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Embedding Gestalt Laws
in Markov Random Fields
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Abstract—The goal of this paper is to study a mathematical framework of 2D object shape modeling and Iearning for middle level
vision problems, such as image segmentation and perceptual organization. For this purpose, we pursue generic shape models which
characterize the most common features of 2D object shapes. In this paper, shape models are learned from cbserved natural shapes
based on a minimax entropy learning theory [31], [32]. The learned shape models are Gibbs distributions defined on Markov random
fields (MRFs). The neighborhood structures of these MRFs correspond to Gestalt laws—colinearity, cocircularity, proximity,
parallelism, and symmatry, Thus, both contour-based and region-based features are accounted for. Stochastic Markov chain Monte
Carlo (MCMC) algorithms are proposed for learning and model verification. Furthermore, this paper provides a quantitative measure
for the so-called nonaccidentaf statistics and, thus, justifies some empirical observations of Gestalt psychology by information theory.
Our experiments also demonstrate that glcbal shape properties can arise from interactions of local features.

Index Terms—Gestalt laws, perceptuat grouping, shape modeling, Markov random field, maximum entropy, shape synthesis, active

contour.

1 INTRODUCTION AND MOTIVATIONS

IN psychology, it has long been evident that early human
vision strongly favors certain shapes and configurations
over others without high level identification. Many theories
have been proposed to account for this phenomencn,
among which Gestalt psychology is the most influential
one. In Gestalt psychology, an enormous number of generic
laws have been identified for grouping parts to whele [17],
for example,

“proximity, continuity, coclinearity, cocircularity, paralle-
lism, symmetry, closure, familiarity.”

These laws are supposed to be coordinated by the law of
Pragnanz [17]:

“of several geometrically possible organizations that one
will actually occur which possesses the best, simplest and
most stable shape (p.138).”

But, what is meant by a good, simple and stable shape?
Gestalt psychologists explained it in terms of “field forces”
by analogy to field theories of gravity and electricity, but it
is unclear what the “field forces” really are. Even worse,
Gestalt psychology only provides a descriptive theory, it
does not specify a computational process for achieving the
percept from parfs to whole. Although Gestalt laws have
been successfully utilized in many perceptual organization
algorithms [22], [24], a rigorous mathematical theory has yet
to be found.

Besides Gestalt psychology, there are two other theories
for perceptual organization. One is the likelifood principle [9],
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which assigns a high probability for grouping two elements,
such as line segments, if the placement of the two elements
has a low likelihood of resulting from accidental arrangement
[21], [22]. The third theory is the simplicity or minimum
description length principle [10], which states that perceptual
organization should achieve the shortest coding length by
exploring shape symmetry, etc, We argue that the key to
understanding the psychophysical phenomena is to pursue
the “true” underlying probability distribution for the
ensemble of object shapes (or configurations) in a given
application domain. With this probability distribution, the
three theories can be well unified for the following reasons.

1. According to Shannon's ceding theory, a “true”
probability yields the minimum expected coding
length for the ensemble of shapes {or configura-
tions).! Since the shape distribution accounts for the
complexity and frequency of configurations occur-
ring in nature, it gives the genuine likelihood
probability for groupings. As we will see in a later
section, nonaccidental statistics can also be measured
using this distribution.

2. The importance of Gestalt laws can be quantified by
studying statistical regularities in the shape
ensemble. These Gestalt laws should be reflected in
the structures of the probability distribution, pro-
vided they are indeed effective.

In two previous papers, the author, in collaboration with
Wu and Mumford, has studied probability models for
textures and natural images by a minimax entropy principle
[32], [31]. This paper applies the minimax entropy principle
to learning probability distributions of 2D shapes. In
particular, we are interested in simple closed curves which

1. The coding length should also include the code book, thus simpler
maodels are favored in model selection.
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are non-self-intersect region boundaries in 2D images
projected from 3D objects. A basic assumption is that there
exists a true underlying distribution for 2ID object contours
in a given application, and shape modeling is posed as a

statistical inference problem.
We shall address the following questions in this paper:

1. Studies in neurosciences have shown that statistics
of visual environment {i.e., the ecological effects)
play key roles on the functions of both individual
cells and neural systems [1].* Is there any ecological
evidence—embedded in the statistics of realistic
shapes—for Gestalt laws and early human percep-
tion of 2D shapes?

2. How can various Gestalt laws be integrated into a
single probability measure?

3. What are the structures and forms of generic
probability distributions for 2D shapes?

4. How do we sample shape distributions? What are
the typical shapes sampled from such distributions?
To what extent can real shapes—with global proper-
ties—be characterized by merely a few locally
defined Gestalt laws?

We start with exploring statistics of features extracted
from observed real shapes and, then, a shape distribution is
learned such that it reproduces the observed statistics while
having the maximum entropy. The learned shape models
are Gibbs distributions on Markov random fields. The
variables of these MRFs are the coordinates of points along
the contours and the structures of the MRFEs correspond to
Gestalt laws such as proximity, colinearity, cocircularity,
parallelism, and symmetry. The learned shape models are
verified by Markov chain Monte Carlo sampling. The paper
also provides a quantitative measure for nomnaccidental
statistics by comparing observed statistics and statistics of
randomly sampled shapes. We demonstrate that global
shape properties could arise through propagation of local
interactions in Markov random fields.

The paper is organized as follows: We start with
reviewing existing theories for shape modeling in Section
2 and discuss basic issues in shape modeling in Section 3.
Section 4 discusses feature extraction and Section 5
demonstrates experiments on statistics of animate shapes.
Section. 6 presents a maximum entropy theory for prob-
ability learning. Section 7 discusses issues of designing
stochastic sampling processes in a shape space and
describes experiments of sampling a uniform distribution
of shape. Section 8 discusses feature selection by maximiz-
ing nonaccidental statistics. Section 9 is devoted to experi-
ments on shape learning and sampling. Finally, we
conclude the paper by a discussion in Section 10.

2. For example, there are considerabie functional differences of neurons
in retina between rabbit and fish and these differences are supposed to be
explained by statistical propertties of their living environments [1]. Here, we
are interested in knowing why early human vision is sensitive to Gestalt
features.
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2 PREVIOUS THEORIES IN 2D SHAPE MODELING
AND PERCEPTUAL GROUPING

Two-dimensional shapes have been studied intensively in
many disciplines, ranging from pure mathematics, statis-
tics, psychology, to computer vision. These studies are
divided into four areas:

1. - a statistical theory of shape,

2. deformable templates and models,

3. nonaccidental properties and perceptual grouping,
~and

4. active contour models.

In this section, we shall review these theories.

