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Stochastic Jump-Diffusion Process
for Computing Medial Axes
in Markov Random Fields

Song-Chun Zhu

Abstract—This paper proposes a statistical framework for computing medial axes of 2D shapes. In this paper, the computation of
medial axes is posed as a statistical inference problem not as a mathematical transform. This paper contributes to three aspects in
computing medial axes. 1) Prior knowledge is adopted for axes and junctions so that axes around junctions are regularized. 2) Muttiple
interpretations of axes are possible, each being assigned a probability. 3) A novel stochastic jump-diffusion process is proposed for
estimating both axes and junctions in Markov random fields. We argue that the stochastic algorithm for computing medial axes is
compatible with existing algorithms for image segmentation, such as region growing [31], snake [7], and region competition [26]. Thus,
our method provides a new direction for computing medial axes from texture images. Experiments are demonstrated on both synthetic
and real 2D shapes. This algorithm has been successfully applied to shape learning and sampling in a companion paper [30).

Index Terms—Medial axis transform, jump-diffusion process, energy minimizaticn, Markov random field.

1 INTRODUCTION AND MOTIVATIONS

MEDIAL axis or symmetry axis transform is an important
representation of object shapes [13] and it has been
extensively studied in both human and computer vision
following the pioneering work of Blum [1] and Navatia and
Binford [19]. Existing algorithms for computing medial axes
are divided into four categories: 1) active contour method
[12], 2} Varonoi diagram [20], 3) shape evolution by partial
differential equations and level sets [9], [21], and 4) tracking
deformable circles [27]. Some algorithms have been
proposed for computing segments of symmetry axes from
gray level images using difference of low-pass filters [3],
annular symmetry operators following edge detection [8],
and diffusion equations [22]. Medial axes have also been
successfully used in object recognition, for example, the
FORMS system by Zhu and Yuille transforms 2D shapes
into skeleton graphs and objects are recognized in a bottom-
up/top-down loop [27]. Recently, Liu et al. have studied
perhaps the first variational method for extracting skeleton
tree for object recognition [16].

As medial axis is notoriously sensitive to boundary

noise, the main thrust of existing algorithms for extracting
medial axis is to overcome the robustness problem and
various methods have been proposed, such as trimming
extra branches [20], smoothing boundaries by diffusion
equations [9], [23], or using deformable circles instead of
hard disks [27]. The significance of an axis branch can also
be measured [12]. Though this problem has been well
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addressed, there are some other problems which have
received less attention in the literature.

First, object shapes often have multiple interpretations in
terms of medial axes, and ambiguities are especially
pronounced around corners and junctions. For example,
Fig. 1la displays the medial axis of a flower using the
maximum disk definition, Semantically, it seems desirable
that all six parts of the flower join at one point and that the
angles between adjacent axes be approximately equal (see
Fig. 15). For more examples, the medial axes for the T-shape
and the hand-shape are displayed in Fig. 1b and Fig. 1c,
respectively. Other possible interpretations of the two
shapes in terms of axes are shown in Fig. 14,

The perception of medial axes largely depends on the
basic shape elements used in object recognition. Thus, in a
bottom-up process, it is best to define medial axes in a
probabilistic language so that multiple interpretations are
preserved for decisions by the high level recognition
process. In contrast, the current deterministic definition of
medial axes lacks such flexibilities. Furthermore, the medial
axis transform is unstable at junctions of degree larger than
three because it is rare to have four or more tangent points
on the shape sharing one maximum circle. Therefore, some
regularizations are necessary.

Second, it is unclear how medial axes can be reliably
computed from texture images. We argue that the compu-
tation of medial axes should interact closely with the image
segmentation process.

This argument is supported by both psychological and
neurophysiological experiments [10], [11]. In psychology,
Kovacs and Julesz studied the contrast-sensitivity thresh-
olds to the perception of Gabor filter patches [10] in
preattentive human visual perception. They arranged some
Gabor filter patches to form a closed contour among other
randomly placed similar Gabor patches. They found that
the sensitivity at the points of medial axes of closed
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(a) (b)
Fig. 1. Medial axes defined on maximum disks.

contours was remarkably increased and the task was
performed in the preattentive vision stage. In neurophy-
siology, Lee et al. discovered that the responses of some
neurons in the primary visual cortex (V1) of a monkey were
particularly accentuated at medial axes of textured shapes
in the very early stage (80-200 milliseconds) [11].

