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Joint Cosegmentation and Cosketch by
Unsupervised Learning

Jifeng Dai, Ying Nian Wu, Jie Zhou, and Song-Chun Zhu

Abstract—Cosegmentation refers to the problem of segmenting multiple images simultaneously by exploiting the similarities
between the foreground and background regions in these images. The key issue in cosegmentation is to align the common
objects in these images. To address this issue, we propose an unsupervised learning framework for cosegmentation, by
coupling cosegmentation with what we call “cosketch.” The goal of cosketch is to automatically discover a codebook of sketch
templates shared by the input images. The sketch template is of hierarchical compositional structure where a large structured
representational unit is composed of deformable smaller units. These sketch templates capture distinct image patterns and
each template is matched to similar image patches in different images. The cosketches align foreground objects, thereby
providing crucial information for cosegmentation. We present a statistical model whose energy function couples cosketch and
cosegmentation. We then present an unsupervised learning algorithm that performs cosketch and cosegmentation by energy
minimization. In experiments, we apply the proposed method to some public benchmarks on cosegmentation, including MSRC,
iCoseg and ImageNet. We also test our method on a new dataset called Coseg-Rep where cosegmentation can be performed
on a single image with repetitive patterns.

Index Terms—Cosegmentation, Cosketch, Unsupervised learning, Hierarchical Model, Sketch Model
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1 INTRODUCTION

T HE goal of image segmentation is to partition the
domain of an image into different regions with coher-

ent visual patterns [1]. Image segmentation is intrinsically
ambiguous without the guidance of high-level knowledge.
Human intervention is usually required in various scenarios
to provide additional information and reduce the ambigu-
ities, for example, interactive segmentation [2], strongly
supervised segmentation [3]. A new scenario studied re-
cently is called cosegmnetation. Given a set of unlabeled
images containing similar objects from the same object
category, the goal of cosegmentation is to jointly segment
the common objects in all the images. The repetition of
common objects in these images provide mutual supervi-
sion for disambiguating the segmentations. Compared with
interactive and supervised segmentation, cosegmentation
requires very little human intervention and has attracted
considerable attention from the vision community.

1.1 Motivation and Objectives
A key issue in cosegmentation is to find the “common”
foreground objects by exploring the similarities in the visual
patterns among the input images. In this paper, we present
an unsupervised learning framework for cosegmentation.
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The main idea is to couple the task of cosegmentation with
what we call cosketch. The goal of cosketch is to learn a
codebook of sketch templates that are shared by the input
images, and to sketch the images by these commonly shared
templates. The sketch templates help establish correspon-
dence between different images, providing crucial top-down
information for segmentation.

To compute the co-sketch, we devide images into two
categories of atomic elements as in the primal sketch
representation [4]: i) sketches including region boundaries
as well as non-boundary edges and lines; and ii) non-
sketches including region interiors and shapeless patterns
such as sky and water etc. We observe that objects, in
existing datasets of cosegmentation, can be divided into
three different categories according to their foreground
complexity (see Fig. 1):

1) Objects with common sketch configurations, such as
faces, leaves, pyramids etc.

2) Composite objects with common parts, such as street
signs, houses etc. Although these objects do not have
a common configuration, they share common parts.

3) Stochastic objects with common sketch elements, like
trees, which do not have a common sketch configura-
tion or parts but are stochastic with common sketch
elements.

We propose to learn a codebook of hierarchical sketch
templates to account for foreground objects of the three
granularities above, which are then used to align the ob-
jects in different images. Fig. 2 illustrates our method. A
codebook of two sketch templates (head and body) are
learned from a set of input images of deer that are not
a priori aligned or annotated, where each sketch template
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Fig. 1: An example of input images for cosegmentation from different object categories in the MSRC dataset: (a) Faces, in
which the common objects have a similar sketch configuration; (b) Signs, in which the foreground objects have different
configurations of common parts; (c) Trees, in which the foreground objects are stochastic with common sketch elements.

is of a hierarchical compositional structure. These sketch
templates capture distinct image patterns and the same
template is matched to similar image patches in different
images by translation, rotation, scaling and deformation.
Each sketch template is associated with a segmentation
template to be explained below, which provides top-down
information for segmentation.

1.2 Overview of Our Method
Representation and model. We propose a statistical model
that couples a sketch model and a region model. The model
consists of the following three components.

(1) Sketch model. It seeks to encode the sketchable
patterns of the input images by a codebook of sketch
templates. Each sketch template is a large structured repre-
sentational unit composed by a group of deformable smaller
less-structured part templates, and each part template is
composed of a group of shiftable atomic Gabor bases. It
is a generative model with explicit variables for sketch
deformations and is suitable for unsupervised learning.

(2) Region model. It represents the non-sketchable visual
patterns. Each pixel of an input image is assigned a label
indicating which region this pixel belongs to. The region
model is defined conditional on the pixel label maps, which
is in the form of a Markov random field that models
the marginal distributions of pixel colors and pairwise
similarities between neighboring pixels.

(3) Coupling. The sketch model and region model are
coupled by associating each sketch template with a seg-
mentation template. The coupling is not a hard assignment
but probabilistic, which is in the form of a set of probability
maps of pixel labels defined on the part templates of the
sketch template. For each pixel within the bounding box of
a part template, the probability map gives the probability
that this pixel belongs to each region. The collection of
the probability maps associated with a sketch template
is called a segmentation template. Segmentation templates

provide top-down prior information for pixel labels in the
region model. Conversely, the pixel labels obtained from
segmentation serve as data for the segmentation templates,
and they provide bottom-up information for inferring sketch
representation.

Unsupervised learning algorithm. Fitting the above
model by energy minimization leads to a relaxation algo-
rithm that alternates the following two steps.

(I) Image parsing: Given the current sketch templates,
segmentation templates and the parameters for the sketch
and region models, sketch the images by the sketch tem-
plates, and segment the images by graph cuts [5].

(II) Re-learning: Given the current image sketches and
segmentations, re-learn the sketch templates, segmentation
templates and model parameters.

The image parsing step itself consists of two sub-steps.
(I.1) Sketch-guided segmentation. Given the current

sketches of the images by the sketch templates, segment
the images by graph cuts with the associated segmentation
templates as prior.

(I.2) Segmentation-assisted sketch. Given the current
pixel labels of region segmentation, sketch the images
by matching the sketch templates and the associated seg-
mentation templates to the images and their label maps
respectively.

Random initialization with no preprocessing. The sketch
templates and the associated segmentation templates are ini-
tialized by learning from randomly cropped image patches,
without any sophisticated pre-processing. Relaxation by
energy minimization automatically results in alignment and
segmentation, while distinct templates are being learned.

Experiments and data sets. We evaluate the proposed
method on the MSRC [6], iCoseg [7] and ImageNet [8]
datasets. Our method achieves state of the art accuracies
on the MSRC and ImageNet datasets. To further test the
proposed method, we collect a new dataset called Coseg-
Rep, which contains 23 object categories with 572 images.
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Fig. 2: An illustration of the proposed approach. Distinct sketch templates are learned (from 19 input images) and are
matched to specific image patches in different images. Each sketch template is composed of 3×3 shiftable part templates,
and each part template is composed of a set of shiftable Gabor bases. Sketch templates are coupled with segmentation
templates that provide top-down clues for segmentation.

One special category contains 116 images such as tree
leaves, where similar sketch patterns repeat themselves
within the same image. As a result, cosegmentation can
be performed on a single image. Our Coseg-Rep datasets,
ground truth labels and results are available for the research
community for further investigation1.

