the camera does not move
and the motion is stationary, then the Fourier frequencies ;, 7; and amplitudes o are time-

invariant. Only the phases ¢;,j = 1,..., N change and it is known as the phase motion [7].
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Fig. 15. Experiment on a plastic foil sequence.

Fourier bases.

Fig. 16. Experiment on a grassland sequence with 2000 Fourier bases for its spatial wave pattern. (a)

Observed sequence. (b) Synthesized sequence.

The speed of phase motion is related to the speed in the space by

dei(t dx dy dx 3

do; (1) =&~ +mnj—., or = do/\/€2 + 2. (16)
dt dt dt dy n

A slight complication is that we have to wrap the phase into [0, 27) in computing d¢;/dt
and thus (dz, dy) [7].
Our first attempt is to let each Fourier base move independently in an AR model, as it

is for the particles in case 1.
P
¢](t) = Z ajiqﬁj(t - Z) + nj,ny N(O, 0'2), _j = 1, 2, ceey N.
i=1

With p = 15 ~ 20 to account for low frequency components, this simple model can synthesize

the river sequences reasonably well, continuing from the observed sequence. But the phases
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become misaligned-aligned after 30-50 frames. To align the phases, we study a joint vector
o(t) = (1(t), ..., dn(t)), and reduce dimension by a standard PCA method over the training
frames. Let e;,7 = 1,2,...,m be the eigen-vectors with largest eigen values, then v;(t) =<
é(t),e; >,j =1,...,m are the projected coefficients. In our experiments m = 8 and the m

coefficients follow independently a p-th order AR model
P
=Y a;vt—i)+n, n~N(0,0]), p=20, j=1,2,...,m=38. (17)

The total number of variables used in the modelis 3N for (&;,7;,;),j =1, ..., N, 8N for the
eigen vectors, plus 20 x 88 for dynamics AR coefficients. The compression rate is compared
in Table 1.

Since we transfer the wave sequence By, [0, 7] into a representation on the sequence of

coefficients [0, 7], we can write the probability as

B0, 7 vw) = T TP~ 1710 =) (18

||::ﬂ

We assume some initial conditions for the first p frames and I';,ave denotes all the parameters
in the dynamic model of waves.

Some synthesis results for the water waves are shown in Figure 13, 14. The same
model is applied to the plastic foil in Figure 15 and the grass sequence in Figure 16 and it
successfully characterize the spatial movement of the plastic foil and grass. In general the
wavy plastic foil and grass are driven by invisible wind field which has wave properties. For
the grass sequence, we need more Fourier bases N = 2000 to reconstruct the high frequency
components.

Case 3: Dynamic model for particles-waves interactions: ball or foams on water.

Some motion sequences have both particles and waves, for example, Figures 17 and 18
show the ball and foams drifting on water. The coupling of the two types of elements is
characterized by a driving force from wave to particles.

Let ¢(t) = (¢1(t), ..., PN, (t)) be the phases of all Fourier bases, whose motion follows

the dynamic model in case 2. The movement of the particles are driven by the waves. As
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Fig. 17. Experiment on a floating-ball sequence. (a) Observed sequence. (b) Synthesized sequence and the

trajectory of the ball.

the particles are small, we are only concerned with the position (x,y) and other attributes
in 7 can be fixed. For unification of notation, we write 7 for (z,y).

Given the phase motion d¢ in case 2, we transfer it to motion speed in spatial domain
(dz,dy) through equation (16). The motion of a particle is then influenced by the sum of

the speed at point (z,y). Thus the dynamics of the moton 7 is

p=2 q 5 B
mi(t) =Y ajm(t —7) + D b(&k, T)dr(t) + c+n, n~ N(0,07), Vi, (19)
i=1 k=1