From a computational point of view, medial axes
provide region-based grouping information—symmetry,
patrallelism, and proximity, which are important for obtain-
ing accurate segmentation, Thus, it is beneficial for image
segmentation algorithms if they interact with the on-line
compufation of medial axes. However, there is a major gap
between existing algorithms for computing medial axes and
algorithms for image segmentation. The former are for-
mulated in a deterministic setting, whereas the latter are
mostly studied in a statistical framework, for example,
region growing [31}, active contour (SNAKE) [7], and region
competition [26]. This incompatibility poses a major barrier
for extracting medial axes and object shapes from texture
images.

Motivated by the above observations, we propose to
define medial axes on Markov random fields and to pose
the computation of medial axes as a statistical inference
problem. Computing medial axes in a statistical framework
has the following potential advantages.

1. Prior probability models are introduced to regular-
ize ambiguities of axes and junctions. These prior
models are characteristic of generic properties
shared by natural cbject shapes. For example, prior
models (or energy terms) can be added to favor axis
smoothness, symmetry, and alignment at junctions,
such as “T,” “X,” and “Y" junctions.

2. Stochastic algorithms, such as the Gibbs sampler [4]
and the Metropolis algorithm [17], could be utilized
for inference. As these stochastic algorithms becotne
more and more important in achieving high quality
image segmentation, a stochastic algorithm for
computing medial axes could be integrated into the
processes of image segmentation and perceptual
organization,

3. The statistical formulation makes it possible to
compute mulfiple interpretations of a shape in terms
of medial axes, each being assigned a probability.

In computer vision literature, we have noticed some
interesting work along this line. In 1984, Tsac and Fu
published perhaps the first paper on skeleton of stochastic
nature [24]. In [24], a skeleton graph is computed in a
deterministic way based on maximum disks and, then,

randoin shape instances are generated by either perturbing
the coordinates of the points on the skeleton or changing the
radius at a skeleton point. In 1992, Li proposed an energy
minimization formulation for matching two curves repre-
sented as graphs in studying object recognition from range
data [14], [15]. Most recently Liu et al. [16] proposed an
interesting energy minimization method for matching a
curve to itself. They successfully adopted a dynamic
programming method and their energy function is similar
in spirit to the one used for computing the mapping
function in this paper. Their work was published indepen-
dently of the conference version of this paper [29].

In this paper, we propose a stochastic algorithm for
computing medial axes in two phases:

1. In phase I, a Metropolis-Hastings algorithm [17] is
.adopted to compute a mapping function which

maps each linelet in the 2D shape to n > 0 other
linelets in favor of parallelism and symmetry.

2, 'In phase II, a stochastic jump-diffusion process is
designed to compute axes and junctions, This jump-
diffusion process simulates a Monte Carlo Markov
chain traveling in a heterogencous space of the
: medial axis representation.

The paper is organized as follows. Section 2 defines a
piecewise continuous mapping function. Section 3 studies a
stochastic algorithm for computing the mapping function
and Section 4 discusses how to compute medial axis and
juncticns separately based on the mapping function.
Section 5 studies a jump-diffusion process for computing
the mapping function and junctions simultaneously. We
demonstrate the performance of the algorithm on a variety
of shapes in Section 6. Section 7 concludes the paper with a
discussion.

2 DEFINE A MAPPING SUNCTION ON 2D SHAPE

Let T'(s) = (2(s),y(s)) denote a simple, closed 2D shape,
where s € [0, 1] is the arc-length and ['(0) = I'(1). We start

with defining a symmetry mapping function:

#(8) + [0,1] — [0, 1] U {nil}, ¢(s) = te=d(t) =4, if 8, t # nil.
o(s) d:ivides the circular domain [0, 1] into a set of disjoint
intervals T = {(s0,81) C [0, 1]} and establishes a piecewise
continuous mapping between them. If ¢(s) == ¢ s nil, the
linelets at points s and ¢, denoted by I'; and T, respectively,



1160

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21,

NO. 11, NOVEMBER 1999

Fig. 2. An example {a) of a mapping functon ¢(s) on a dog shape, (b} of the abstract representation of ¢(s) as an adjacency graph with 18 matched

intervals, zero empty intervals, and 18 break points in B,y,.

are said to be maiched.! If ¢(s} = nil, it means T, has no
good matches and it remains as a single linelet. Usually,
¢(s) = nil for point s around a junction or near the end of a

shape branch.

For example, a dog shape is shown in Fig. 2a with a
mapping function ¢(s) displayed by the line segments, and
more examples are displayed in Fig. 4 and Fig. 5. In these
figures, we notice that some linelets are not matched and
that some have multiple matches due to discretization.
Fig. 2b is an abstract representation of the mapping function
o(s).