2.1 Statistical Theory of Shape

The term “theory of shape” was coined by Kendall in 1977
(see [15]). In Kendall’s theory, a shape is defined as a set of k
points in m dimensions. Thus, a shape is naturally
represented as an m x & matrix. To “filter” out effects from
translation, scaling, and rotation, Kendall first defines cne
point as the origin, which reduces the matrix to a size of
m x {k— 1), and then he normalizes the shape by setting the
sum of the squared elements of the matrix to one. Thus, all
his shapes live on the surface of a unit sphere in m x (k — 1)
dimensions, which he called the preshape sphere. The real
shape. space, denoted by 3°F, is the quotient of the
preshape sphere by some transformation groups, e.g.,
SO(m). Then, each SO(m) equivalence class is viewed as
a single point—a real shape [15]. For example, assuming
independent and identical uniform distribution for the k&
points, Kendall makes inference about the statistical
significance of colinearity in a given point set and of
the size of a hole in a Delaunay tessellation of Galaxy [15]
to answer queries about how likely the colinearities and
holes are not accidental arrangements by iid. uniform
distributions.

The theory of shape has been also studied by Bookstein
in morphometrics—a discipline studying deformations and
variabilities of biclogical organisms [2]. Here, the point set
is the collection of unique landmarks which correspond
biologically from object to object. Recently, Mardia and
Dryden have studied the theory of shape in the context of
image analysis with interesting results [23].

2.2 Deformable Templates—High Level Vision
Another elegant theory for shape modeling was pioneered
by Grenander in a discipline which he named pattern theory
[7]. In pattern theory, shape primitives are selected, such as
edge ‘segments, and these primitives are arranged in
prespecified configurations, such as a circular graph, Then,
transformation groups (rotation, scaling, etc.) act on these
configurations te account for both global and local
deformations.

For example, the contour of a human hand is represented
as a ring of linelets [8], and a global transform specifies the
location, size, and orientation of the hand, and local
transforms define relative orientations of fingers, and so
on. Then, a probability distribution is defined on these
groups. This shape modeling scheme has been used in
representing leaves and brain mapping [8], [7].
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Fig. 1. {a) A 1D Markov random field where the nodes represent random variables for positions of contour points. (b) Node A is spatially adjacent tc

point B, but it is far away from B in the circular neighborhood of (a).

In computer vision, deformable templates were pro-
posed by Yuille in studying shapes of human eyes, mouth,
and eyebrows, etc. [28]. In Yuille’s templates, shapes consist
of piecewise conics and deformations are modeled based on
coefficients, Other deformable models of shapes are defined
in terms of basis functions, such as B-splines, sine waves [4],
and implicit polynomials [16], and super quadrics [26]. A
more general template model for flexible object is studied in
the FORMS system [30], where object shapes are defined in
graphs computed from medial axes and deformations are
specified by PCA modes learned from animal shapes. Cther
shape models are represented in Bayes networks [5]. In
fact, the statistical theory of shape studied in (Bookstein
1986, Mardia and Dryden 1989) can also be considered as
shape templates with points being primitives.

2.3 Nonaccidental Properties and Perceptual
Organization—Middle Level Vision

The problem of perceptual organization was formally
studied by Lowe in 1985 [21]. Lowe pointed out that the
goal of grouping is to identify features that are likely to
have arisen from some scene properties rather than
accidental arrangements. Lowe proposed some measures
that account for how nonaccidental the arrangement is for
each individual grouping feature, such as, colinearity and
parailelism. This theory has been used in grouping and
recognizing rigid objects with interesting results [22], [24].
However, it doesn’t provide a rigorous probability measure
for shapes and it is unclear how to decorrelate multiple
shape features in computing the significance of a non-
accidental arrangement. Similar to Lowe’s theory, nonacci-
dental properties are also studied for convexity of a
sequence of line segments by Jacobs in 1992 [11].

In the literature of perceptual grouping, there are no
rigorous attempts for learning and verifying probabilities
models from real shapes.

2.4 Active Contour Models—Low Level Vision

In early vision tasks, generic shape models are found to be
useful. One important generic shape model is the active
contour model (SNAKE) [14], and the internal energy in a

SNAKE model implicitly defines a prior probability
distribution of a curve I'(s):

o) = exod = [ ol s gibolasf, )
where Z is a normalization constant, I'(s) and I'(s) are the
first and the second derivatives of the curve, and s is
usually the arc-length.

An explicit probability model for open curves, called the
Elastica model, was first derived from Brownian motion by
Mumford in 1994 [25] and it was also studied by Williams
and Jacobs in 1997 [27]:

p(I) = iz'exp{— o= cm?(s)ds}., @)

where k(s) is the curvature of the curve,

In discrete cases, both (1) and (2) are defined on
interactions between nodes in a local neighborhood,
illustrated in Fig. la. Despite the wide applications of
active contour models in computer vision, they have two
main problems.

First, they do not characterize region-based information.
For example, in the shape shown in Fig. 1b, node A is close
to node B in distance, whereas they are far away from each
other along the boundary.

Second, potential functions are often manually designed,
whereas it is desirable to learn them from data.

In summary, Sections 2.4, 2.3, and 2.2 briefly review
existing theories in the low, middle, and high level vision
respectively. It is still unclear how these theories can be
combined for image understanding in a consistent manner
and the incompatibility of these models (or theories) in the
three levels poses a major obstacle for building sophisti-
cated vision systems,

In this paper, we shall study a mathematical framework
of 2D shape modeling for middle level vision problems,
such as image segmentation and perceptual organization.
Motivated by the above discussion, we pose two criteria in
our models. 1) These shape models should be generic, and
thus characterize the most common features of 2D shapes.
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2) They should be compatible with low level representa-
tions, such as raw images and edge maps, and the high level
descriptions, such as deformable templates.

3 SHAPE SPACES AND PROBABILITY MEASURES

Let I'(s) be a simple and closed contour on 2D plane,® where
s€[0,1] is the arc-length and T(0) =TI(1). Fixing the
resolution, I'(s) is discretized into a polygon of ¥ vertices:

T = ({zo, ¥o), (T, 91)s -y (@y—1, Yw1)), [ € Qr C B,

whete Qr is the space of shapes satisfying the following
hard constraints.

Constraint I T € O is closed and non-self-intersecting,.
Constraint 1I;

\/(-TH-I — ) (g i) € [ds — e, ds+ ]
i—01,... N—1

In Constraint 11, the distance of sequential nodes is allowed
to vary slightly because of finite precision of lattice in
computer implementation. We shall discuss the effect of ¢
when we discuss a Gibbs sampler for sampling shapes in
Sectiont 7. The structures of £y perhaps are too complicated
to analyze explicitly.

On Qr, a Lebesgue measure is well-defined:

P(P) = p{F)dCEﬂdygd$1dy1 e d.’r:N,ldyN_l, (3)

with p(I") being the density that we shall define in later
sections.