The second term in the above equation accounts for the coupling of the particle motion
with waves. In practice, we only need to choose ¢ = 20 — 30 Fourier bases (gk,ﬁk, qzzk) €
Buav, £ = 1,2, ..., ¢ with lower frequencies to drive the particles. a;, by are the coefficients
that can be independent of the individual particles. The death and birth of particles follow
the same model in case 1. This model is still a Markov Chain model. The trajectory of a
moton follows the following probability,
v
p(C[t",t°]; Tpar) = po(m(t"))pp(r (), 1! — 1) l:[ p(r(®)|m(t — 1), mi(t = 2), d1(2), ..., bg(1))-
t=tb4+1 0)
The wave bases follows the dynamics in equation (17).
The synthesized floating ball and floating foams results are shown in Figure 17 and 18.
The coupling of the particles with waves appears realistic in the video sequence (see sup-

plementary file).
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Fig. 18. Experiment on a sequence with many foam particles drifting in a river. (a) Observed sequence.

(b) Synthesized sequence. (c) Learned motons: foams and their trajectories. (d) Sources and sinks of the

floating foams.

We conclude this section by integrating the photometric model eqn. (7), geometric model
eqn. (9), and dynamic models in eqns. (15),(18), and (20) into a joint probability for an

image sequence I°[0, 7] and hidden representation W10, 7],
p(I°™[0, 7], W[0,7];©) = H (I°*(£) Bpar(t), Buav (1)) * P(Bpe (1) Mpa (1); @)]
. K
p(Bwav[O: 7-]; Fwav)p(K) H p(ck[oa T]; chl)-
k=1
In the above representation, W[0, 7] is the hidden variables
W0, 7] = (M[0, 7], B[0,7]) = (Byay, K, {Ci[t},t5],i = 1,2,..., K}).

and © = (@, ['yay, ['pa) includes the parameters in the deformable templates for moton, and

parameters in the dynamics of waves and particles.
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III. LEARNING AND INFERENCE

In this section, we study the algorithm that infers the hidden variables W [0, 7] and learns
the parameters © in the models. With the learned parameters ©, one can easily synthesize
sequences following the two level generative model. This algorithm produces all the results
presented in the previous Section (Figures 5-18).

A. Problem formulation and stochastic gradient

The problem is posed as statistical learning by maximum likelihood estimate (MLE). The

objective is to compute the optimal parameters that maximize the log-likelihood,

©* = arg maxlog p(I°*[0, 7]; ©) = arg maxlog/p(IObs[O,T], wio,7];©)dWo,7]  (21)

Take the derivative with respect to ©, and set it to zero, we have,

L 9fp(Xo, 7™, W0, 7];€)dW[0,7] _
p(1[0, 7]°"; ©) 00 -
1 dlog p(1]0, 7]°%, W0, 7]; ©
— / ng( [ ’T] ) [ 77-]’ )p(I[O, T]Obs, W[O, 7_]’ @)dW[O, 7_] — 0’
p(1[0,7]*; ©) 00
dlog p(I[0, 7)™, W0, 7]; ©)

E obs [ ] - 0.

p(wWo,r)II 150 00

The MLE is solved by iterating two steps.
Firstly, under the current parameter ©, we simulate samples for the posterior
W;[0,7] ~ p(W[0,7] | I55;©),i = 1,2, ..., M. (22)

Then we estimate the above expectation by importance sampling.

1 % dlog p(I°>0, 7], W;[0, 7]; ©)
M 00

i=1

=0.

For ease of discussion we set M =1 without loss of generality.
Secondly, plug in equation (21), we have the following equations for learning the param-
eters © = (@, ',ave, I'pa),

.01 B M ;P
Z 9 log p( Pd((;(y pet () @) =0, (learning motons) (23)
i1
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010g p(Buwav[0, 7]; T'yway)
Ol way
X 0 log p(ck [Oa T] ‘Bwav[oa T]; chl)

2 I

k=1

=0 (learning wave dynamics) (24)

=0, (learning particle dynamics). (25)

We update © = (®,, I'yay, [pa) by gradient ascent with a small stepsize.