Definition, An inferval {sq, 51) € T is called an empty interval
if 9{s) = nil,¥s € (s0, 51} and other intervals in T are called
matched intervals. We denote by B,,. the set of breaking
points between adjacent matched intervals and empty intervals
aid By,m the set of breaking points between adjacent matched
interpals.

Intuitively the mapping function ¢(s) should satisfy the
following properties:

1. If ¢(s) =t +# nil, then the line segment connecting
linelets T’y and T’y should not intersect any other
mappings and it should contain no points outside
the shape T'(s). This property favors mid-chord
symmetry axis [1] instead of centers of maximum
clisks or other definitions [25].

2. If ¢(s) =t # nil, then the linelets I'; and T', should be
close in space and be approximately symmetric and
parallel to each other in orientations.

3. If ¢(s) is a continuous mapping between intervals
{51, 82)=*(t1,13), then ¢(s) should be as uniform as
possibte. That is, % should be close to —1.

4. The number of breaking points in ¢(s) should be as
small as possible.

1. As the mapping function ¢{s) is piecewise continuous, the linelet T', is
of infinitesimal length. T, denotes (z{s},y(s)) and the tangent direction at .
In implementation, the curve is divided into N linelets of cqual length.

The first property is a hard constraint and we define the set
of all valid mapping functions for a shape 1" as

4 = {(s) : @(s) satisfies property 1}. 1

We define a probability distribution on §), so that proper-
ties 2, 3, and 4 are cbserved

1 ‘
p(e|T) = Eexp_"”(fﬁm, Ve € L2y (2)

The energy functional is chosen to be

B = §  Clo.00s) + allVitts) + 11y
J3(8)#£nil
+ v ds + ’Ymre”Bmf:H + Ymm HB-mm||~ (3)

ol s)=nil

In the above energy functional, 7. >0 and ~wm >0
penalize short intervals and force long axes to form, as
suggested by property 4. vds is the cost for an unmatched
linelet. If «v =0, then all linelets remain singles and, as -
increases, more and more linelets are matched. The effect of
7 is illustrated in Fig. 5. Inside a matched interval, o favors
uniform mappings following property 3, and C(s, ¢(s))ds is
the cost for mapping two linelets at s and ¢(s). Energy
functionals of similar nature have been previously adopted

in image segmentation and restoration [4], [18].

Now, we define C(s,¢(s)). Fig. 3a shows two linelets
linked by a dashed line whose length is normalized by
L—the length of I'(s):

r(s) = IIT(s) = Tig(sHlI/ L

So, r(s) is invariant to 2D similar transforms (translation,
rotation, and scaling). The two linelets have tangent angles
6,6, relative to the dashed line. We denote by #, and &; the
continuous measures for parallelism and symmetry be-
tween the two linelets, respectively, #, =, +f; — 7 and
8, =6 — 5.
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Fig. 3. (a) The mapping between two lineleis. (b} A junction of degree = 3.

Following property 2 of ¢(s), we choose

2

% 8
Clo 8(6)) = 525 + 55
P 5

+ pr(s). (4)

The parameters are chosen empirically and we fix
op = 7/10, 6, = w/8, and p = 100 in all our experiments in
this paper. A rigorous account for the sensitivity of the
algorithm to the selection of these parameters has yet to be
studied. In theory, the precise function for C(s, #(s)) can be
learned from training examples in a nonparametric form
based on the maximum entropy principle [30].

Remark 1. The probability p(¢|T') and the encrgy E{¢) are
invariant to translation, rotation, and scaling.

Remark 2. I'(s) is @ one-dimensional random field with
(z(s),y(s)) being the random variables. Thus, ¢(s) specifies
an adjacency graph—or a neighborhood structure on this
random field, illusirated in Fig. 2b. In this graph, spatially
adjacent points become near neighbors, although they may be
far away from each other along the contour. Se, region-based
information, such as parallelism and symmetry, is character-
ized. A probabilistic shape model defined on such graphs is
studied in a companion paper [30].

3 CoMPUTE THE MAPPING FUNCTION

To compute the mapping function ¢(s), we discretize a
shape I'(s) into N = L/c linelets, T, Ty, ..., Tn_1, of equal
length. The constant ¢ should be chosen to be small for good
resolution, but the tangents of linelets cannot be computed
reliably if ¢ is too small. We choose ¢ =6 pixels in this
paper. A problem with this equal length discretization is
that many-to-one mappings become necessary. These
many-to-one mappings often occur when the curvatures
of two matched intervals are very different. Now, the
mapping function ¢(s) is discretized into a mapping graph
(see Fig. 2a and Fig. 4) which is defined below.
Definition. Let & =< V,EU M > denole 2 mapping
graph for shape I', with V ={Iy,...,Tn_1} being the
set of vertices for the linelets, B = {< I't, T f1pmodny >, =
0,1,...,N — 1} the sel of edges connecting the linelets along
the contour, and M = {< T;,T'; >} the set of edges for the
mapping function ¢(s). M is said to be valid if G is a planar
graph and all edges in M lie inside the shape T'. The mapping
degree of a linelet T;, denoted by d(I';), is the number of edges
in M that end at T;.