Pollowing Kendall’s treatment [15], we shall “filter out”
some effects of transforms and define a “genuine” space of
shape Qf. Qf is the quotient space of (r under 2D
translation and planar rotation, as well as cyclic permuta-
tion of nodes. Each “genuine” shape in £ is the projection
of an equivalence class in Qp under similarity transforms and
cyclic permutation. The reasons for such treatment are
twofold.

First, object silhouettes are taken into images at arbitrary
distances, locations, and orientations. Therefore, a shape
model should be invariant to translation, rotation, and scale.

Second, for generic shape models in middle level vision,
we assume that any features should have the same chance
to appear in any location s in the contour. Thus, the shape
model is invariant to cyclic permutation of nodes.

In the rest of the paper, p(I') is assumed to be
homogeneous with respect to s and p(T') is defined on
relative positions and orientations. Furthermore, I' is
normalized to have unit length. Thus, the density p(I) is
invariant to translation, rotation, scale, and cyclic permuta-
tion. As we shall discuss in Section 10, nonhomogeneous
properties can be built at high level representation.

Now, we need to define a probability measure {I%) on
3}, which takes the sum of the Lebesgue measure over an
equivalence class in {ir. If we only consider translation and
cyclic permutation transforms, the equivalence classes all
have the same size, therefore, »(I') is simply the Lebesgue

3. In the rest of the paper, the word shape refers to a simple, closed, and
non-self-intersecting contour.
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measure multiplied by a constant.! When rotation is added,
the sizes of the equivalence classes may vary because of
rotational symmetry in shapes. However, this should net be
a concern in computer vision because of the following
reason,

Suppose I' is a rotationally symmetric polygon, for
example, Fig. 2 displays an N-gon with degree d =4
rotational symmetry. Suppose we discretized [0, 2] into
1,000 angles, the equivalence class for this shape includes
only 997 distinct shapes, while a nonsymmetric shape has
1,000 distinet shapes in its equivalence class. With precise
discretization, the size variation of equivalence classes is
negligible except for shapes, e.g., a perfect circle. However,
because we are studying natural animate shapes in this
paper, the probability measure for shapes which have high
degrees of rotational symmetry is exponentially small, that
is, these highly symmetric shapes have measure 0. For
example, none of the observed and synthesized shapes in
the later section demonstrate any rotational symmetry at all!

In a given application domain, the ensemble of shapes is
assumed to be governed by a true underlying distribution
J(TY on O (or Qf with no practical difference). A set of 2D
object contours, {I'¥™, i=1,2,...,M}, are observed as
independent samples from f(I'} {see examples in Fig. 4).
The objective of shape modeling is to learn a probability
model p(I') as an estimation of f(I'}. In computer vision,
p(T) is often called the prior model, and can be used for
image segmentation, contour fracing, shape completion,
and so on in the Bayesian framework.

4 FEATURE SELECTION

To learn a shape model p(I'), we start with exploring both
contour-based and region-based features on I'. We are
interested in some simple Gestalt laws: colinearity, cocircu-
larity, proximity, parallelism, and symmetry, each of which
is measured by a continuous function.

Fig, 3a shows a dog shape T, which is decomposed into a
number of sequential linelets £(s). £(s) includes attributes
{z(s),y(s),8(s)) for the center coordinates and orientation.
Each linelet is represented by a node on a circle in Fig, 3b.
The circular connection defines a random field as in Fig. 1a,
where xz(s), y(s), #(s) are random variables at each site s and
the neighborhood structures of the random field are shown
in Fig. 3b (to be discussed later in this section).

Now, we discuss how shape features are extracted from
random fields.

At each location s,” we measure a set of functions $(s)
with @ =1,2,3,... being the index of shape features. By
analogy to feature extraction using Gabor filters in 2D
images, ¢!®(s) is the “response” for a “shape filter” at
location s.

We first define two contour-based functions, the curva-
ture x(s) and derivative of curvature:

4, With a slight modification, we can define shapes in a finite, but large
enough, 2D rectangular domain instead of an infinite plane; then the
equivalence classes have finite size.

5. For simplicity of notation, we derive the shape models in continuous
representation and, then, we convert it to the discrete lattice at other places.
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Fig. 2. An N-side polygon with rotational symmetry of degree d = 4.

#(5) = w(s) = 2
and
¢ P (s) = Vr(s) = %, vs € [0,1]

Obviously, #(s) = 0 means that two adjacent linelets are
colinear and ¢'P{s) = 0 means that three sequential linelets
are cocircular. Other contour-based shape filters can be
defined in the same way.

In the following, we proceed to define region-based
properties.

It is well-known in computer vision that real object
shapes—resulting from processes of accretion—have nat-
ural descriptions in terms of medial axes [20], [30]. For
example, a dog has a skeleton and many elongated parts. As

@
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shown in Fig. 3a, linelets at the two sides of a limb or a torso
are parallel or symmetric with respect to a medial axis. It is
also evident in psychophysical experiments that early
human vision is sensitive to medial axis [18], [3]. This
observation has its deep roots in physiology, where
experiments have demonstrated that some neurons in the
primary visual cortex (V1) of monkeys compute symmetric
axes as soon as they detect edge elements [19],

To capture region-based features of a curve I'(s), the
author has defined a symmetry mapping function (s) [33],

B(s) = terylt) = 5.

Fig. 3 displays the mapping function « for a dog shape. As
shown in Fig. 3b, ¥ divides the circular domain [0, 1] into 18
disjoint intervals:

0,1 — [0,1],

I = (si0,80) C 0,1}, I;0Z;=0,1+#]

¥ establishes a piecewise continuous mapping (s,1¥(s))
between these intervals under a hard constraint that these
mapping line segments don't cross each other.

Intuitively, each pair of intervals represent an elon-
gated part of a shape. For example, the mapping function
i for the dog shape, shown in Fig. 3, has nine pairs of
intervals for the nine parts of the dog. Note that, in
Fig. 3a, some linelets are matched more than once due to
the effect of discretization. As illustrated in Fig. 3b, the
mapping function ¢ defines a new neighborhood for
nodes on shape I' and opens “communication channels”
for linelets across regions.

Now, we briefly explain how 1 is computed.

The mapping function (s), as well as intervals, is
computed by minimizing an energy functional, which is
defined to enforce the following two aspects:

forclog

Fig. 3. (a) A dog shape with region-based correspondence detected. (b) An abstract planar adjacency graph representing the neighborhood

structures of the linelets in the dog shape.
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Fig. 4. Examples of the observed natural shapes.