This algorithm is a stochastic version of EM-algorithm. The two iterative steps are said
[8] to converge to a globally optimal ©* even with M = 1, provided that the stepsize in
learning of parameters © is slow enough so that the importance sampling makes a good
approximation at the current ©. Intuitively, with small stepsize it uses samples obtained
over time to estimate the expectation.

In the following three subsections we present some details of the algorithm.

B. Initialization by bottom-up methods

Given I°™[0, 7], we initialize W0, 7] by a sequence of "bottom-up” steps in a coarse-to-fine
manner. Then we refine W0, 7] by carefully designed MCMC steps.

Firstly, we adopt a match pursuit method [16] which selects a number of particle and
wave bases whose coefficients have a large value, say o; > ¢ = 3.0. The particle bases
with such high coefficients are treated as the “nuclei” for the motons. Then we lower the
threshold, say € = 1.0,0.5. Thus some new “electron” bases are added and are assigned to
one of the existing “nucleus” bases in a neighborhood. Thus we have an initial base map
with partitions

B = (Bwava chl)a chl = Sl U---u SMpcl-

Secondly, we classify Sy, ..., Su,, into a smaller number of k clusters. The mean of each
cluster is then a deformable template for motons, and we denote them by ®, = {II;, ..., TI; }.
Usually we have to come up with a pre-defined number £ with 1 < £ < 3 for a sequence.
This will force each set S;,7 = 1,..., M,q to fit to one of the template. This clustering
process is easily implemented by a k-mean method. We define the distance between a set .S;

and a deformable model II; to be the difference of image generated by the bases in S; and
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in II; plus the structural divergence. S; is registered to II; by a similarity transform and a
simple graph matching in structures. We refer to a previous paper for more details [29].
Thirdly, we track the nuclei bases in the video and compute trajectories C;,71 =1,2,..., K
by a simplified Condensation algorithm [11]. When the motons move fast, such as the
snowflakes, The tracking result is pretty rough, and consists of an excessive number of K
short fragments of trajectories. Such fragments must be further computed using the MCMC
steps (death/birth, extending/shrinking, group/ungroup) to achieve good results. Then the

light bases are added to these trajectories to form K “cables.

C. Sampling W0, 7] from the posterior by Markov chain Monte Carlo (MCMC)

As the Fourier bases are consistent through the sequence, the MCMC steps are mainly
designed to adjust the trajectories of the motons Cj[tg-, ;],j = 1,2,..., K, so that some

trajectories are grouped, extended, and mutated to achieve a high posterior probability
K
(K, {C[t",t°] : k =1,2,.., K} ~ p(K) ] p(Ck[0, 7][I°™[0, 7]; Tpar)-
k=1

Our MCMC inference is different from the sequential Monte Carlo algorithm, such as
condensation[11] for object tracking. Firstly, We have a full generative model of image. In
contrast, object tracking algorithms often have partial model of the image, and thus its
likelihood can only be evaluated relatively. The advantage of a full generative model is the
explain-away mechanism, so that we don’t have to preserve a large number of hypotheses
for each moton. Secondly, we optimize the whole trajectories over the image sequence and
thus trace back in time during the computation. In contrast, object tracking methods like
Condensation always propagates hypotheses forward from ¢ to t 4+ 1. In our algorithm, we
could use information in late frames to resolve ambiguities in early frames.

The essence of the Markov chain design is to form an ergodic process in the space of
all possible combinations of the “cables” and the Markov chain should observe some basic
conditions such as detailed balance to ensure that it follows the posterior probability as it

converges.
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(a) (b)

Fig. 19. Three typical reversible jumps. (a) Extend/shrink a trajectory, (b) Group/ungroup a trajectory.

(¢) Mutation and split/merge of trajectories.

Each move in our Markov chain design is a reversible jump between two states A and B
realized by a Metropolis-Hastings method[18]. We design a pair of proposal probabilities
for moving from A to B ¢(A — dB) = ¢(B|A)dB and back with ¢(B — dA) = ¢(A|B)dA.