1.3 Related Work and Comparisons
Our paper is related to the following four threads of
research in the literature.

1, Shape models in strongly supervised segmentation.
The advantage of utilizing shape model to provide top-down
information for segmentation has been well demonstrated
by a number of papers in strongly supervised segmentation,
where the training images with ground truth annotations are
given to train the generic segmentation model [3], [9]–[11]
or to perform segmentation propagation [8]. In [3], [11],
template-based models capturing high-level shape cues are
trained from the aligned training images. However, it is
hard to train such high level models that capture global
information from non-annotated images. These methods do
not work for the scenario of cosegmentation unlike our
method.

2, Recent approaches in cosegmentation. Existing
methods for cosegmentation mainly focus on employing
local features. For example, in [12]–[20], where image
features such as color histogram, SIFT, Fisher vectors
etc. are extracted at all the pixels (or superpixels), so
that those pixels (or superpixels) with similar features are
encouraged to share the same segmentation results. One
potential problem with the image features is that they may
be too local to be distinctive, so they may not provide strong

1. http://www.stat.ucla.edu/∼jifeng.dai/research/
JointCosegmentationCosketch.html

prior information for segmentation. In contrast, the explicit
sketch templates used by our method cover much larger
area (120 × 120 pixels) and capture much larger patterns,
so that cosketch by these templates help to establish the
correspondence between objects as well as their parts in
different images. The associated segmentation templates
thus provide strong prior information for cosegmentation.
As a result, our approach achieves higher accuracies than
existing state of the art methods on several challenging
benchmarks.

There are some previous endeavors trying to learn high-
level sketch templates from unannotated images to help
segmentation. In [21], the edge model is defined by Gaus-
sian distributions over Canny edge strength transformed
by a deformation field. In [22], shape model is in the
form of a rigid edge energy map covering regions deter-
mined by salient object detector. Both algorithms are only
tested on images with roughly aligned object instances,
which provide vital information for the learning of sketch
templates. In contrast, our unsupervised learning method
can be efficiently applied to non-aligned images where
the object instances of the same category can be viewed
from different perspectives, and can appear at different
locations, orientations and scales in the input images.
The correspondence between the images are automatically
established while the sketch templates are being learned
by the principled energy minimization algorithm, without
any need for sophisticated initialization or preprocessing.
In addition, our sketch model is based on a dictionary of
hierarchical compositional templates, which is much more
complex than those in [21], [22] and can better capture the
variations of structure, viewpoint, deformation etc.

Very recently, Rubinstein et al. [23] utilized salient object
detector and SIFT flow to provide high-level information
for image cosegmentation. Salient object detector provides
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foreground/background prior, and SIFT flow helps to es-
tablish correspondence between different images. Faktor
and Irani [24] perform cosegmentation by composing an
image by image parts pooled from a set of similar images.
Compared to their methods, our approach is different in the
following aspects. i) It explicitly models the sketchable vi-
sual patterns and their coupling with regions in a generative
way. ii) It learns a common model over the input images
instead of performing computationally expensive pairwise
SIFT flow comparisons or image composition.

3, Learning sketchable patterns and repeated patterns
in images. This work is related to learning sketchable
patterns [25], [26] in images. In [25], [26], the sketchable
visual patterns are represented by a collection of deformable
Gabor bases, called active basis. Active basis models are
learned from images that are roughly aligned.

This work is also related to [27]–[33], where repeated
patterns are learned from unaligned input images. In [30]–
[32], a set of HOG or active basis templates are learned
from multiple input images of the same object category. In
[33], recurring tuples of visual words are extracted from
single image with repetitive patterns.

Different from our method, the above mentioned methods
do not deal with the problem of segmentation. In addition,
our sketch model is a codebook of hierarchical composi-
tional templates, which is more flexible than those used in
previous approaches.

4, Learning hierarchical compositional models. In
this work, hierarchical compositional models are learned to
represent the sketchable visual patterns. Hierarchical com-
positional models are very popular for modeling patterns of
objects, see [34]–[40] for some examples. Many existing
approaches to learning hierarchical compositional models
are usually supervised where the object bounding boxes
are given [39], [40] or weakly supervised where images
are labeled and roughly aligned [34]. In this paper, we
learn dictionaries of hierarchical compositional templates
from unaligned natural images without annotations, which
is more challenging.

Our work bears some similarities to [34], which seeks to
organize the compositions of Gabor bases or edgelets into
hierarchical structures. The hierarchical structures in [34]
are learned layer-by-layer in a bottom-up manner. Once the
lower layers are learned, they are fixed in the subsequent
learning of higher layers. In our iterative learning algorithm,
the part templets are re-learned and the Gabor bases are
re-selected in each iteration, so the learning is more top-
down than bottom-up. Please refer to Fig. 5 for the iterative
learning process.

1.4 Contributions and Paper Organization
This paper makes the following contribution to the litera-
ture.
• It presents a statistical model whose energy function

couples cosketch and cosegmentation. In cosketch, a
codebook of generative sketch templates organized
into hierarchical compositional structure is introduced
to align common foreground objects.

• It presents an unsupervised learning algorithm that
can efficiently perform cosketch and cosegmentation
jointly on non-aligned images.

• In experiments, the proposed approach outperforms
previous state of the art methods in cosegmentation on
several challenging public benchmarks. It also create a
new dataset named Coseg-Rep, with a special category
that contains natural images with repetitive patterns.
So we can test the algorithm for learning the common
foreground model from a single image.

In comparison with a previous conference version [41],
the paper expand the algorithm and the experiments in the
following aspects: i) the sketch templates are extended to
be of hierarchical compositional structure; ii) the proposed
algorithm is tested on the challenging ImageNet dataset,
and is improved in performance on the MSRC, iCoseg and
Coseg-Rep datasets; and iii) it analyzes the cosegmentation
accuracy with respect to several important influence factors.

The rest of this paper is organized as follows. Section 2
introduces the statistical model that couples cosketch and
cosegmentation. Section 3 explains the unsupervised learn-
ing algorithm. Section 4 presents experiments on public
benchmark datasets and introduces the Coseg-Rep dataset.
Finally Section 5 concludes with a discussion.

2 REPRESENTATION AND MODELS

For clarity, this section and the next section present the
simplest form of the model and algorithm. Implementation
issues for the general situation will be treated at the end of
Section 3.

2.1 Notation and Problem Definition

Let {I(m), m = 1, ...,M} be a set of input images. Let Λ
be image domain of I, i.e., Λ collects all the pixels of I.
For each pixel x ∈ Λ, let f(x) be the label of pixel x for
image segmentation, f(x) = 1 if x belongs to foreground,
and f(x) = 0 if x belongs to background. The task of
cosegmentation is to return the label maps {f (m)(x),m =
1, ...,M} as output and is evaluated by {f (m)}.

In the sketch model, I(x) is assumed to be a grey level
intensity. In the region model, I(x) is assumed to be a
three-dimensional vector in the color space.