1. Two matched linelets £(s} and #(1(s)) should be as
close, parallel, and symmetric to each other as
possible.

2. The number of intervals {or discontinuities of (s})
in [0, 1] should be as small as possible.

The optimal ¢ is computed by a stochastic algorithm (Gibbs
sampler) based on local neighborhood in a Markov random
field and the medial axis is then computed based on .
Details of the definition of the energy functional and the
algorithm is referred to a companion paper [33].

Let r{s) be the distance between two matched linelets
£(s) and £03(s)). r(s) is divided by the length of the curve,
s0 it is well-normalized with respect to scale. We call r(s)
the “rib” length. Then, we define three region-based shape
features,

#9(s) = r(s),
#94) = vr(s) = T,
$9() = 9rs) =

#W(8) =0 means two linelets are parallel to each other,
$1¥(s) = 0 means two pairs of linelets are symmetric to each
other. ¢(%(s) measures the proximity between two linelets
across a region, as we discussed in Fig. 1b.

It is easy to see that all functions ¢{*(s),a = 1,2,3,4,5
are continuous measures for the shape properties and the

Gestalt laws and they are invariant to translation, rotation,
and scaling transforms in a 2D plane.
Another interesting shape feature is

#9t9={}

This measures the number of breaks and branches (or parts)
of an object.

if 4(s) is discontinuous at s
otherwise.

5 STATISTICS OF ANIMATE SHAPES

In this section, we shall discuss how to compute
statistics of natural 2D shapes for a set of features
&= {¢ a=12,.. .}

We collect a set of M = 22 shapes of animate objects,
{Teh i =1,2,...,22}, six of which are displayed in Fig. 4.
These shapes are assumed to be independent samples from
a true distribution f(I'). We are interested in animate
shapes because they have richer flexibilities and variations
than human-made objects.

These animate shapes are acquired at various resolutions
from 2D images with perimeter being IL; pixels leng for
i=1,2,...,22. A shape observed at a high resolution
contains rich information, I is represented by N; =
nodes or linelets, i.e., a polygon of N; sides. Generally
speaking, the side length ¢ of a polygon should be as smalk
as possible to obtain a good approximation to the contin-
uous curve; on the other hand, ¢ it should not be too small,
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Fig. 5. (a) The histograms of «(s) averaged over 22 animate objects at scale 0 (solid curve), scale 1 {dashed curve), and scale 2 (dash-dotted curve),
the horizontal axis is x(s) with unit dz = 7%+ (0) The logarithm of curves in {a).

otherwise features, such as x(s), cannot be computed
reliably. A good compromise is to make c as big as possible
while there are no noticeable artifacts of polygon approx-
imation to human perception. We choose ¢ = 6 pixels in this
paper. The arc length for each linelet in ™ is ds = i,
therefore, all shapes are normalized to the same scale.

In this paper, the statistics are extracted as empirical
histograms of features. By homogeneity assumption, the
histogram for ¢{*(s) on I'$"™ is

HOe 5 f& (z— d®s))ds, a=1,2,...,6, Vs
In the above definition, z is a continuous variable for the
teature, e.g., H (", 0) is the number of points on T'¢™ that
have zero curvature. §() is the Dirac delta function with unit
mass at zero and §(z) = 0 for z # 0. For a discretized curve,
we have

Ny

1 .
WZé(zf P50, a=1,2,...,0.

PA Fin

i=t

NI 2y =

We further compute average histograms for the M
discretized curves

e 1 S
I"'obs( ) Ni+No+ .
a=12,...,6.

J\TH(!‘!) l—wubh i
T52 )

4N M4

I 527 N, is big enough, then 1) (2) is a close estimation
of the marginal distribution of the true model f(I'), ie,

WG ) = [ pmsce

In the rest of the paper,
gLf)ﬁl(z) =pl(2), 0 =1,2,...,6.

To study how the observed histograms change with the
scales (resolutions) of natural shapes, we subsample each

9 (s))dl, Vz, Vs, Vo

we assume that

observed shape once and twice, and generate two new sets
of observed shapes at scale 1 and scale 2. A shape at scale
i+ 1 has only one-half of the nodes of the shape at scale ¢.

Fig. 5a plots the observed histograms wl for gl
averaged over 22 animate shapes at scale 0 (solid curve),
scale 1 (dashed curve), and scale 2 (dash-dotted curve),
respectively, and Fig. 5b plots the logarithms of these curves
in Fig. 5a.

In our experiments, we flipped the 22 observed shapes
horizontally to double the observed dataset to 44 shapes for
more robust estimation of histograms because we should
have the same chance to observe an animate object from
both sides. As a result, the histograms for ¢, a = 1,2 are
perfectly symmetric with a peak at zerc. This result may not
be true if we had not had flipped the shapes. This treatment
means that the probability model should also be invariant
to a flip transform.

Fig. 5 demonstrates two interesting properties. First, the
middle part of ,uobl is close to an exponential curve, but yfﬂi
has heavier tails. Second, unlike the scale invariant proper-
ties found in filter responses of natural images [31], the
histogram of curvature is only approximately invariant to
scales in these observed shapes. This is mainly because the
subsampling procedure smoothes the curve faster at high
curvature segments than at low curvature segments. As a
result, the curvature histograms at scale ¢ + 1 have lighter
tails and sharper peak near zero than histograms at scale <.

The average histogram ;. of ¢ is very close to the
curvature histogram. Currently, it is unclear why it is so.
We choose ,u((,m = ,ufi{
histogram averaged over scale 0 and scale 1 for robustness.

We also compute histograms ,uébs,a =3,4,5 for the
region-based features, ¢™(s) =1r(s), ¢ {s) = Vr(s),
#5s) = V2r(s). These computed histograms are shown
in Fig. 6.

Histograms for s(s), Vi(s), Vr(s), V3r(s) are not Gaus-
sian distributions and they all have a sharp peak at zero,

to be the observed curvature
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Fig. 8. The observed histograms averaged over 22 animate shapes for region-based features. (a) Histogram of r(s}. (b) Histogram of ¥r(s). (c}

Histogram of V2r(s).

indicating the statistical significance of colinearity, cocircu-
larity, parallelism, and symmetry in natural shapes. The
histogram of 7(s) has peak near zerc, which implies
important correlations and proximity of points across
regions.

6 SHAPE MODELING BY MaXiIMUM ENTROPY

This section derives shape models which account for the
observed statistics.

6.1 From Empirical Histograms to Gibbs
Distributions

Given features & = {¢!™,a=1,2,...} and the marginal
distributions of f(I') {4 (z),a =1,2,...}, a model p(I")
should reproduce these marginal distributions. Thus, as far
as the features in ¢ are concerned, p(I') cannot be
distinguished from the true model f(I'). Intuitively, if we
extract enough number of important features, p(T') will be a

close estimation of f(I').
Let €, be the set of all probability distributions p(I")

which can reproduce the observed statistics

ﬂnz{p(r) | / D)6z ~ ¢ ()l = plf) (2) vS,vz,\m}.