The proposed move is accepted with probability

q(A|B)dA - p(B|I°**[0, 7]dB

a(A — B) = min(1, J(BIA)dB -p(A|I°bS[O,T]dA)' (26)

The move between A and B may involve a dimension change so that the number of variables
in A is different from that in B. Thus the proposal probabilities should match the dimension
difference. For example dAdB are matched in both the denominator and nominator in
eqn. 26.

Our Markov chain consists of the four pairs of moves. Each type of move is selected
at random with probability ¢; + ¢2 + ¢3 + ¢4 = 1. Each pair involves designing a number
of proposal probabilities. Thus we need to maintain some queues, and each queue lists a
number of candidate trajectories that need to be grouped, ungrouped, extended, and shrunk
respectively in a order according to some fitness measurement. Similar MCMC designs were
reported in our previous work[26], [30]. Due to space limit, we only briefly specify the four
moves in the following.

Move Type 1: Extending/shinking a trajectory C;. This move is illustrated in Fig. 19.a
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and is a jump between two states A and B,
A= (K,G[t", 1], W_) = (K,G[t’ — 1,1 or G;[t°, ¢ + 1], W_) = B,

where W_ denotes all other variables which are fixed during this move. The proposal

probabilities are

¢(A = B) = 1q())Gaigextq(m(t* + 1)|Ci[t’, t°]; Y1),

¢(B—=A4) = ¢19(i)qtangshrk-

¢1 is a probability for choosing type 1 move, ¢(7) is the probability for picking C;, and with gga;
it chooses to operate at the tail. gext + gshek = 1 are probabilities for extending or shrinking
the trajectory respectively. Then the new element 7 (¢¢+ 1) is proposed based on the current
cable C; predicted by dynamics I',. This prediction is expressed as probability ¢(7(t¢ +
1)|C;[t?, t°]; Tpar). Similarly one can predict the extension at the head of the trajectory.

Move Type 2: Group/ungroup a trajectory This move is illustrated in Fig. 19.b. Let
Ci be a short trajectory of a base, usually an “electronic” base with small coefficient, it is
desirable to group it with a nearby trajectory C; or C;. The length of C; could be different
from those of C; and C;.

The move is a jump between two states A and B,

A= (K, C,C,W_) = (K —1,Cl,W_) = B.

bl -

Again W_ denotes the remaining variables that are unchanged during the move. The

proposal probabilities are

Q(A — B) = q2Qgrpq(k)Q(Ci|Ck)a Q(B — A) = QQqugrpQ(i)Q(Cka Cz‘c':)

We first choose move type 2, and then choose to group or ungroup an existing trajectory
with probabilities ggr, OT gugrp Tespectively. Then we choose a trajectory Ci, with single base

to group with probability ¢(k) or a composed trajectory C; to ungroup, and so on. The
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probabilities, like ggrp, Gugrp, ¢(7), and ¢(k) are computed based on the current queues for
grouping and ungrouping.
Move Type 8: Mutation, split/merge of trajectories ~ This move is illustrated in Fig. 19.c.
b

It mutates two trajectories C;[t?, t¢], C;[t}, t¢] into two new trajectories Cj and Cj, by exchang-

ing some portions of the trajectories at a certain time ¢,

C =Gt 1] ® Cjft + 1,t], €= Cj[t;’.,t] ® Cift +1,¢¢

In a special case when ¢ =1 = t;’- + 1, it becomes a split and merge move.

A= (K, C,C;,W_) = (K,Cl.Ci,W_) = B.

U S -

The proposal probabilities are
a(A — B) = g3q(1, j)q(t|Ci, C;), (B — A) = gsq(i, /)a(t[C;, C;).