2.2 Sketch Model

The sketch model generates the sketchable patterns by
encoding an image I using a codebook of sketch templates,
where each template is of hierarchical compositional struc-
ture (see Fig. 3). The sketch primitives at different layers of
the model can be organized into layered dictionaries. Table
1 defines the primitives and elements, their parameters and
the allowed ranges of values, which we shall elaborate in
the following.
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Layer ID Template type Parameters Deformation Range Template Size

∆(5), ∆(4) Sketch template H lk =

 positionxk
scale sk

orientation ok

 Ω(4) =

 image domain Λ
×{0.8, 1, 1.2}

×{−2,−1, 0, 1, 2} × [−π/16, π/16]

 120× 120 pixels

∆(3), ∆(2) Part template A lt,v =

 xt,v
st,v
ot,v

 δlk,v =

 δxk,v
0

δok,v

 Ω(2) =

(
{−2, 0, 2} × {−2, 0, 2} pixels
×{−1, 0, 1} × [−π/16, π/16]

)
40× 40 pixels

∆(1), ∆(0) Gabor basis B

Basis coefficientλt,v,i and normalizerZt,v,i

lt,v,i =

 xt,v,i
st,v,i
ot,v,i

 δlk,v,i =

 δxk,v,i
0

δok,v,i

 Ω(0) =

(
{−1, 0, 1} × {−1, 0, 1} pixels
×{−1, 0, 1} × [−π/16, π/16]

)
13× 13 pixels

TABLE 1: List of visual concepts used in our sketch templates, their parameters, deformation ranges and template sizes.
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a hierarchical compositional structure.

2.2.1 Layered dictionaries

∆(5) is the dictionary of sketch templates

∆(5) = {Ht, t = 1, ..., T}, (1)

in which t indexes the type, usually T = 4. The hierarchical
templates capture the frequently occurring patterns in the
input images.

∆(4) contains the spatially translated, rotated and scaled
versions of the sketch templates in ∆(5) for image repre-
sentation. For an image I, we encode it by K activated
sketch templates, which are spatially translated, rotated and
scaled copies of the sketch templates picked from ∆(5). Let
Htk(lk) be the k-th activated template of type tk, where
lk = (xk, sk, ok) is its geometric attribute, where xk is the
location, sk is the scale, and ok is the orientation. Then the
set ∂Ht = {Ht(lk), lk ∈ Ω(4)} forms an equivalent class of
Ht (i.e. the orbit w.r.t. a similarity transform group). ∆(4)

is the union of all possible activated templates:

∆(4) = ∪t ∂Ht, for Ht ∈ ∆(5). (2)

∆(3) denotes the dictionary of part templates of the
activated sketch templates in ∆(4). Let dHt ∈ ∆(4) be
an activated (deformed) sketch template, and At,v the v-th
part template in dHt. Then dHt can be decomposed into

dHt = (At,1(lt,1), ..., At,V (lt,V )),

where V is the number of part templates, lt,v =
(xt,v, st,v, ot,v) is the geometric attribute of the v-th part
template. xt,v , st,v and ot,v are the relative position, scale
and orientation respectively. Here we fix the model structure
by assigning 9 non-overlapping part templates arranged into
a 3 × 3 grid to each sketch template. Then ∆(3) is the
collection of all the part templates

∆(3) = {At,v, t = 1, ..., T, v = 1, ..., V }. (3)

∆(2) includes all the shifted part templates. We allow
each At,v in ∆(3) to translate and rotate within a small
bounded range to account for object deformations in dif-
ferent images. Let δl = (δx, 0, δo) be the shift within
the bounded range, then we derive a set of shifted part
templates {At,v(lt,v+δl), δl ∈ Ω(2)} for each At,v in ∆(3).
Let ∂At,v denote the equivalent class of At,v subject to
bounded shifts. Then ∆(2) is the union of all the shifted
part templates

∆(2) = ∪t,v ∂At,v, for At,v ∈ ∆(3). (4)

∆(1) contains the Gabor bases in the deformed part
templates in ∆(2). Following the active basis model in
[25], the basis elements B are chosen to be Gabor bases
at different positions and orientations. A deformed part
template dAt,v ∈ ∆(2) is decomposed into a group of
Gabor bases with zero mean and unit `2 norm

dAt,v = (B(lt,v,1), ..., B(lt,v,n)),

where B(lt,v,i) is the i-th Gabor basis with lt,v,i =
(xt,v,i, st,v,i, ot,v,i). Here the lt,v,i for each B(lt,v,i) is not
pre-determined, but to be learned from the input images.
Therefore, ∆(1) is a set of Gabor basis elements decom-
posed from ∆(2)

∆(1) = {B(lt,v,i) ∈ dAt,v, dAt,v ∈ ∆(2)}. (5)
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∆(0) contains the shifted Gabor bases in ∆(1), which
ground the templates onto image pixels. For each basis
B(l) ∈ ∆(1), we allow translations and rotations within
bounded ranges and derive a shifted set ∂B(l) = {B(l +
δl), δl ∈ Ω(0)}. Then ∆(0) is the union of all these shifted
Gabor bases

∆(0) = ∪ ∂B(l), for B(l) ∈ ∆(1), (6)

where each Gabor basis is the translated and rotated version
of the original one.

As a summary, dictionaries ∆(j), j = 5, 4, 3, 2, 1, 0
form a hierarchical compositional representation of the
sketchable visual patterns. ∆(5) is decomposed into ∆(3),
and ∆(3) is decomposed to ∆(1). ∆(4) is the activated and
shifted version of ∆(5); while ∆(2) and ∆(0) are the shifted
versions of ∆(3) and ∆(1) respectively.

2.2.2 Probabilistic modeling
Given an input image I, we encode the sketches in I
by K activated sketch templates. For now, let us assume
that these K templates as well as their part templates and
Gabor bases do not overlap with each other. The issue of
overlapping will be considered later, which will not add
anything conceptually.

Let Λk be the image domain covered by the k-th ac-
tivated and deformed sketch template Htk(lk) ∈ ∆(4) to
encode image I. Then the image domain Λ of I can be
divided into

Λ = Λ0 ∪ [∪Kk=1Λk], (7)

where Λ0 refers to the image domain not covered by any
sketch templates.

Each activated template is further divided into part tem-
plates, which are also allowed to shift relative to each other
to encode the input image. Let Λk,v be the image domain
covered by the shifted part template Atk,v(dlk,v) ∈ ∆(2),
where dlk,v = lk + ltk,v + δlk,v . Then the image domain
Λk covered by Htk(lk) is divided into

Λk = ∪Vv=1Λk,v. (8)

Each shifted part template Atk,v(dlk,v) is further divided
into shiftable Gabor bases to ground onto image pixels. Let
Λt,v,i be the image domain covered by the shifted Gabor ba-
sis B(dlk,v,i) ∈ ∆(0), where dlk,v,i = dlk,v+ltk,v,i+δlk,v,i.
Then the image domain Λk,v covered by Atk,v(dlk,v) is
divided into

Λk,v = Λk,v,0 ∪ [∪ni=1Λk,v,i], (9)

where Λk,v,0 refers to the empty pixels inside Λk,v not
occupied by the Gabor bases.

Let ΛS = {∪k,v,iΛk,v,i} denote the pixels covered by the
Gabor bases in image I, which correspond to the sketchable
image areas, and let ΛS = {Λ0 ∪ [∪k,vΛk,v,0]} denote the
pixels not covered by the Gabor bases, which correspond
to the non-sketchable image areas. The image is divided
into two components

I = (I(ΛS), I(ΛS)).

The activation and deformation states of the dictionaries
at different layers form the sketch representation WS =
(tk, lk, δlk,v, δlk,v,i,∀k, v, i) of image I. Here we define
a probability model p(I|WS) over WS . Due to the tree
structure of the hierarchical compositional model and the
non-overlapping assumption, p(I|WS) can be factorized as
follows by assuming independence between the parts,

p(I|WS) = p(I(ΛS), I(ΛS)|WS)

= p(I(ΛS))p(I(ΛS)|WS)

= p(I(ΛS))
∏
k,v,i

p (I(Λk,v,i)|B(dlk,v,i)) .
(10)

Following the active basis model [25], we take a ref-
erence model q(I) for generic natural images, which can
be factorized into the product of the patch probabilities
q (I(Λk,v,i)) as well as q(I(ΛS)) under conditional inde-
pendence assumption.