From (2, a maximum entropy (ME) [12] distribution is
chosen for it has the least bias in the unconstrained
dimensions. Thus, a shape model is

p'(0) = eugmax— [ p(I) logp (D)
subject to constraints

/ p(T)dr =1 (5)

/ p(T)8(z - @ (L = W) (z) Vs, Va Ve (6)

Solving the constrained optimization problem by La-
grange multipliers and calculus of variations, we obtain the
following ME distribution:

&
p(T;®,A) =%exp{— Z/)\((/)(a)(s))d,s}, ("N
a=1

or, equivalently,

1 k
p(T; @, A) ﬂEexp{~Z / AAHOT, z)dz}. (8)

a=1

In the above equations, Z is the normalization constant
and it is also called the partition function Z = Z(®,A) in
physics. A = (A0, A2, . AW are Lagrange multi-
pliers, or potential functions. Since the constraints are
imposed for continuous variables z and s, A°() is a
continuous function. Because of the homogeneity assump-
tion, A (),a = 1,2,....k are independent of s and, there-
fore, they are one-dimensional.

It is easy to see that the active contour models in (1) and
(2) are special examples of (7) with ® and A specified.

6.2 Estimation and Computation

In model p(I'; @, A), the Lagrange multipliers (or the
potential functions) have yet to be solved from the
constraint equations (5) and (6), In practice, due to the
complexity of ® and the shape space (I, we can only
compute A numerically. Our method for computing A has
been successfully applied to texture modeling and prior
learning in [32], [31], and we describe it briefly in this
section.

In practice, a histogram H@(T, 2} is discretized into m
bins, represented by a vector [I)(T') = (H{&), Héd), o HEY.
Ae)() is also approximated by a piecewise constant function,
represented by a vector A = (A", )\go‘), co ALl If o s
latge enough, A is a close approximation to A(). In
general, m may vary with features.

We replace the integration in (8) by an inner product,
therefore,

k
p(I‘;@,A):%exp{—Z< )\(“J,H(”‘)(F) >}, (9)
ce=1

The Lagrange multipliers Ae) o =1,2,... &k are solved
from the constraint equations or, equivalently, by maximum
likelihood estimation. They can be computed by the
following iterative equations:
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dAl

?r 05:1,2,...,41‘:,

= By H()] — 5, (10)
where ¢ is time step, and Eyrea [H(T)] is the expected
histogram with respect to the current model p{I';®,A).
When the above dynamical equation converges, i.e.,
[‘){‘;,"“ =0, then p(I'; ¥, A) duplicates the observed statistics.
It is well-known that A has a unique solution as
logp(l; @, A) is straight concave with respect to A [32],
provided that the constraint equations are consistent.

In (10), for a given A, Eyrp [H™(I)] is hard to compute
analytically. In general, one needs to simulate a Monte
Carlo Markov Chain{iMCMC) walking randomly in the
shape {ir. When this MCMC becomes stationary, it samples
the distribution p(I'; @, A) and we shall discuss the design of
MCMC in the next section. Given ¢ and A, we sample a set
of shapes T7",j=1,2,...,M from p(T;®,A) and we
estimate E,q.g.4)[H) by the sample mean ) computed
in the same way as for ;;ffl:z in (4).

So, A is updated by

d)\(ﬂ) (o) ()

F:“ﬁynﬁl‘bubsl = 172ak

(11)

The whole learning process simulates an inhomogeneous
Markov and this computational scheme has been success-
fully applied to texture modeling by Zhu et al. [32].

6.3 The Learned Shape Model

Suppose we adopt the six features as discussed in Section 4,
an ME model is

P = o] = [ A (u(6)) + APCTR(8) + AV6)

A (Tr(s)) + A (V2 r(s))ds + fﬂIBn}_
(12}

In (12), |B|| is the number of discontinuities of +¥(s). The
number of branches of a shape is || B||/4. The model in (12)
has some desirable properties.

1. Multiple features and Gestalt laws—both region-
based and contour-based—are fused into a single
probability measure on Markov random fields.

2. Shape features are weighted by the learned potential
functions and correlations between features are
taken into account in the learning process.

3. With more features selected, p(I') can be extended to
account for the complexity and frequency or like-
lihood of shapes that occurs in nature. Thus, as p(I")
approaches f(I'), it provides the optimal coding
length —log p(I"} for natural shapes.

7 DesicN MCMC FoR SHAPE SAMPLING

In this section, we discuss a Markov Chain Monte Carlo
method for sampling p(T; ®,A) and we also demonstrate
experiments on sampling uniform distributions in the shape
space €.

Designing a sampling process is important for the
following reasons. First, it is a necessary step for estimating
the potential functions A. Second, it provides a natural way
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for verifying the learned models. If a shape mode! is close to
the underlying truth, then the typical set of samples from
this model should be similar to the observed shapes judged
by human perception. Third, it is also an engine for shape
inference from real images when the learned shape model is
used as a prior distribution in vision tasks.
In Section 3, a shape

I'= ((930»3;‘0), (wla ?jl)1 ey (ZUN,] 3 ?;’NA-l))

is defined on a continuous space fp. In computer
implementation, the cruel reality is that the nodes (x;, ), =
0,1,2,... can only be described in finite precision and we
dencte by 7 the unit length of the lattice.® The sampling
process starts with a simple closed curve, such as a circle or
rectangle with &V nodes. At each step, it randomly picks up
a node (z;,), and proposes to move it to (z},4}—a small
perturbation moving I to L, If (], ;) violates the two hard
constraints, then the proposal is rejected; otherwise, it is
accepted with a probability computed from the model
p(I'; @, A). This is known as a Metropolis-Hastings algo-
rithm and it simulates a stochastic process—random walk
in the shape space §)r. If it runs long enough, this stochastic
process converges to its equilibrium. When this occurs, its
status T is subject to distribution p(T'; @, A) regardless of its
starting status and T is a synthesized shape from p(T; ®, A).

There are two immediate questions that we have to
address before we discuss the algorithm in detail. First,
since, in shape constraint II of Section 3, we have introduced
the € because of discretization, what is the effect of ¢ in
stochastic sampling? Second, how do we diagnose whether
or not the random walk becomes stationary? There is no
precise answer to the first question due to the complexity of
the shape space (Ir. If £ — 0, then we expect the ¢ effect
should vanish; however, if ¢ is too small, the sampling
process converges very slowly, We argue that the choice of
the ratio - should also depend on the precision of human
perception. We did two comparison experiments. In one
experiment, we used ¢ = 27 and ds = 107 and, in the other,
we used e =27, and ds = 207. There were no noticeable
differences for the learning process except that the con-
vergence becomes slower for the latter. There is no good
answer for the second question either; the way we use to
diagnose the convergence is to monitor the convergence of
the marginal distributions uigf,)., o =1,2,... estimated from
the most recent samples and we monitor the sampled
shapes by our perception. The objective of the sampling
process is to match uif;}, to u,()‘;l, and our experiments in later
sections show that the MCMC process can achieve this goal.