The energy functional F, (¢|I") in (3) is discretized as

R
b
(b)
E(M|T) =
{ > O@LT/dT) +a Y ||d(Ff)—1||+’Y||U}dS
<y T;>eM ‘ (T340

+ 7me||Bmc" + erm”BHﬂu”-

(5)
where U is the set of unmatched linelets, ds/d(I;) is the
effective arc length for mapping two linelets I';,T';. ds =
1/N is the unit length of a linelet. If T'; is matched d(I';)
times, then I'; is divided into d(T';) virtual linelets, each of
which has arc length ds/d(T;).

For any two sequential linelets I';,I';;;, we say that a
mapping M is confinuous between I'; and T, if either T';
and I'; are matched to nil or I'; and Ty, are matched to the

same linelet or two sequential linelets.
The matching cost between any two linelets I'; and T; is

C(ry,Ty) =
{ 0 if < Ty, T'; > isaninvalid match, otherwise,
C(i,5)  (see (4)).

The number of possible matches for each linelet could be
as large as N (including nil), but, in practice, we only need
to consider the m < N most promising candidates.
Definition. For each linelet T';, a set S; of matching candidates

includes: 1) the null match nil, 2) j € S; if the edge < T;, T >

is inside the shape T'(s).

Therefore, the optimal mapping M* is computed by
maximizing the probability p(M|I') = Le 5 in the
following space:

N-1
Qpy = {M e [[{@.Ty) e 8}« Mis valid},
=0

M* = MIT) = arg mi .
arggl%%):lp( ) arg min £, (ML)

Note that M, Q, p(M|I'), and E; (M|T) are the discrete
descriptions of ¢(s), Q4, p(¢[T'), and F, ($|T), respectively.

Due to hard constraints and many-to-one mappings,
dynamic programming is not applicable. We adopt a
Metropolis-Hastings algorithm for optimal solution [17].
The algorithm starts with an M where all linelets being
matched to nil and it flips one edge e = on and e = off at
each step. This algorithm can also be viewed as a Gibbs
sampler [4].
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Fig. 4. Two examples of the computed mapping graph ¢,

Algorithm I: A Stochastic Algorithm for the Mapping

Function @

0. Partition T" into N = L/c linelets I';,4 = 0,1,... ,N — 1.

1. for each I';, i = 0,1,..., N — 1, Compute the candidate
set 5.

2. M «— @, count — Q.

3. Pickup i € {0,1,..., N — 1} with a uniform distribution.

4. Pick up j € §; according to ¢;(j}, e, e =< T, T >

5 if e intersects existing mappings, go to 10.

6 Compute p(e = on|M} and ple = off|M).

7 Draw a randem variable r € [0, 1] at uniform
distribution

8. Ifr<ple=onM), then M — MU {e}

9.  otherwise M — M/{e}.

10.  count — count + 1.
11. If count < threshold Goto 3, else stop.

In Step 5, the Markov chain is confined by the hard
constraint. In Step 4, the algorithm proposes I'; according to
a probability ¢;(j) for j € 5;. The efficiency of the algorithm
can be improved if promising candidates are nominated
more frequently. For example, () = Zi'expfc(rﬁl\f) , with
Zi =Y e oxp Y0l being a normalizing constant. In
practice, we found that the probability mass of ¢;(;) above is
almost completely focused on the first m candidates. Thus,
we set ¢;(j) to be a uniform distribution on a subset S ;=
{nil, i, 42, ..., i} C 5; as a trade-off between efficiency and
simplicity. The size m is selected according to the “cutoff”
probability in ¢(j). In our experiments, thanks to the
smoothness of the shape, m = 5 is found to be enough.
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In the above algorithm, we define flipping & edges as
one sweep. An annealing schedule is introduced to achieve
optimal solution and we set the temperature
T = 15e™**»/30 which is not crucial for most shapes. The
computational complexity is in the order of the number of
sweeps multiplied by N. The algorithm stops after a
conservative threshold of 1,000 sweeps. As N is on the
order of 200 to 400, the computation is very fast—e.g., a few
seconds in a SGI O2, although annealing is used.