We compute the probability ratio

p(I|WS)

q(I)
=

∏
k,v,i p (I(Λk,v,i)|B(dlk,v,i))∏

k,v,i q (I(Λk,v,i))
. (11)

Since p(I(ΛS)) uses the same model as q(I(ΛS)), it is
canceled in the ratio.

As each image patch I(Λk,v,i) is still high dimensional,
we project it to a one dimensional probability ratio along
the response of basis function B(dlk,v,i)

rk,v,i = ‖〈I(Λk,v,i), B(dlk,v,i)〉‖2 ,

and the latter can be modeled by a one-dimensional ex-
ponential distribution following the information projection
principle [25].

p (I(Λk,v,i)|B(dlk,v,i))

q (I(Λk,v,i))
=
p(rk,v,i)

q(rk,v,i)

=
1

Ztk,v,i
exp {λtk,v,ih(rk,v,i)} .

(12)

The above model has four aspects.
• q(r) is a histogram of filter responses pooled over a

set of natural images. It has high probabilities near
zero and has heavy tails.

• h is a sigmoid transform that saturates the large Gabor
basis response to τ :

h(x) = τ
[
2/(1 + e−2x/τ )− 1

]
.

It has high response when the patch coincides with an
edge/bar feature in the image.

• λt,v,i reflects the importance of the corresponding
Gabor basis element in the learned sketch template,
and should be estimated by maximum likelihood so
that the expectation Eλt,v,i

[h(r)] matches the corre-
sponding observed mean response from covered image
patches.

• Zt,v,i can be computed using numerical integration to
normalize the one dimensional probability distribution
p(r) = q(r) 1

Zt,v,i
exp{λt,v,ih(r)}.
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Let ΘS = (λt,v,i, Zt,v,i,∆
(j),∀t, v, i, j) be the parame-

ters for the sketch model, the log-likelihood ratio of image
I encoded by WS is

`(I|WS ,ΘS) =

K∑
k=1

`(I | Htk(lk)), (13)

in which

`(I | Htk(lk)) =

V∑
v=1

n∑
i=1

[λtk,v,ih(rk,v,i)− logZtk,v,i] .

(14)
Energy function for sketch model. We define the energy

function of the sketch model to be

E(I|WS ,ΘS) = −`(I|WS ,ΘS). (15)

2.3 Region Model

The region model generates non-sketchable visual patterns,
by modeling the marginal distributions of I(x) (here I(x)
is a three-dimensional vector in the color space), and the
pairwise similarities between neighboring pixels, condition-
ing on pixel labels for segmentation. The energy function
of the region model is in the form of pair-potential Markov
random field. It consists of two terms: the unary potential
and the pairwise potential.

Unary potential. The unary potential models the marginal
distribution of pixel colors conditional on the pixel labels
by mixtures of Gaussian distributions. Let g(v;µ,Σ) denote
a three-dimensional Gaussian density function with mean
µ and variance-covariance matrix Σ, and ρ denote the prior
of a Gaussian density function within the mixture model,
the unary potential is

φ(I(x)|f(x))

= − log

[ C∑
c=1

ρf(x),cg(I(x);µf(x),c,Σf(x),c)

]
,

(16)

where θR = (ρf,c, µf,c,Σf,c) is an image specific color
model. As a commonly used approximation, the sum oper-
ation in (16) can be replaced by max operation. The default
value of C is set to be 5.

Pairwise potential. If pixels x and y are nearest neighbors
(in this paper we use the nearest neighborhood) as denoted
by x ∼ y, then we want I(x) and I(y) to be different
from each other if x and y belong to different regions. The
pairwise potential is defined as

ψ(I(x), I(y)|f(x), f(y))

= 1(f(x) 6= f(y)) exp

[
−‖I(x)− I(y)‖22

2σ2

]
.

(17)

where 1() is the indicator function, ‖ · ‖22 denotes the
squared `2 distance between the colors of neighboring
pixels, and σ2 is taken to be the mean squared distance
between neighboring pixels.

Energy function for region model. Define WR =
(f(x), x ∈ Λ) to be the region representation of I. Define

ΘR = (θR) to be the parameters of the region model. The
energy function for the region model is

E(I|WR,ΘR) =
∑
x

φ(I(x)|f(x))

+
∑
x∼y

ψ(I(x), I(y)|f(x), f(y)).
(18)

2.4 Coupling Sketch and Region Models
The generative model that involves both the sketch
model and the region model can be written as:
p(WS ,WR)p(I | WS ,WR). The prior model can be
factorized into p(WS ,WR) = p(WS)p(WR|WS), where
WR = (f(x), x ∈ Λ) consists of pixel labels, and
WS = (tk, lk, δlk,v, δlk,v,i,∀k, v, i) consists of activation
and deformation states of sketch templates. We couple them
by modeling p(WR|WS), where the templates provide prior
information for pixel labels.

Segmentation templates as probability maps. For the
codebook of the sketch template {Ht, t = 1, ..., T}, we
associate a segmentation template with each Ht, where
the segmentation template itself is of hierarchical com-
positional structure. Specifically, for the image domain
of part template At,v in Ht, the coupling model defines
a probability map Pt,v on it for each part template.
Pt,v(x, f) = Pr(f(x) = f) gives the prior probability
of the pixel label f(x) for pixel x covered by At,v . The
segmentation template of Ht is the collection of probability
maps Pt = (Pt,v, v = 1, ..., V ), which is also of hierarchi-
cal compositional structure.
WS specifies the geometric transformation of the sketch

templates. Then the same geometric transformation also
transforms the corresponding segmentation templates.

Coupling energy function. Let ΘC = (Pt, t = 1, ..., T )
be the segmentation templates, we define the coupling
energy

E(WR|WS ,ΘC) = −
K∑
k=1

`(f(x)|Ptk(lk)). (19)

in which

`(f(x)|Ptk(lk)) =

V∑
v=1

∑
x∈Λk,v

logPtk,v(x, f(x)). (20)

Combined energy function. Let W = (WR,WS), and let
Θ = (ΘR,ΘS ,ΘC). The combined energy function is:

E(I,W |Θ) = γE(I|WS ,ΘS) + E(I|WR,ΘR)

+ E(WR|WS ,ΘC).
(21)

Here we introduce a weighting parameter γ because the
sketch model is a sparse model (default setting: the max-
imum number of basis functions in a sketch template is
60), whereas the region model and the coupling model are
dense models defined on all the pixels (default setting: the
number of pixels in Pt is 120 × 120). The parameter γ
is introduced to balance these two terms (default value:
γ = 200). One may consider that E(I,W |Θ) defines
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Fig. 4: Image parsing by sketch-guided segmentation and segmentation-assisted sketch. Sketch result helps to locate the
foreground objects and provides top-down prior information for segmentation. Conversely, segmentation result provides
bottom-up information for sketch.

a joint probability via the Gibbs distribution: p(I,W |
Θ) = exp{−E(I,W |Θ)/γ}/Z(Θ), where Z(Θ) is the
normalizing constant.

3 LEARNING ALGORITHM

The input of the learning algorithm is
{I(m),m = 1, ...,M.}. The output includes
{W (m) = (W

(m)
S ,W

(m)
R ),m = 1, ...,M} and

Θ = (ΘS ,ΘR,ΘC). The cosegmentation results are
{W (m)

R ,m = 1, ...,M}.
The unsupervised learning algorithm seeks to mini-

mize the total energy function
∑
mE(I(m),W (m)|Θ) over

{W (m)} and Θ. The algorithm iterates the following two
steps. (I) Image parsing: Given Θ, infer W (m) for each
I(m). (II) Re-learning: Given {W (m)}, estimate Θ.