Now, we discuss the details of the sampling algorithm.

Suppose, at a certain step, anode A = (x;, v:) is chosen at
random and A is allowed to move in a local neighborhood
{oe — 72, @ + 7} % {ys — 79,3 + 71-—the solid square in
Fig. 7a. Suppose there are Ny (1 < N,y < 9) valid moves out
of the nine positions because putting node 4 in any of the
other (9 — N} positions may violate the two hard shape
constraints. Now, we propose moving A to one of the N,
positions B at equal chance £{4 — B) = 5. Similarly, we

6. One can represent the nodes with subpixel accuracy by setting 7= 1,5
or 1/10 of a pixel width.
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Fig. 7. {a) The proposal for moving a node from position A to B. (b} The firewall preventing the curve from self-intersecting itself.

compute Np as the number of valid moves in the
neighborhood of B—the dashed square. Obviously, it is
valid to move from B back to A and the chance for
proposing a move from B to A is K(B-» A)=-. This
guarantees that the sampling process is reversible—an
important precondition for designing the stechastic process.

The move from A to B is one step of random walk and
we denote by I'y and I'y the two curves, respectively. The
proposal is accepted with probability

KD W) )
K(A— B)p(T4; ®,A)’ '

In the above equation, p(T"4; P, A} and p{I'p; &, A) are, due
to Markov property, computed as p((w;, vi)]| Yiea: {5 950}
where 0i is the local neighborhood set of node i For
example, if ¢! = x(s) is the only feature chosen in the
model, then the computation of the probability of point
{xi,9) will only involve (wi_1,3-1) and (mit1, 1) If
region-based properties are integrated in the model, then
we compute r(s) from the current mapping function (s)
for p(L 43 @, A). The mapping function 4 for I'p should be
updated locally” and r(s) at node i is recomputed for
estimating p(I'p; €, A).
In summary, the transpose probability is

(A — B) = min(

P{A - B)= K(A — Bja(A — B)
and the random walk satisfies the detailed balance equation
p(Ta; 0, A)P(A — B) = p(T'p; ®,A)P(B — A).

This guarantees that if the stochastic process walks long
enough, its statuses, i.e., I, are samples from p(T"; &, A).
The algorithm for sampling p(I'; ®, A} is given as follows:

Algorithm I: stochastic algorithm for shape sampling

Step 1:  initialize I’ = ({zg, o), .. -, (Tr-1, yn-1))-
Step 2:  initialize the mapping function +(s) for T".

if region-based features are chosen in &,
Step 3:  sweep « 0.

7. As the mapping function ¢(s) is computed in a Markov random field,
this updating +(s) only involves local computations [33].

Step 4t for count =1 to N do.

Step 5: Pick up ¢ € [0, N — 1] at random, node ¢ is at
position A.

Step 6: Compute N4, pick up a position I3 at random,
compute Np.

Step 7: Update 3 for the new curve, if necessary.

Step 8: Compute a{A — B).

Step 9: Draw random number r € [0,1) at uniform
dist.

Step 10: If r < o, then move node ¢ from A to B.

Step 11:  sweep «— sweep+1

Step 121 stop, if sweep > threshold, or go to step 4.

In our experiment, to prevent a curve from intersecting
itself, we construct a “firewall” of width 57 along the curve
(see the black dots in Fig. 7b). The cells along the line
segment from node ¢ to node ¢ + 1, displayed by the dots in
Fig. 7b, are labeled as ¢, and a node j is prevented from
moving in the firewall cells labeled i if {|7 — #| mod N} > 2.
For example, node A in Fig. 7 cannot move in the three
dotted cells and N4 = 6.

Our first experiment is to sample a uniform distribution
on {r. One hundred random shapes are recorded after
1.5 miilion sweeps with N =200, ds = 107,¢ = 27. Fig. §
displays four of the sampled shapes. To study how the
statistics of these random shape vary with resclutions, we
subsampled the 100 shapes once and twice and obtained
shapes of 100 nodes and 50 nodes, respectively. Fig. 9a
shows the averag)e histograms of 100 synthesized shapes at
three scales: HiW,m =0,1,2 by dash-dotted, dashed, and
solid curve, respectively. m is the times of subsampling.
Obviously, the histograms change over scales. With a
higher resolution, local structures of the random shapes
become richer and display fractal properties. This scale-
sensitivity is in sharp contrast to the pseudo-scale-invariant
property of natural shapes in Fig. 5.

Our second experiment is to diagnose the convergence of
the Markov chain, and to study the effect of the resolution
N in the synthesized shapes. We sample a second greup of
100 shapes with N = 400,ds =107,e =2r, and a third
group of 100 shapes with N = 100,ds = 107,e = 27. See
our technical report for some of these shapes [34].
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Fig. 8. Four of the sampled shapes recorded at differant time steps of a
stochastic process designed for uniform distribution. N = 200, ds = 107,
€ =97,

Fig. 9b shows two groups of histograms H{", where the
subscript N is the number of nodes used in the sampling
processes and the superscript {m) denoctes the scales. The
first group includes two broad histograms (all have 200
nodes): Hém (dashed) and H}) iy (solid). The second group
includes three sharper curves {all have 100 nodes): H]o%)
(dash-dotted}, Hzou (dashed}, and Hmn (solid). It is clear that
the histograms observed in the same resolution are very
close, which indicates the consistency of the sampling
processes with N =100, 200, and 400. Perceptually, the

o : ! .
0.3?-

02 [ !

.15} / \
ok

205 [P S S

Fig. 8. (a) Histograms of «{s) averaged over 100 samples at three scates

two broad histograms of x(s) are H), (dashed) and ), {solid), respectively, and the three sharper histograms are ku

(dashed), and HE[N, (solid), respectively.
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random shapes with N =200 nodes have no noticeable
differences from the shapes subsampled from the random
shapes with & = 400 nodes (see our technical report for
some of these shapes [34]).

8 FEATURE PuURsUIT BY MAXIMIZING
NONAGCIDENTAL STATISTICS

In this section, we discuss how to pursue important features
for shape modeling.

We start with &g = §§ and, thus, p(T"), a uniform distribu-
tion. At each step k, given &, = {¢{"), a=1,2,...,k}and a
model p(T; &y, Az) is learned according to Algorithm I As a
result we obtain a set of synthesized shapes {I'7™".i=

LMY and pSh = 4 for =1,2... k. Now, for
any new feature ¢(¥) ¢ &;, we compute the hlstograms u
and p&ﬁl from the synthesized and the observed shapes,
respectively. We notice that uﬁ;’?, is the accidental statistic for
feature /¥ and it accounts for the correlation between
and the chosen features in ®.