We show some mapping results in Fig. 2a, Fig, 4, and
Fig. 5. In Fig. 5, the most probable mapping changes from a
mid-chord symmetry axis to the centers of maximum circles
as v increases. This shows an interesting difference between
a geometric definition of medial axis and a statistical
definition.

In the rest of this section, we discuss how ple =
on/off| M) is computed and analyze the Markov prop-
erty of p(M|T"), that is, in p(M|[), the state of an edge
e =< T} T »€ {on, off} only depends on its local neigh-
borhood graph A.. Unlike the fixed neighborhoods in
classical Markov randem field models [4], A, for each
mapping edge changes dynamically.

Definition. Let G =<V, FUM > be a valid mapping graph,
e=< 1y, T > amapping edge, and G* = <V, EUM® > a
subgraph where all mapping edges ending at T'; and [; are
removed. A polygon P* =< vy, vy, ..., vy, v > 1sdefined asa
closed path inn G* which passes vertices including I'; and T';. A
minimum polygon 7. is the polygon P¢ with the shortest
length.

For example, Fig. 6 shows part of a subgraph G =<
V,EUM® > for e= < X,Y > . The minimum polygon for
eis Pl =<C, X, D,H 1Y, J K ,C>.As (G is a planar
graph, it is easy to see that there is only one F;, for each e.
Definition, Given G = < V,EUM > and e, the neighborhood

N is the minimum subgraph that contains all vertices in P5,,

and edges connecting two vertices in Pf,, .

To judge whether e is a valid mapping edge or not, one
only needs to see if ¢ intersects mapping edges in A',.. Thus,
itis easy to prove that p(e|M) = p(eiN,). When M =9, N, is
the whole graph, as | M| grows, the size of the neighborhood
A, for each edge e decreases rapidly. Therefore, under the
hard constraints, p{A|[') is a Markov random field model
with neighborhood changing dynamically.

QTR Y

A

(a)

(c)

Fig. 5. As v is the penalty for a linelet not being matched, increasing ~ will force all linelets 1o be matched. (a) v = 12, (b} v = 22, (c) v = 27.
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4 COMPUTING AXES AND JUNCTIONS

In a mapping function ¢(s), each pair of matched intervals
correspond to a symmetry axis of the shape. In the mapping
graph (7, these axes emerge automatically if we simply
connect the centers of the mapping edges e € M if M is
continuous at e. Fig. 7 displays the axes of a kangaroo shape
at five, 10, 1,000 sweeps, respectively. At the beginning,
there are many scattered short axes. Later, long axes emerge
since they are favored in the energy function.

In general, we should allow the points on the axes to
slide along the mapping edge e € M for smoothness. This
could be done by introducing a prior model based on the
curvature of the axes. However, in our experiments, the
axes computed above are very smooth already—perhaps
because the shape boundary is smooth. It is not necessary to
adjust points on the axes,

Once we have computed the mapping graph G =
<V,EUM > and the axes, the next step is to compute
junctions connecting adjacent axes. The junctions ¢an be
easily detected from the planar graph G. For example,
Fig. 2b shows a mapping graph, a portion of which is
shown in Fig. 8. We first find the set B of break points in the
mapping graph, e.g., B={A,B,...,L} in Fig. 8.

We define a partition

B=UE B,

and each B; is a minimum polygon (or shortest loop) in the
mapping graph G which passes only break points. For
example, there are three minimum polygons in Fig. 8,

Bi=<DBK,J, G FC B>,
By=<D,ED >,
Bya=<H I,H>.

B, and Bj define two junctions of degree = 1, each of which
corresponds to the end of a shape branch. B, is a junction of
degree = 3.

Given I' and a mapping function ¢(s) or 3, the number
of junctions K is determined, and the position (z;,3;) © =
1,2...,K of each junction is confined to a domain D;
bounded by the minimum polygen Py, , as well as I". For
example, the shadowed area in Fig. 9 shows D; for a
junction degree of 3.

A conditional probability is defined for the set of
junctions J = {(z;, g}, =1,2,..., K},

p({mi,yz-}fil [M,T) on Q(J) =Dy x Dy x - x Dx.
I this section, we only discuss the computation of a single
junction and we shall discuss how to compute all the
random variables M, K, {(zi,%:),i = 1,2,..., K} in one run
in the next section.

As we discussed in Section 1, medial axis transforms are
often ill-defined around functions and this problem can be
released by introducing a priori knowledge for axes near
junctions, We may define a few categories of junctions,
such as “L,” “T,” "Y,” *X,” junctions, and find (z,y) that

2, For a junction of degree = 1, we simply assign it as the end point of the
symmetry axis.
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Fig. 8. The definition of minimum polygon for a mapping edge < X,Y > .

best fits to one of these models. In this paper, we choose a
different method that computes junctions from a general
energy function.