3.1 Image Parsing
The image parsing step is performed on each image I,
which can be further divided into two sub-steps. (I.1)
Sketch-guided segmentation: Given WS , infer WR. (I.2)
Segmentation-assisted sketch: Given WR, infer WS . An
illustration of the image parsing algorithm is shown in Fig.
4. The issue of overlap between templates will be discussed
at the end of this section.

I.1: Sketch-guided segmentation. This step minimizes

E(I|WR,ΘR) + E(WR |WS ,ΘC)

=

[∑
x

φ(I(x)|f(x))−
K∑
k=1

`(f(x)|Ptk(lk))

]
+
∑
x∼y

ψ(I(x), I(y)|f(x), f(y))

(22)

over WR. The energy function is in the form of a unary
term and a pairwise term, which satisfies the submodular

condition and can be efficiently optimized by graph cuts [5].
The sketch representation generates the prior distribution
of pixel labels and adds to the unary term of the energy
function of the region model E(I|WR,ΘR). In this way, the
vital alignment information provided by the sketch model
is utilized to guide segmentation in a top-down manner.

I.2: Segmentation-assisted sketch. This step minimizes

γE(I|WS ,ΘS) + E(WR |WS ,ΘC)

=−
K∑
k=1

[
γ`(I | Htk(lk)) + `(f(x)|Ptk(lk))

]
(23)

over WS . The energy function is the weighted summation
of sketch template and segmentation template matching
scores. The segmentation template exploits pixel label in-
formation obtained from image segmentation via a bottom-
up way to assist sketch.

We define the template matching score of sketch and
segmentation template pair (Ht,Pt) over I to be:

Rt(l) = γ`(I | Ht(l)) + `(f(x)|Pt(l)). (24)

As the sketch template and segmentation template are
both of tree structure, the template matching score can be
calculated by a bottom-up template matching sub-process,
which recursively performs SUM and MAX operations:

Procedure Template matching
Up-1 compute the Gabor basis matching score SUM1 of B on
image I:

SUM1(l) = |〈I, B(l)〉|2.

Up-2 compute MAX1 by local maximization to account for
local perturbations of Gabor bases:

MAX1(l) = max
δl

SUM1(l + δl).
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Up-3 for t = 1, ..., T, v = 1, ..., V , compute matching scores
SUM2t,v of the part template At,v and the corresponding
probability map Pt,v on I:

SUM2t,v(l) = γ

n∑
i=1

[λt,v,ih(MAX1(l + lt,v,i))

− logZ(λt,v,i)] +
∑

x∈Λt,v

logPt,v(x, f(x)).

Up-4 for t = 1, ..., T, v = 1, ..., V , compute MAX2t,v of
At,v and Pt,v by local maximization to account for local
perturbations of part templates:

MAX2t,v(l) = max
δl

SUM2t,v(l + δl).

Up-5 for t = 1, ..., T , compute the matching score SUM3t
of the sketch template Ht and the corresponding segmentation
template Pt on I:

SUM3t(l) =

V∑
v=1

MAX2t,v(l + lt,v).

Set
Rt(l)← SUM3t(l).

Suppose the k-th activation of sketch templates in the
image I is known to be Htk , then the geometric attributes
of Htk and its part templates Atk,v can be determined by
a top-down template localization sub-process of arg-max
operations:

Procedure Template localization
Down-1 localize the sketch template Htk in image I:

lk = argmax
l

SUM3tk (l).

Down-2 localize the part templates in image I:

δlk,v = argmax
δl

SUM2tk,v(l + lt,v + δl), ∀v.

Finally, a template matching pursuit algorithm is per-
formed to sequentially select sketch templates to sketch I.

Algorithm 1 Template matching pursuit

1: Initialize the maps of template matching scores Rt(l) for all
(l, t) by the template matching sub-process. Let k ← 1.

2: Select the next best sketch template by finding the global
maximum of the maps: tk = argmaxt[maxlRt(l)].

3: Localize the selected template Htk in image I by the template
localization sub-process and get {lk, δlk,v ∀v}.

4: Let the selected arg-max template inhibit overlapping candi-
date templates. If the candidate template Ht(l) overlaps with
Htk (lk), then set R(t)(l)← −∞.

5: Stop if all Rt(l) ≤ 0. Otherwise let k ← k + 1, and go to
Step 2.

When performing cosegmentation on multiple images,
we require that each template in the codebook can only
be used once for each image. So if a template Htk(lk) is
selected, we set Rtk(l)← −∞ for all l.

3.2 Re-learning
This step seeks to minimize the total energy func-
tion

∑
mE(I(m),W (m)|Θ) over ΘS , ΘR and ΘC given

{W (m)
S } and {W (m)

R }. These three parameters are decou-
pled so the minimizations can be carried out separately.

II.1: Re-learn sketch templates. For each t = 1, ..., T ,
we re-learn Ht from all the image patches that are currently
covered by Ht. Specifically, we re-learn each part template
At,v in Ht from the aligned image patches by the shared
matching pursuit algorithm [25]. Let {Îu,t,v, u = 1, ..., U}
denote the aligned image patches cropped from {I(m)}
covered by At,v , the shared matching pursuit algorithm
sequentially selects the Gabor bases and estimates the
associated parameters. Each iteration seeks the maximal
increase of the total log-likelihood. The algorithm is as
follows.

Algorithm 2 Shared matching pursuit
1: Initialize i ← 0. For u = 1, ..., U , initialize the response

maps R̂u,t,v(l)← |〈̂Iu,t,v, B(l)〉|2 for all l.
2: i← i+ 1. Select the next basis function by finding

lt,v,i = argmax
l

U∑
u=1

max
δl

h(R̂u,t,v(l + δl)),

where maxδl is local maximum pooling within the bounded
range of perturbations.

3: For u = 1, ..., U , given lt,v,i, infer the perturbations by
retrieving the arg-max in the local maximum pooling of Step
2:

δlu,t,v,i = argmax
δl

R̂u,t,v(lt,v,i + δl).

Let dlu,t,v,i = lt,v,i + δlu,t,v,i and the response ru,t,v,i ←
R̂u,t,v(dlu,t,v,i). Then let the arg-max basis inhibit nearby
basis by setting R̂u,t,v(l) ← 0 if the correlation
|〈B(l), B(dlu,t,v,i)〉|2 > ε (default: ε = .1 to enforce the
approximate orthogonality of Gabor bases).

4: Compute λt,v,i by solving the maximum likelihood equa-
tion Eλt,v,i [h(r)] =

∑U
u=1 h(ru,t,v,i)/U. And de-

rive the corresponding Zt,v,i by solving p(r) =
q(r) 1

Zt,v,i
exp{λt,v,ih(r)}.

5: Stop if λt,v,i[
∑U
u=1 h(ru,t,v,i)/U ]− logZt,v,i ≤ 0, else go

back to Step 2.

II.2: Re-learn marginal distributions of regions. For
foreground and background, fit the corresponding mixture
of Gaussian distributions using the EM algorithm.