Definition. Given ®y and p(L; @, Ay), the nonaccidental

statistic for feature ¢ is the distance between 11" and pE).

At step k+ 1, we should choose the feature which has
()

(O

the largest nonaccidental statistic. The distance between g,
and }lr:,_}n could be measured by an L, norm or a quadratic

form—the Mahanalobis distance.

In modeling texture [32], Zhu et al. proposed a minimum
entropy principle for selecting the optimal set @ of features
from a dictionary of Gabor filters. It is proven that each
feature selection step from p(I'; @1, Ax) to p(T; Braa, Apg) is
a steepest descent way for minimizing the Kullback-Leibler
distance D{f||p) between the true distribution f(I") and the
model p(I'). D(f||p) is a conventional measure for the
goodness of the learned model p(I"), For shape modeling,

02 ! ! B r i ]
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016}
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Fig. 10. (a) ufj,l (sofid) versus uﬁ;?. of a uniform distribution for 4{U{s). These two curves appeared in Fig. 5a and Fig. 9a, respectively. (b) The learned
MU() for ¢{P(s) = k(s) In a nonparametric form (solid curve} is fit to n(z) = a{t — 1/{1 4 (z/B)")) with ¢ = 15, b = 13, v = L.1; dz = 557 Is the unit
length of the horizontal axis x(s).

Fig. 11. Six of the synthesized shapes with curvature histogram matched to animate shapes, }ug.fl = ,uf){))q. The histograms of these synthesized
shapes are shown by the dashed curves in Fig. 12.

the Gestalt laws play the same role as Gabor filters for Step 2: k=0, initialize & = 0, Ay = 0, and p(I; By, Ag)

texture modeling; however, there are far fewer Gestalt laws a uniform dist.
than Gabor filters. So, we choose not to discuss the feature  Step 3. sample I¥™,i = 1,2..., M’ from p(T; @, A) using
selection issue explicitly and the proof for the following Algorithm L
proposition is referred to our texture paper [32]. Step 4:  compute ulo) for candidate features ¢{,
Proposition At each step, choosing a fealure which has the Step 5. adding a new feature, ® «— & U {¢'¥}, A% — 0,
maxinan nonaceidental statistic is a steepest descent step of ke—k+1L
minimizing the Kullback-Leibler distance D(f || p). Step 6: Al e At(/,bg;?,)l — ,u,(()‘gi), a=1,2.. .,k
Step 7: sample p(I'; ®, A) for 10,000 sweeps using
In summary, the overall algorithm for shape learning is Algorithm L.
listed below. Step & compute pﬁ%, a=12...,kfrom a set of
Algorithm II: algorithm for shape learning recently sampled shapes.
Step 1:  given {9, for i = 1,2,... M}, compute Step 9 goto step 6, unless [|p{%) — ,ug(.;)qH < p for

pa=1,2,.. 0=12 .. kL
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Fig. 12. (a) %} (dashed) vs. u (solid). (b) log ul3h (dashed) vs. log ;. (solid). (c) 1% (dashed) vs. ufy) (solid).

Step 10: goto step 5, unless || ,u,m -~ | < T for all
remaining features )

The whole learning process is computationally very
intensive, especially when the region-based features are
computed.

9 EXPERIMENTS

In this section, we demonstrate experiments on shape
learning, following algorithms I and II.

9.1 Experiment |
We start with & = @ and p(I"; $,A) a uniform distribution.
In Fig. 10a, we compare usén(dashed) of the uniform

distribution against ,uoh {solid). ,u has a much sharper

peak than ,usyL near zero, F‘c(;b)s measures quantitatively how
much colinearity natural shapes have in comparison with
,ug;?“ the colinearity resulting from accidental arrangement
in the uniform shapes while the hard constraints are taken
P«obsH > Hﬂsyn p’obs”
which means (s) is a more significant property than

obs

into account. We found that H,ugm

Vx(s)—the cocircularity in natural shapes. In this initial
step, we don’t compare other region-based features as it is
quite unreliable to compute the symmetric mapping

function #(s) for the jagged synthesized shapes.
Then, a Gibbs distribution is learned which could

Y = (s)

reproduce the marginal distribution for feature ¢'

b 1)

We adopt the continuous notation for consistency and the

p(T5 0, M) =

learned potential function AV(z) is plotted in Fig, 10b.

({2} is close to |2| near zero, but it has flat tails to preserve
large curvatures. Fig. 11 displays six of the sampled shapes
from the learned model. From the set of sampled shapes, we
compute ug%, a=1,2. Fig. 12a displays ,ufﬁl (dashed)—a
(solid), and

Fig. 12b plots log ;ngl,?] (dashed) against ]og,uﬂm (solid).

marginal distribution of p{T'; &;, A;) against ,uubs

Obviously, the shape model p(I'; &1, A1} reproduces the
observed curvature histogram precisely. /Lg,?. is plotted

D@

Fig. 13. Sampled shapes from a Gaussian model after 2 million sweeps. The variance of x(s) for the animal shape is 0.1665; the sampled shapes

have variance 0.1657, which is a very close match.
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Fig. 14. The learned potential functions, (a) A(z) (solid) and the fitling curve iz} = a(l — 1/(1+ (/b)) with a = 1.95, b= 4, v = 0.9. () 2@ ()
(solid) and the fitting curve n(z) = a{l — L1/(L + (#/b)")) witha =10, b= 14, y =11,
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‘ol

Fig. 15. Six of the synthesized shapes with &) =

(2}

against ;' in Fig. 12¢, so the sampled shapes doesn’t have

as much cocircularity as in the observed shapes.
For comparison, we also sampled a Gaussian distribution

o) = o= [ o)/}

with ¢ chosen to reproduce the same mean and the same
variance of the curvature as in the observed shapes. We
show three sampled shapes in Fig. 13. These shapes have
more jagged boundaries and fewer structures than the
shapes in Fig, 11.

9.2 Experiment I

In the second experiment, we choose ®3 = {x(s), Vk(s)},
(1 @)
5

and the model is learned to match both jz;;, b

and

-

l, « = 1, 2. Noto that these shapes are smoother than the shapes in Fig. 11.

oL, 00y = o] [ NO(s(5) 4 2% (Ve(o)s .

The learned A"(z) and A®(z) are shown as the solid
curves in Fig. 14a and Fig. 14b, respectively. Six of the
sampled sha%)es are shown in Fig. 15. The average
histograms M;;,l,a: 1,2 for 45 synthesized shapes are
shown in Fig. 16a and Fig. 16b by the dashed curves and
they match p'%) o = 1,2 closely.