Fig. 3b displays a junction O connecting three axes at end
points A, B, and €. The line segments OA, OB, and OC are
oriented at angles 5,5, B, respectively, and the angles
between 0A,0B,0C and the three axes are, respectively,
1, Qi g,

We adopt three generic rules in regularizing the junction
position (z,y).

I. It makes smooth connections to the axes, e.g.,
@1, 09, ... ,04 should be as small as possible.

2. Some of the axes should join at {z,y) symmetrically,
e.g., Af = |8y — 26 + Bi-1] should be close to zero
for some 1.

3. Some of the axes should be aligned with other axes,
e.g. |B; — B;] = = for some choice of < ¢, > .

The above criteria are expressed in a probability
distribution p(z;, 4| M) = 4 e @) for (z;,y;) € D;, where
the energy is

Ey(z,y) —Zalaal +wa ABY+ Y ebllB - Bl — ).

i=1 <i#j>
(6)

— 7y 18 @ T-shaped function shown in Fig. 10. It

W) =1
has flat tails and a steep cusp around zero, so it forces £ to
zero if |£] is very small, otherwise it has very small effect on
£. The form of this function was suggested by the generic

prior model learned from natural images [28].

The optimal (z,y) is computed by minimizing Fs(z,y)
for each junction separately. To achieve a global minimum,
we adopt a stochastic algorithm which flips point (z,%) in a
lattice using a Gibbs sampler [4]. In our experiments, we
simply set b = 0, i.e., the second term is eliminated without
observable difference.

Algorithm II: A Stochastic Process for Computing
Junctions
0. Given I', M, find K(M) junctions in the planar graph G.
1. For¢=1,2,..,K(M) do.
2. Compute p((z; + Do, s + 8)| M), (Ag, A €

{r,0,7} x {7,0,7}
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Fig. 7. The symmetry axes of a kangaroo shape at time steps (a) five sweeps, (b) 10 sweeps, and {c) 1,000 sweeps.

3. Pick up (A,, A, at random by the Gibbs sampler [4].
4. repeat 2,3 until it converges.

5 DESIGNING JUuMP-DIFFUSION PROCESS
5.1 Motivations for Designing the Jump-Diffusion
Process
In Section 3, the mapping edges M are computed by
maximizing p(M|[') and, in Section 4, the junctions J =
{(#i,y),i=1,2,..., K} are computed by maximizing
p(J|M,T). The two separate steps work well in many nice
2D shapes, however, the resulting medial axes could be
suboptimal in general because the mapping M is computed
locally without considering the junctions. For example,
Fig. 11 displays the computed M which determines three
junctions of degree = 3 instead of one junction of degree = 6
(see Tig. 15), even though the latter has lower encrgy.

The split and merge of junctions was considered in the
FORMS system by Zhu and Yuille [27] in a top-down
process which matches the medial axis graph to an object
model in order to obtain the best match. In this section, we
shall discuss how A and J are computed interactively by
maximijzing a joint probability

p(J, M|T} = p(J|M, I'}p{ M|} on a space £ = X{SIM) D;.
Equivalently, we minimize the energy

K(M)

! .
+ﬁ Z Ea (e, u),

i—1

B(M, J|T) = %—EI(M|T)
1

where the number of junctions K = K(M) is a function of
the mapping M and 11,7, are temperatures. As it is
computationally inefficient to compute J when M is far
from converging (see Fig. 7a), the computation is divided
into two phases. In phase I, set T» at a very high
temperature, thus we can ignore the second term in
E(M,J|II') and compute M as in Section 3. Then, in
phase 11, we reduce T3 to a low temperature and compute
J together with M.

However, minimizing £/, J|T'} is not a trivial problem
because the probability mass p{./, M|T"} is distributed over
subspaces {Ix whose dimensions change as K varies:

Q=UxQy, Qx =0y x5, D K = K(M).

This problem exists in many other computer vision
problems wherever a probability distribution involves

hierarchic random variables or multiple choices of models,
for example, in an image segmentation problem. In the next
section, we briefly discuss basic issues in designing jump-
diffusion processes as they have mainly been studied in
statistics literatures, not in computer vision.