It first proposes move type 3 with ¢3, then proposes a pair of trajectories in a queue by
probability ¢(7, 7). Then based on the two trajectories, it proposes a site ¢ for mutation.
Move Type 4: Death and birth of a single base trajectory This move eliminates some
degenerated trajectories with length 1, or reversely creates new bases. For example, in snow
or bird sequences, a particle may enter at certain time frame, and thus new bases will be

created at that time frame.
A= (K,W_)= (K,b;, W_) =B, b, e Ap.
So the proposal probabilities are very simple,
q(A— B) = qq(b;), ¢(B = A) = auq(j).

It proposes to use type 4 with probability g4, and then creates a base with ¢(b;) for birth

move, and select b; with ¢(j) for the death move.
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D. Learning the parameters ©

Given the sampled hidden variables W[0,7] = (Byay, K,C1, ...,Cx), we update the pa-
rameters © in a second step for both the deformable moton template ® and the dynamics
[wav, [pel, following the equations (23), (24), and (25).

log p(Bway [0, 7J; T'way
Fow (1= )Ty 4 p2108PBrarl0 7 Dvay)

81—‘Wa.V ’
01log p(Cx[0, 7]|Byway [0, 7]; Tpe
1—WPCI — (1_ pcl+ Z gp k[ 7(‘—9]1‘_\ ) [ T] Pl)’
pc
781 c M, P
b o (1= o py 108 Bon () Mya(8):0)

i=1

Unlike the EM-algorithm, which maximizes the likelihood at each step, our algorithm only
update © with a small stepsize for global convergence[8].
The birth/death maps, pp and pp, of particles are learned by counting the the head and

tail of cable at their locations and time (see equation (14)).

E. Ezxperiments

Once we have learned the parameters ©, we can synthesize new sequences from the joint

probability following the two-level generative model in a straightforward manner.
(o, 7], W=*0,7]) ~ p(I[0,7],W[0,7];©), V1 >0.

Figures 5- 16 show some results on the analysis and synthesis (with editing) for a number
of texture motion patterns. We have discussed them in Section II and these results can be
seen from the supplementary video clips. Here we mention a few problem.

(i). The Fourier representation can synthesize some wave patterns, but some blur effects
are noticeable in Figure 13, 16, etc.

(ii). The inference of W|0, 7] with MCMC is computationally intensive. The time com-
plexity for learning a textured motion sequence containing particles usually is about 1 ~ 6
minutes/frame on an Intel Pentium 4 1.5GHz computer, depending on the complexity of
the scene. The analysis and synthesis of wave patterns usually take about 2 ~ 3 minutes

for 50 — 100 frames.
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Fig. 20. From video to cartoon sketch. The cartoon representation Ws C W is a simplified version of W
with some details removed selectively. By replacing the particle and wave bases with symbolic sketches, we

can easily synthesize cartoon with the same or edited generative model.
IV. SKETCH MODEL

In this section, we present the fourth component — a sketch model which render a cartoon
animation J[0, 7] from either an observed or a synthesized sequence I[0,7].

In our view, a cartoon J[0, 7] is a symbolic visualization of our inner representation W10, 7]
with some “unnecessary” details remove. It is rendered in two simple steps as Figure 20
illustrates.

Firstly, we extract a subset of hidden variables W[’O,T] from W) ) to simplify the descrip-
tion. W[’o,T] is supposed to capture the essential semantics. For example, we may keep the
geometric and dynamic properties of a moton but ignore its photometric attributes.

Secondly, we replace the photometric dictionaries Apq, ®, and Ay,, by symbolic sketches
AL, and Ay, respectively. Then the cartoon J ) is rendered with the generative model
in the same way as we synthesize the photorealistic sequence. The selection of the sketch
dictionaries reflects the style of the cartoon.

In the following we briefly explain how we choose the symbolic representation for particles
and waves.