II.3: Re-learn segmentation templates. The probability
map Pt,v associated with each At,v is learned from the
pixel labels of all the image patches explained by At,v .
Let {f̂u,t,v(x), u = 1, ..., U} denote the aligned label map
patches cropped from {f (m)(x)} covered by Pt,v , Pt,v is
estimated by:

Pt,v(x, f) =
1

U

U∑
u=1

1(f̂u,t,v(x) = f). (25)

Initialization. For ΘS , Ht and the associated parameters
are learned from randomly cropped image patches. For ΘR,
the marginal distributions of foreground and background
can either be initialized from a weak prior or a strong prior.
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By default, we start from a weak prior, which learns the
background distribution from pixels within 10 pixels from
image boundaries and the foreground distribution from
pixels covered by the aforementioned random patches. For
strong prior, we initialize the marginal distributions from
segmentation results in [23] on the MSRC and iCoseg
datasets. The label maps are then initialized by graph
cuts. For ΘC , Pt is learned from the label maps of the
aforementioned random patches.

Since the learning algorithm starts from a dictionary of
templates learned from randomly cropped image patches,
the initial templates are random and meaningless, and
the differences among them are small. However, as the
algorithm proceeds, the small differences among the initial
templates quickly start a polarizing or specializing process,
where the templates become more and more different, and
they specialize in encoding different image elements.

An example of the iterative procedure of the proposed
approach is shown in Fig. 5.

3.3 Implementation Issues

Overlap. In the template matching pursuit algorithm, after
a candidate template Htk(lk) is selected, instead of letting
Htk(lk) inhibit all overlapping candidate templates Ht(l),
we only let Htk(lk) inhibit nearby candidate templates.
Specifically, we set all Rt(l) = −∞ if ‖x − xk‖2 < ρD,
where ‖ · ‖2 is the Euclidean distance, D is the side length
of the sketch template, and ρD is the pre-set overlapping
distance (default setting: ρ = .4).

In sketch guided segmentation, when generating the prior
probabilities of pixel labels, it is possible that a pixel is
covered by multiple overlapping part templates from one or
multiple sketch templates. In that case, we first choose the
sketch template with the highest log-likelihood (template
matching score). Then the probability map associated with
the highest responded part template is chosen to generate
the prior probability for this pixel.

Resolution and rotation. We scan the sketch template
Ht over I, as well as the associated segmentation template
Pt over the label map f(x). We do it on multiple reso-
lutions of I (default setting: we first resize each image to
approximately 1702 pixels, and then use three resolutions,
which are .8, 1, 1.2 relative to the resized image). In each
step of the template matching pursuit algorithm, we also
maximize over the resolutions, and we place the selected
template at the optimal resolution. After that, we map
the sketch and segmentation templates back to the highest
resolution, and perform inhibition and image segmentation
at this resolution.

In addition to resolution, we also allow the templates to
rotate (default range: {−2,−1, 0, 1, 2} × [−π/16, π/16]).

4 EXPERIMENTS

4.1 Cosegmentation on MSRC and iCoseg

The MSRC dataset has 14 object classes with about 30
images per class, and was first introduced in the context of

Hierarchical compositional templates 

Segmentation templates 

Hierarchical compositional templates
Learned templates in iterations 

Cosegmentation accuracy versus iterations 

Some input images without annotation 

… 

… 

… 

… 

… 

… 

… 

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 10 

Energy versus iterations 

Fig. 5: Iterative procedure of the proposed approach on 24
input images of camel. As the algorithm iterates, the learned
sketch templates and segmentation templates become more
and more meaningful, the overall energy decreases, and the
cosegmentation accuracy increases.

strongly supervised segmentation [6]. The iCoseg dataset
has 30 classes with varying number of images per class,
and was initially introduced for interactive cosegmentation
[7]. In both datasets, instances are of varying appearances,
locations, deformations and in cluttered backgrounds. There
have been different evaluation protocols employed by dif-
ferent cosegmentation algorithms. Here for clarity and fair
comparison, we compare with the unsupervised cosegmen-
taion algorithms without interactive input or additional
annotated training images, and follow the evaluation pro-
tocol employed by the very recent approach in [23]: i)
All the images in the above mentioned classes of MSRC
and iCoseg are utilized for evaluation; ii) Segmentation
accuracy is measured by the ratio of correctly labeled pixels
of foreground and background with respect to the total
number of pixels.
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TABLE 2: Correctly labeled pixel ratios of the proposed approach, its stripped down versions, and the methods in [17],
[20], [23], [24] on the MSRC dataset.

Class Ours Region only Region+Rigid sketch [41] [20] [17] [23] [24]
Bike 77.6 77.8 76.7 68.3 38.0 78.0 76.9
Bird 95.1 92.2 94.0 74.4 28.0 93.5 92.7
Car 94.2 85.8 91.1 79.4 53.4 83.7 85.2
Cat 86.7 89.2 86.4 74.6 39.5 90.4 90.0

Chair 91.0 85.5 90.4 68.2 69.0 87.6 90.9
Cow 92.4 92.1 92.0 83.2 79.1 94.1 96.7
Dog 93.0 90.2 92.1 75.7 37.6 90.0 89.7
Face 92.5 86.7 89.0 83.5 58.3 82.0 88.6

Flower 89.7 85.8 88.9 65.9 36.0 85.5 88.6
House 88.7 86.6 87.0 58.4 56.7 87.2 93.5
Plane 86.8 86.2 86.4 52.9 56.1 86.6 85.5
Sheep 94.1 92.0 94.3 89.7 86.1 92.4 95.1
Sign 92.9 91.6 92.1 74.9 59.6 92.8 94.1
Tree 84.4 83.4 83.9 81.3 67.8 83.4 85.9

Average 89.9 87.5 88.9 73.6 54.6 87.6 89.2

TABLE 3: Correctly labeled pixel ratios of the proposed approach, its stripped down versions, and the methods in [17],
[20], [23] on the iCoseg dataset. [41] is the Conference version of the proposed method.

Ours Region only Region+Rigid sketch [41] [20] [17] [23]
Average 91.0 88.9 90.1 70.2 70.4 89.8

In Table 2 and Table 3, we compare several stripped
down versions of our model: (1) region only: using only
the region model; (2) region+rigid sketch: using both the
region and a rigid sketch model, where the sketch model
is a dictionary of rigid sketch templates, which is the same
as [41]. Using only the region model achieves average
accuracies of 87.5% and 88.9% on the MSRC and iCoseg
datasets respectively. By coupling with rigid sketch model,
the accuracies are improved to 88.9% and 90.1%. The
full model coupling both the region and the hierarchical
compositional sketch model achieves average accuracies
of 89.9% and 91.0% on the MSRC and iCoseg datasets
respectively.

Table 2 and Table 3 also report the segmentation ac-
curacies of recent state of the art works [17], [20], [23],
[24]. The results of [17], [20], [23] are taken from [23].
The results of [24] are taken from [24]. On MSRC, our
proposed approach surpasses the other methods in 7 out of
14 categories. And its average accuracy is 16.3%, 35.3%,
2.3% and 0.7% higher than the methods in [20], [17], [23]
and [24] respectively. On iCoseg, the average accuracy of
the proposed approach is 20.8%, 20.6% and 1.2% higher
than the methods in [20], [17] and [23] respectively2.
Note that the comparing methods bring in rather heuristic
energy terms and computation procedures to boost the
performance. While the proposed model is motivated from
a generative perspective and is learned by the principled
energy minimization algorithm.

Fig. 6 show some cosketch and cosegmentation results
of the proposed approach on the images shown in Fig. 1.
It can be seen that our proposed approach can effectively
perform cosegmentation and cosketch despite that the ob-
ject instances in the images are of varying appearances,
locations, deformations and in cluttered backgrounds.

2. Following a data split protocol different from that in [23] and in this
paper, [24] reports an average accuracy of 92.8% on iCoseg.