5.2 Basics of Jump-Diffusion
Stochastic jump-diffusion process was first studied by
Grenander and Miller in 1994 [6] and a rigorous account
for the reversibility was given by Green in 1995 [5].
Suppese that, in an application, the solution X lies in a
mixture space {} which consists of three possible subspaces
Q=08 U, v) UKL p,n) in one, two, and three
dimensions, respectively, such as an interval, a region,
and an ellipsoid in Fig. 12. For example, s, (i, v), (€ p, 1)
could be parameters of three possible models to account for
the data, such as gray level intensity, motion velocity, and
color, respectively. Thus, the probability for X is a mixture
distribution

PLX) = Aipi(s) + Aopalpe, ) + Aamsl€, pom).

If the objective is to compute the global optimal solution
X", it is necessary to simulate a Markov chain Monte Carlo
process for sampling p{X). This stochastic process consists
of two kinds of random walks, as shown in Fig. 12. One is
diffusion, which moves X inside one subspace, e.g., in the
(14, v)-plane. The other is jump, which switches the model
from one subspace to the other. To design the jump-
diffusion process, one could design many types of
“proposals” for moving X(t) — X (i + 1), with ¢ being the
time step. The criteria for designing the jump-diffusion
process are: 1) each proposal is reversible and satisfies the
detailed-balance equation, and 2) the whole jump-diffusion
process is ergodic and aperiodic. At each step i, one of these
proposals is chosen at random and the proposal is accepted
with an acceptance probability computed from p(X), as
well as the proposal probabilities, The Markov chain should
eventually reach an equilibrium with its status sampling the

14 X\'(\\, !/./);;
A BC D E F G H

Fig. 8. Detecting junctions.
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Fig. 9. The shadowed area is the domain L; for the position of a junction
(ﬂii.yi)-

probability p(X) [5]. When an appropriate annealing
schedule is adopted, it is guaranteed to reach the global
optimal sclution. It is worth noting that the stochastic
process is not only important for achieving the global
optimum, but is also crucial for obtaining multiple solutions
and analyzing the performance of the model.

5.3 Design the Jump-Diffusion Proposals
To minimize E{M,JI'), we identified four types of
proposals, which are illustrated in Fig. 13.

e Type I: Moving a junction (z;, ;) within a neighbor-
hood D, see Fig. 13a and Fig, 13b. This is a diffusion
process.

e Type IL: Flipping a mapping edge ¢ = on/off without
changing the number of junctions K'(M), see Fig. 13c
and Fig. 13d. Usually, ¢ is at the end of a pair of
matched intervals. This is basically a diffusion
process except that the domain D; of the junction
(zi,3:) associated with e changes slightly as e flips.
So, this step had better (doesn’t have to) propose a
new position for (z;,u).

s Type III: Flipping a mapping edge ¢ = on/off that
creates or removes a junction (z,y), as is shown in
Fig. 13e and Fig. 13f. This is a jump process. The
proposal should include a position (z,y} for the
created junction.

05f \

ol— 1 ! L s L I
-4 -3 -2 ~1 0 1 2 3 4

Fig. 10. A T-function +(£) =t 7%
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Fig. 11. Short false axes appear in the mapping function.

¢ Type IV: Flipping a mapping edge e = on/off that
splits a junction (z,y) into two (xy,41) and (w2, 4a) or,
reversely, merges two into one, as is shown in Fig,
13g and Fig. 13h. This is again a jump process. The
proposal should also include the positions for the
new junctions.

The four types of proposals are reversible and they
construct an ergodic process in random combination for
walking in the space {1. Type I is implemented by the
Gibbs sampler in Section 4 and Types II, III, and IV flip a
single mapping ¢ =on/off, but, when we compute
ple = on/foffiM}, as in Algorithm I, we should also
consider the associated junction(s) simultaneously. Take
type IV as an example. The proposal switches between
two configurations:

Aif{e=onJi=(z1,m), 2 = (22, 3)} UM~ UJ™ (Fig.13g)
B: {e=off,Jy = (zp,m)} WM UJ (Fig.13h),

where M~ and J~ denote the rest of the mapping edge set
and the junction set, which are fixed during the move.

In the Metropolis-Hastings algorithm, a proposal is
accepted with probability

(M)

a{A —+ dB) = min (1 B - dA)P(B)dB),

"g(A — dB)p(A)dA

where g(B — dA) and ¢(A — dB) are the proposal prob-
abilitiés which need to be decided. The proposal 4 — B
includes flipping e and a new position (2, ) according to
probability g2, 4}. The proposal B — A includes flipping
e and two new positions (z;,1) and (i, ) according to
probabilities g(z1, 1) and g(xs, y2), respectively.