(1). Rendering particles. Each particle object 7, such as birds or snowflakes, is rendered

by a contour outlining the deformable template. Its motion follows the same dynamic

models. Obviously one can choose other symbolic representations.
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i

(a) (b) (c)
Fig. 21. Image interpolation from extracted sketches. (a) Observed image. (b) Extracted edges for ridges
and valleys. (c) Reconstructed image from the information on the edges.
(2). Rendering waves. As the Fourier bases cannot be distinguishable, we sketch all
Fourier bases as a whole. Let I,, be an image reconstructed from By,,,
n
Lyav (u,v) = z;aj%(%v;ﬁj), Y € Ayay-
j=
When we view I, (u, v), we not only perceive the global periodic waves as a whole, but also
notice the individual peaks and valleys. There is a dual representation noticed in Marr’s
primal sketch[17]. Marr cited a theorem|[15] that for a bandpass signal, the positions of its
zero-crossings alone is sufficient for reconstructing the original signal up to a multiplicative
factor.
Figure 21.a shows an example for the river image. Figure 21.b is a collection of points for

the ridge and valleys, denoted by
SK = {(u,v) : VT (u,v) = 0}

For each point (u,v) we remember its pixel intensity Iy.y(u,v) and its slope Vg (u, v).
Then we can reconstruct the rest of the image by heat diffusion using the curves as boundary

condition.
dl(u,v) 0°I N 0’1
dt ou?  ov?’
I(u,v) = Lyay(u,v), VI(u,v) = Vg (u,v), Y(u,v) € SK.

for (u,v) ¢ SK,

Figure 21.c shows the diffused results for a river image. We can see that the original image

is well recovered from the information at the sketch points SK.
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Fig. 22. Synthesized cartoon sequence based on learned textured motions. (a) The static background image
drawn manually. Shaded area will be fill by three learned textured motion sequences showed in the previous
sections, flying birds, dancing grass, and floating ball. The floating ball is replaced by a boat sketch. (b-d)
Synthesized frames at ¢t = 1, 10, 20.

For clarity, we choose to show a subset of the curves in SK which have relatively high
contrast, i.e. their accumulated intensity gradients along the curve is larger than a certain
threshold. Other weak and short curves are removed for simplicity of the cartoon.

(3). Rendering particles driven by waves. The particles and waves are sketched by the
methods above. For particle objects floating on water, their dynamics follows case 3.

Figure 22 shows a combined cartoon animation. We choose three natural sequences: flying
birds, floating ball on a river and wavy grassland, and learn the geometric and dynamic
models for the objects in each of the three sequences by using the algorithms described in
the previous sections. Then we render synthesized sequences and generate their cartoons
using the sketch model. The floating ball is replaced by a boat. A static background -
— mountain, sun, and river bank is drawn manually in Figure 22.(a). We fill the three
cartoons into the blank areas of the background image to render the animation.

There is a slight detail in the animation of grass. The tip of a grass is treated as a
particle, whose motion is driven by the learned Fourier waves from the grass sequence (case
2, Fig.16). The bottom point of the grass is fixed, and the curve between the two points

is interpolated by a spline. The movement of the tips are similar to the motion of floating
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particles in water.

Let (z,y) be a tip of the grass, its motion follows

(2(t), (1)) = 'fz:;axx(t i) ylt— i)+ z b (e, 7) A (6) + Kz — 0y — yo) + . (27)

It is the same as case 3 in eqn. (19), except that we add an extra term in the force. Each

tip is assumed to have a resting position (zg, 9o), a spring is attached from (z,y) to (zo, yo)-

V. SUMMARY AND FUTURE WORK

In this paper, we present a generative method for modeling textured motion patterns.
Our representation includes photometric, geometric, dynamic and sketch models, built on a
generic and over-complete base representation. This representation identifies the fundamen-
tal moving elements, their trajectories, source, sinks, and coupling in motion. A Markov
chain Monte Carlo method is adopted for learning and inference.

In future work, we would extend this current model in the following aspects. (1) Modeling
the interaction among particles, e.g. collision. (2) Studying the influence of particles on
waves, e.g. splash effect of a stone dropped into water. (3) Eliminating the blur effect
in water waves. (4) Developing effective representation for transient elements, such as fire

flame etc.
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