4.2 Cosegmentation on ImageNet
ImageNet is a challenging large-scale dataset of object
classes, which contains millions of images annotated by
the class label of the main object. The original ImageNet
dataset does not have ground-truth annotations of segmen-
tation. In [8], a subset of ImageNet is labeled with ground-
truth segmentations. The test set contains 10 random images
from each of 446 classes, for a total of 4, 460 images. It is
very challenging due to limited training examples per class,
huge visual variability and cluttered backgrounds. In [8],
60k images annotated with bounding boxes, 440k images
with class labels and the semantic structure of class labels
in ImageNet are utilized to provide strong supervision for
segmentation propagation.

Here, we perform cosegmentation on the full test set
without any additional supervision. Segmentation accuracy
is measured by the correctly labeled pixel ratio, following
the criterion in [8]. The average accuracies of the proposed
approach, the supervised segmentation propagation algo-
rithm in [8] and the Grabcut [2] baseline are presented in
Table 4, where the results of segmentation propagation and
Grabcut are taken from [8]. Our approach delivers the state
of the art average accuracy of 79.0%, which is 1.9% and
8.0% higher than the supervised segmentation propagation
algorithm in [8] and the Grabcut baseline respectively. Note
that the previous state of the art result in [8] is achieved
with the help of abundant supervision information, while
our approach outperforms it without any supervision. Some
parsing results of the proposed approach on ImageNet
dataset are shown in Fig. 7.

4.3 Cosegmentation on Coseg-Rep
To further test our method, we collected a new dataset
called Coseg-Rep, which has 23 object categories with 572
images. Among them, 22 categories are different species of
animals and flowers, and each category has 9 to 49 images.
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(a)

(b)

(c)

Fig. 6: Learned templates, cosegmentation and cosketch results of the proposed approach on the images shown in Fig.
1: (a) Faces; (b) Signs; (c) Trees.

ImageNet 
n02407071 

                     
    

ImageNet  
n02981792 

                       

Fig. 7: Some cosketch and cosegmentation examples in the ImageNet dataset.

Coseg-Rep Dragonfly 

         
    

Coseg-Rep  Cormorant 

       
   

Fig. 8: Some cosketch and cosegmentation examples in the Coseg-Rep dataset.
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Input image Learned templates Cosketch and cosegmentation by the proposed approach Segmentation by Grabcut 

 

  
 

   
     

    

 

   
 

        

Fig. 9: Learned templates and corresponding parsing results of the proposed approach on two images of the repetitive
category in the Coseg-Rep dataset. More accurate segmentation is achieved than the Grabcut [2] baseline.

  

  

(a)

  

  
  

(b)

Fig. 10: Learned templates, cosegmentation and cosketch results of the proposed approach on images with repetitive
patterns used in [27] (shown in (a)), and [33] (shown in (b)).

TABLE 4: Correctly labeled pixel ratios of the proposed ap-
proach, the supervised segmentation propagation algorithm
in [8] and the Grabcut [2] baseline on the ImageNet dataset.
The algorithm in [8] utilizes an additional annotated dataset
and the semantic structure of class labels in ImageNet for
training, while our method does not use any supervision.

Ours [8] [2]
Average 79.0 77.1 71.0

More important, there is a special category called “repet-
itive,” which contains 116 natural images where similar
sketch patterns repeat themselves within the same image
instead of across different images, such as tree leaves and
grapes etc. Segmentation of a single image with repetitive
patterns is an important step for applications like automatic
leaves recognition [42], editing of repetitive objects in

a single image [43], latent print segmentation [44] and
etc. Cosegmentation results of our proposed approach are
presented in Table 5 and some examples are shown in Fig.
8. The mean accuracy over all the 23 categories is 91.7%,
which is evaluated by the correctly labeled pixel ratio.
Fig. 9 shows the learned templates and the corresponding
parsing results on two images with repetitive patterns.
Meaningful templates and satisfactory parsing results can
be obtained although the algorithm starts from random
initialization. As a comparison, our method gives more
accurate segmentation result than a Grabcut [2] baseline
method where the bounding box is set to be 10 pixels away
from the boundary.

We also tested on the images collected in [27], [33]. The
algorithms in [27], [33] seek to learn repetitive patterns
from a single image and do not deal with segmentation. The
learned templates and image parsing results of the proposed
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TABLE 5: Correctly labeled pixel ratios of the proposed approach on the Coseg-Rep dataset.
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Fig. 11: Template number versus cosegmentation accuracy
on the Coseg-Rep dataset.

approach are shown in Fig. 10.

4.4 Parameter Settings and Limitations

Choice of template number T . Template number T
controls the complexity of the sketch model and the cou-
pling model. It is natural to ask how many templates are
required to capture the sketchable visual patterns so as
to get satisfactory cosegmentation accuracy. In general, it
depends on how diverse the input images are and how many
training examples we have, and in principle, the question of
choosing T can be answered by the Bayesian information
criterion. Here we adopt an experimental approach by
analyzing the cosegmentation accuracy versus the number
of templates on the Coseg-Rep dataset, where different
classes have varying image numbers and image diversity.
The experimental result is shown in Fig. 11. It can be seen
that the cosegmentation accuracy is relatively robust with
respect to different template numbers. A specific example
of templates learned for varying template numbers is shown
in Fig. 12. In general, we found that on the current public
cosegmentation datasets, choosing template number T to
be 2 ∼ 4 delivers satisfactory performance.

Robustness with respect to image number M . Since
the goal of cosegmentation is to segment multiple im-
ages simultaneously by exploiting the similarities between
these images, an interesting question is how many input
images are needed to reliably learn the model. To our
best knowledge, there is no answer to this question in
the cosegmentation field. Here we study this question
on the proposed approach by performing the following
experiment: the 9 object categories with no less than 20
images except for “repetitive” category in the Coseg-Rep
dataset are picked out. Then M images (M varies from 1 to
20) are independently drawn from each category to perform
cosegmentation. We do this for 10 repetitions and the curve
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Fig. 13: Input image number versus cosegmentation accu-
racy on a subset of the Coseg-Rep dataset.

of mean cosegmentation accuracy over all the categories in
all the rounds versus image number M is shown in Fig.
13. It can be seen that the mean cosegmentation accuracy
generally improves as more and more input images are
available. When M = 1, the problem of cosegmentation
degrades to single image segmentation and the performance
is not good; when M increase from 1 to 11, the mean
cosegmentation accuracy improves steadily; when M is
more than 11, the model can be estimated well and the
benefit brought by more input images saturates.

Robustness with respect to image diversity. Another
important question for cosegmentation is the robustness of
the cosegmentation algorithm with respect to diversity in
the input images. The input images of the same object
category might well be quite visually different due to dif-
ferent visual subcategories, different viewing perspectives,
deformations etc. We argue that a good cosegmentation
algorithm should have strong robustness with respect to
image diversity so as to be practical in real applications.

For our model, since the learned templates are usually
parts of the objects instead of the whole objects, they
can be shared in different poses. Different poses can
also be captured by different templates in the codebook.
The hierarchical compositional structure can deal with
deformations by perturbing the parts and Gabor bases.
In addition, the segmentation templates is automatically
learned to be adaptive to the quality of the sketch templates.
When the sketch templates are of good quality, the learned
segmentation templates are assertive so the influence of
sketch on segmentation is strong and vice versa.

Some failure examples. Fig. 14 shows some failure
examples of our method. In these examples, the cosketch
results are incorrect due to cluttered backgrounds and
occlusions, which leads to false priors for cosegmentation.
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Fig. 12: The learned templates and the corresponding parsing results of the proposed approach for varying numbers of
templates (T = 1 ∼ 4).