Therefore, the acceptance probability becomes

ofA — dB) =

min(l ‘1("“"1=yl)q(wz,yz)p(B)dm‘ldmdmzdyde) (8)
. ’ Q(mﬂs y())p(A}dﬂ?odyodA '

It is easy to check that the dimensions of the above
probabilities are well-matched.

Generally speaking, in the proposal 4 — B, the position
(i, 1) for the newly created junction could be randomly
chosen in the domain D,. Obviously, random choices very
likely lead to a high rejection rate and, thus, are inefficient.
We choose g(x;, ;) to focus on the center of the domain D;.
A similar problem was discussed in Section 3 when we
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Fig. 13. Four reversible proposals for designing the jumping-diffusion process.
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Fig. 14. the stoghastic medial axes for two synthetic shapes.
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Fig. 15. The stochastic medial axes for some real shapes.

discussed the proposal probability from the candidate set 3;

for each linelet T';,
Given the proposed positions, p{e = on/off|{M) can be

computed. We will not discuss the details of the computa-

tion, but will give the overall algorithm.

Algorithm III: A Jump-Diffusion process for Medial axis ¢
0. Partition I', and set 17, T3 to high temperatures in
B(M,J).

1. Anneal Ty, compute M by Algorithm I.

2. Arneal Ty, compute J by Algorithm IL

3. Pick up e at random.
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4. If e intersects existing mappings, go to 10, otherwise
decide the proposal type

5. Propose position(s) for junction(s) near e depending
on the proposal type.

6. Compute ple = on|M) and ple = off|M) for e,

7.  Draw a random variable r € [0, 1] with a uniform
distribution

8.  Ifr < p(e = on|M), then M « MU {e}, update J.

9.  Otherwise M — M/{e}, update J.

10.  count «— count + 1.

11. If count < threshold Goto 3, else stop.

In practice, M resulting from Step 2 is almost always a
superset of the optimal M", especially if we choose a large -y
in Ey(M), thus we only need to propose which ¢ € M to
turn off. So, in Step 3, it is computationally efficient if we
only choose ¢ at the end of an axis—i,e., near the junctions.
If our goal is to compute the minimum of E{3, J)}, not to
sample the positions of the junction at each step, an efficient
proposal is to turn off an axis that consists of only a small
number of mapping edges. Fig. 11 shows two of such short
axes, each of which has only two mapping edges.

6 EXPERIMENTS

We demonstrate some typical medial axes in Fig. 14 and
Fig. 15. In Fig. 14a, a perfect “T"~junction is recovered. In
Fig. 14b, there are five long axes for the rectangular parts
and they are virtwally connected by a junction. The
computed axes in Fig. 14 are the most favorable among
many other possible axes. Intuitively, the perception of axes
largely depends on the construcling parts of object shape
and the junctions joining the parts. The axes in Fig. 14 imply
butt joints between rectangular parts, while the axes in Fig, 1
assume hinge joints, Some axes are also obtained for the real
shapes with nice junctions. For example, the six axes in the
flower shape joined at a single point and they are aligned in
three groups; in the hand shape, the fingers, and the palin
axes joined at one point, and a nice “T”-junction forms for
the thumb-palm junction.

7 DISCUSSION

In this paper, the computation of medial axes is posed as a
statistical inference problem, not a deterministic transform
by maximum disks. Medial axes are defined as modes of a
probability p(M, JIT'} in a space €.

A stochastic algorithm is proposed for sampling
p(M,JII") and for minimizing the energy functional
through a rigorous account of a jump-diffusion process.
This jump-diffusion process realizes the interactions be-
tween M and J, which is often known as the bottom-up/top-
down computation in vision.

The algorithm is limited to computing M, J from T, i.e,,

['(s) = Morg(s))e=>J.

Ideally, we shall complete the loop by computing medial
axes, as well as I from real textured images I°, i.e.,

I°% — D(s)<= M (ot ¢(s))=J.
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This will involve more complex computation in a
bottom-up/top-down manner. The robustness problem of
the medial axis shall be solved if a smoothness prior model
is used on the boundary I'. We expect that this stochastic
algorithm should also be useful in perceptual grouping at
the middle-level vision and in detecting symmetric parts of
open curves. The Markov mapping graphs and the
stochastic algorithms in this paper have been utilized in
learning and sampling probability models of shape p(I') ina
companion paper [30].

Furthermore, the Markov property of our medial axis
definition and the stochastic nature of the algorithm make it
plausible for massive parallel computation and simulta-
neous extraction of medial axes during the segmentation of
images-—as was suggested by experiments in psychology
and neurophysiology [10], [11]. However, many issues have
to be resolved before applying the algorithm to fragmented
curves.
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