The shapes in Fig. 15 share the same amount of
colinearity and cocircularity as the observed animate
shapes. These shapes are smooth and we also notice that
long citcular arcs are formed through the propagations of
local interactions in Markov random fields.

We want to emphasize two issues in this experiment:

# The synthesized shapes have pseudoscale invariant
property like the observed shapes. For example, we



1184

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21,

NO. 11, NOVEMBER 1999

048

04

0.5

04

0.26

0.4

04p

03]

02|

04

Fig. 16. (a) the histogram of «(s) averaged over 45 synthesized shapes (dashed curve) and ,uf,?ﬁ solid curve, {b) the histogram of Vx(s) averaged
over 45 synthesized shapes (dashed curve) and ggf))a {solid curve). (c) The histograms of x(s} averaged over 45 synthesized shapes at scale 0 (solid
curve), scale 1 (dashed curve), and scale 2 (dash-dotted curve).

048

0.3d

0.4%;

1

collect 45 sampled shapes and subsample themn cnce
and twice and generate two new sets of shapes at
scale 1 and scale 2. Fig. 16c shows the average
curvature histograms for the three scales. This
indicates that the choice of N is not critical in shape
modeling as long as it is large enough to approximate the
curve up fo the precision of human perception.

The learned potential function A in Fig. 14a is
different from that in Fig. 10b. This change reflects
the correlation between the two features. This
demonstrates that the learning process could ac-

count for interdependency between chosen features.

9.3 Experiment lll
Our third experiment incorporates the region-based fea-
tures into the shape model.

Although the shapes in Fig. 15 reproduce the exact
amount of colinearity and cocircularity, they are very blob-
like and elongated parts, like limbs of animals, are missing.
The lack of region-based features are reflected in the
histograms plotted in Fig. 17. We compute ;ng%,a =3,4,5
for features ¢®(s) =r(s), ¢(s) = Vr(s), and ¢ (s} =
Ar(s) from a set of 45 synthesized shapes of p(I"; 2, Az).
yg?ﬂ)],oz = 3,4,5 are plotted as dashed curves in Fig. 17a,
Fig. 17b, Fig. 17¢, respectively. In contrast, ui‘,ﬂl,a =3,4,5
are the solid curves. Again, the differences measure the
nonaccidental statistics in natural shapes.

028

S T 005

92

005

()

fig. 17. Average histograms of shapes sampled from p(I'; #, Ay). () (dashed) vs. 1) (solid), (a) & = 3, (b) &« =4, {c) a = 5.
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Fig. 19. Six of the synthesized shapes from p,(I'; ®4, A4).
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Fig. 20. The solid line is the average histogram of curvature «(s) for 22
animals (flipped to 44). The dashed line is the average histogram of x(s)
for 1,100 fish—a different dataset.

As the difference between ug?. and ug?)L is small, we
choose two new features r(s), Vr(s) and learn a new model

p4(r; Py, A.(l) :%exp{f / ,\(U(ﬁ;(s)) -+ A(Q)(Vﬁf,(s))
A (r(s)) + /\(4)(Vr(s))ds}.

The learned A, o = 1,2, 3,4 are shown in Fig. 18. Six of the
sampled shapes are displayed in Fig. 19 together with their
mapping functions ¢/(s).

This experiment demonstrates that the region-based
features are crucial for shape modeling. Although none of
these synthesized shapes are identifiable as specific animate
objects in our environments, the sampled shapes resemble
parts of real world objects, exactly as we expected for
middle level vision. We shall debate this issue in the next
section.

10 DISCUSSION

In this paper, a theory for shape modeling and learning is
proposed based on the maximum entropy principle and
various Gestalt laws are embedded into the Markov
random field models. The paper also provides quantitative
measures for the nonaccidental arrangement by distances
between the observed statistics and the statistics of random
shapes. The differences between uéf‘fﬂ and M(:El are evidence
for the ecological reasons underlying the Gestalt laws
—colinearity, cocircularity, proximity, parallelism, and
symmetry—identified in experiments of human visual
perception. Thus, the article provides a firm mathematical
justification for some Gestalt laws.

The learned models are limited in a few aspects.

First, they are biased by the training shapes that we
selected. We have studied a different database of
shapes—1,100 fish contours, and the statistics in this dataset
are found to be very similar to those of our training set (see
Fig. 20). Ii is not very surprising because both datasets are
animate objects and histogram is averaged over large
samples (the total number of points in the dataset is over
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Fig. 21. The general deformable model for describing a dog in the
FORMS system (Zhu and Yuille 1996). (a) The grammar for generating
the graph structure of an animal. {b) The deformation of parts. (c)
Composing the shape through the hinge joints.

5,000). However, the statistics are likely to change for the
ensemble of polygon shapes such as rectangles and
triangles, whose curvature histograms should have sharper
peak at zero.

Second, the neighborhood structures of our models are
limited by the Gestalt laws. There are very few choices for
generic shape features. The Gestalt laws are known to be the
most important generic features for human perception, if
they are not the best. For the same reason, we don't discuss
the histogram variations between animate shapes and we
have assumed that #{%)(z) = 4(®)(2) in this paper. Indeed,
studying the histogram variation and the estimation error of
the observed histograms is important to decide when to
stop choosing a feature; this was discussed in our texture
modeling paper [32].

Third, the models do not account for high level shape
properties. For example, some portions of the sampled
shapes in Fig. 19 may resemble parts of animals, such as
legs, tails, and heads, but these parts are not assembled in a
proper way.

We now discuss how the models can be extended to
overcome the third limitation, One can easily compute the
medial axes (of skeletons) for the shapes in Fig. 19 by
connecting the centers of the mapping line segments and a
detailed algorithm is referred to in a companion paper [33].
The skeleton forms a graph representation of shape. For
example, Fig. 21 shows a shape model for high level
recognition in the FORMS system proposed by Zhu and
Yuille {30]. The skeleton of a dog is generated by a grammar
and the seven deformed parts are joined by two hinge
joints. In fact, it is not hard to argue that the deformable
madels in FORMS are nonhomogeneous maximum entropy
models too! This nonhomogeneous model imposes high
level structures on the skeleton graphs to model specific
objects, e.g., by imposing constraints on the number of
branches at each joint and the relative orientations of these
branches. In this way, one can sample random shapes for a
dog.
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We argue that shape models in the middle level should
be compatible with both low level and high level
representations. The Markov random field shape models
in this paper can be easily incorporated into the statistical

framework for image segmentation [29]. They also provide .

a mechanism for computing object shapes, as well as their
medial axes, from raw images and for passing such a
description to the high level.

It is our belief that the random field models may lead to a
new way to explain the “field force” in the Gestalt theory.
We hope that this paper will stimulate better research
results along this direction.
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