 

             
  

          

Fig. 14: Some failure examples of the proposed approach. The cosketch results are incorrect due to cluttered background
and occlusions, which cause false priors for cosegmentation.

5 CONCLUSION
In this paper, we present a statistical model whose energy
function couples cosketch and cosegmentation. In cosketch,
sketch templates of hierarchical compositional structure are
unsupervisedly learned from the input images. The sketch
templates are coupled with region models to provide top-
down information for cosegmentation. In experiments, we
demonstrate that the proposed approach can efficiently per-
form cosegmentation on challenging datasets and achieve
state of the art accuracy on several public benchmarks.

Currently, we utilize a one layer location invariant region
model for the non-sketchable visual patterns. In the future,
we plan to extend the region model to a location sensitive
hierarchical compositional model as well.
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[19] J. C. Rubio, J. Serrat, A. López, and N. Paragios, “Unsupervised
co-segmentation through region matching,” in CVPR, 2012.

[20] A. Joulin, F. Bach, and J. Ponce, “Multi-class cosegmentation,” in
CVPR, 2012.

[21] J. Winn and N. Jojic, “Locus: Learning object classes with unsuper-
vised segmentation,” in ICCV, 2005.

[22] B. Alexe, T. Deselaers, and V. Ferrari, “Classcut for unsupervised
class segmentation,” in ECCV, 2010.

[23] M. Rubinstein, A. Joulin, J. Kopf, and C. Liu, “Unsupervised joint
object discovery and segmentation in internet images,” in CVPR,
2013.

[24] A. Faktor and M. Irani, “Cosegmentation by composition,” in ICCV,
2013.

[25] Y. N. Wu, Z. Si, H. Gong, and S.-C. Zhu, “Learning active basis
model for object detection and recognition,” IJCV, vol. 90, no. 2,
pp. 198–235, 2010.

[26] Z. Si and S.-C. Zhu, “Learning hybrid image templates (hit) by
information projection,” PAMI, vol. 34, no. 7, pp. 1354–1367, 2012.

[27] N. Ahuja and S. Todorovic, “Extracting texels in 2.1D natural
textures,” in ICCV, 2007.

[28] L. Lin, K. Zeng, X. Liu, and S.-C. Zhu, “Layered graph matching
by composite cluster sampling with collaborative and competitive
interactions,” in CVPR, 2009.

[29] S. Lee and Y. Liu, “Skewed rotation symmetry group detection,”
PAMI, vol. 32, no. 9, pp. 1659–1672, 2010.

[30] Y. Hong, Z. Si, W. Hu, S.-C. Zhu, and Y. N. Wu, “Unsupervised
learning of compositional sparse code for natural image representa-
tion,” Q. Appl. Math., in press.

[31] S. Singh, A. Gupta, and A. A. Efros, “Unsupervised discovery of
mid-level discriminative patches,” in ECCV, 2012.

[32] Q. Li, J. Wu, and Z. Tu, “Harvesting mid-level visual concepts from
large-scale internet images,” in CVPR, 2013.

[33] J. Liu and Y. Liu, “Grasp recurring patterns from a single view,” in
CVPR, 2013.

[34] S. Fidler and A. Leonardis, “Towards scalable representations of
object categories: Learning a hierarchy of parts,” in CVPR, 2007.

[35] J. Schlecht, K. Barnard, E. Spriggs, and B. Pryor, “Inferring
grammar-based structure models from 3d microscopy data,” in
CVPR, 2007.

[36] L. Zhu, C. Lin, H. Huang, Y. Chen, and A. Yuille, “Unsupervised
structure learning: Hierarchical recursive composition, suspicious
coincidence and competitive exclusion,” in ECCV, 2008.

[37] S. Todorovic and N. Ahuja, “Unsupervised category modeling,
recognition, and segmentation in images,” PAMI, vol. 30, no. 12,
pp. 2158–2174, 2008.

[38] S. Geman, D. F. Potter, and Z. Chi, “Composition systems,” Q. Appl.
Math., vol. 60, no. 4, pp. 707–736, 2002.

[39] L. Zhu, Y. Chen, A. Yuille, and W. Freeman, “Latent hierarchical
structural learning for object detection,” in CVPR, 2010.

[40] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,”
PAMI, vol. 32, no. 9, pp. 1627–1645, 2010.

[41] J. Dai, Y. N. Wu, J. Zhou, and S.-C. Zhu, “Cosegmentation and
cosketch by unsupervised learning,” in ICCV, 2013.

[42] N. Kumar, P. N. Belhumeur, A. Biswas, D. W. Jacobs, W. J. Kress,
I. C. Lopez, and J. V. Soares, “Leafsnap: A computer vision system
for automatic plant species identification,” in ECCV, 2012.

[43] M.-M. Cheng, F.-L. Zhang, N. J. Mitra, X. Huang, and S.-M. Hu,
“Repfinder: finding approximately repeated scene elements for image
editing,” SIGGRAPH, vol. 29, no. 4, p. 83, 2010.

[44] J. Feng, J. Zhou, and A. K. Jain, “Orientation field estimation for
latent fingerprint enhancement,” PAMI, vol. 35, no. 4, pp. 925–940,
2013.

Jifeng Dai received a B.S. degree from Ts-
inghua University, Beijing, in 2009. He was a
visiting student in the Department of Statis-
tics at University of California, Los Angeles,
from 2012 to 2013. From 2009 to now, he
is working toward a Ph.D. degree in the
Department of Automation, Tsinghua Univer-
sity, Beijing. His research interests are in
computer vision and pattern recognition. He
received Microsoft Research Asia Fellowship
Nomination Award, and Scholarship Award

for Excellent Doctoral Student granted by Ministry of Education,
China.

Ying Nian Wu received his Ph.D. degree in
statistics from Harvard University in 1996. He
is a professor of statistics at University of
California, Los Angeles. His research inter-
est is in statistical modeling and computing,
in particular, generative models in computer
vision. He received the Marr Prize honorary
nominations in 1999 for texture modeling and
2007 for object modeling, respectively.

Jie Zhou (M’01-SM’04) received a Ph.D.
degree from Institute of Pattern Recogni-
tion and Artificial Intelligence, Huazhong Uni-
versity of Science and Technology (HUST),
Wuhan, China. He is a full professor in the
Department of Automation, Tsinghua Univer-
sity. His research area includes computer vi-
sion, pattern recognition and image process-
ing. In recent years, he has authored more
than 100 papers in peer-reviewed journals
and conferences. Among them, more than 30

papers have been published in top journals and conferences such
as PAMI, T-IP and CVPR. He is an associate editor for International
Journal of Robotics and Automation, Acta Automatica and two other
journals. Dr. Zhou is a senior member of IEEE and a recipient of the
National Outstanding Youth Foundation of China.

Song-Chun Zhu received a Ph.D. degree
from Harvard University. He is a professor of
Statistics and Computer Science at Univer-
sity of California, Los Angeles. He has pub-
lished over 160 papers in computer vision,
statistical modeling and learning, cognition,
and visual arts. He received a number of
honors, including the Aggarwal prize from
the Intl Association of Pattern Recognition in
2008 for contributions to a unified foundation
to computer vision, the Marr Prize in 2003

with Z. Tu et al. for image parsing, twice Marr Prize honorary
nominations with Y. N. Wu et al. in 1999 for texture modeling and
2007 for object modeling, a Sloan Fellowship in 2001, a US NSF
Career Award in 2001, an US ONR Young Investigator Award in
2001, and the Helmholtz Test-of-Time Award in ICCV 2013 for work
on image segmentation. He is a Fellow of IEEE, and served as a
general co-chair for CVPR 2012.


